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ABSTRACT. As a generalization of a usual infinite network, a Hilbert network
is defined as a pair of a graph and a resistance taking values in a Hilbert space.
With the sets of nodes and arcs of the graph, we associate variables belonging
to a Hilbert space. In this situation, we study several extremum problems
related to Hilbert-valued functions on the set of nodes or arcs of the graph
and their inverse relations.

1. INTRODUCTION WITH PRELIMINARIES

Let G = {X,Y, K} be a locally finite infinite graph which is connected and
has no self-loof as in [4]. Here X is a countable set of nodes, Y is a countable
set of arcs and K is the node-arc incidence matrix.

Let 2 be a real Hilbert space with an inner product (( -,-)) and the norm
||-]|. Denote by L(X; ) the set of all functions v on X such that u(z) € S for
each z € X and by Lo(X;.7) the set of all u € L(X;.%) such that the support
{z € X;u(z) # 0} is a finite set. The meaning of the notation L(Y;.7) and
Lo(Y; ) is similar. Let Z () be the set of all bounded, linear, positive and
invertible linear operators from . to . Assume that r € L(Y; £ (5¢)). This
is a generalization of the resistance in the ususal network theory as in [3] and [4].
We call the pair N = {G,r} of the graph G and this generalized resistance r a
Hilbert network as in [1], [6] and [7].

For each y € Y, there exists p(y) > 0 by our assumption (cf. [5]) such that

((r(y)h, b)) = py)|IR]I* for all b€ 2.

Here r(y)h means the image of h under r(y), i.e., r(y)(h). In this paper, we use
this convention unless no confusion occurs from the context. Denote by r(y)~*
the inverse operator of r(y). Notice that there exists p*(y) > 0 such that

((r(y) "'y b)) > p* ()L for all he 2.
For each y € Y, there exists a unique square root r(y)'/? € L(H#) of r(y) by [2]

B ) = ().
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Before introducing extremum problems on the Hilbert network N, we need
several preparations.

Definition 1.1. Let e be a fized element of F such that |le|| = 1.

Definition 1.2. For u € L(X; ), the potential drop du of u and the discrete
deriwative du of u are defined by

ouly) = Y _ Kz yu(e),
du(y) = —r(y)" (duly)) = —r(y) " du(y).
The Dirichlet sum of u is defined by
D(u) =3 _ ((r(y)du(y), du(y))) =3 _,((r(y)"ouly), du(y))).

Definition 1.3. For w € L(Y; ), the divergence Ow(x) of w and the energy
H(w) of w are defined by

Ow(z) = 3 _ K@ yuwy),
Hw) = 3 _ ((r@wy),wy)).
Notice that D(u) = H(du). Let us put

D(N; ) = {ue L(X;5); D(u) < oo},
Ly(Y;2) = {we LY;5); Hw) < co}.

For every wy,ws € Ly (Y; 5), we define the inner product H (wy,ws) by
H(wi,wa) =3 ((r(y)wi(y), wa(y))).
For every uy,us € D(N; ), we define the mutual Dirichlet sum D(uy, us2) by

D(u1,up) = H(duy, dug) = 3°  ((r(y)~"0ua(y), dua(y))).

Lemma 1.1. Let h € 5. For everyy € Y, the following relations hold:
(1) [((r(y)w(y), W) < ((r(y)w(y), wy)((r(y)h, h)).
(2) 1= ((r(y)""h, W) ((r(y)h, h)).

Proof. By the Schwarz inequality, we have
((r()w(y), P = 1((r(y)Pw(y), r(y) )

< r) 2wl (y) k1
= ((rw(y), w@)((r(y)h, h)).

(2) follows from (1) by taking w(y) :=r(y)~*h. O

Lemma 1.2. |H(wy,ws)| < H(wi)Y2H (wy)"/?.
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Proof. From the Schwarz inequality, it follows that
[H(wiwa)| < 3 ((r(m)wiy), wa()))]
> ey (@) Pwiy), r(y)Pwa(y)))]
> ey @) Zwn ()l () *wa (y)]
Doy Ir@) 2Py () Pws(y)]P)2
= H(w1)1/2H(w2)1/2. O
Notice that Ly (Y;5#) is a Hilbert space with this inner product.
Lemma 1.3. If w € Ly(Y; ), then ZyGY r(y)w(y) € A and

> ey (rwly), h) = (X2, r(y)w(y), b))
for every h € 2.

IA I

IN

Proof. Since r(y)w(y) € H for every y € Y and w € Lo(Y; 5), our assertion
is clear. O
For a € X, let us put

D(N; 5 a) :={u € D(N;5);u(a) = 0}.
Lemma 1.4. For any x € X, there exists a constant M, which such that
lu(@)]| < Mo D(u)"/?
for allu € D(N; 5 a).

Proof. We may assume that = # a. There exists a path P from a to z. Let
Cx(P) and Cy(P) be the sets of nodes and arcs on P respectively (cf. [4]), i.e.,

Cx(P) :=={zo, 21, -+ ,xn} (2o = a,x, = ),

Cy(P) :={y1,¥2, s yn},
{r e X; K(x,y;) #0} ={zi-1, 2} (i=1,2,--- ,n).
Let u € D(N; ¢;a). Then we have
D(u) = > o p((r(y) " duly), ou(y)))

n

= > ((r(y:) " ouly,), duly:)))

> i,o*@i)nu(xi)—u(xi_1>||2
> > et~ fute )P

so that
lu(a)|| = [lu(zia)]| < D) *[p* ()]~
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,fori=1,2,---. Since u(a) = 0, we have

[u(z)[| = En:HIU(xz)H — llu(zi-a)ll] < Mo D(u)'’?

with

This completes the proof. O

We see that D(u)'/? is a norm on D(N; 2 a).

Proposition 1.1. D(N;5%;a) is a Hilbert space with respect to the inner prod-
uct D(uy, us).

Proof. Let {u,} be a Cauchy sequence in D(N; 7;a), i.e., D(u, — up) — 0 as
n,m — oco. Then {D(u,)} is bounded. It follows from Lemma 1.4 that {u,(x)}
is a Cauchy sequence in JZ for each x € X. Therefore there exists a(z) €
such that ||u,(x) — @(z)|]] — 0 as n — oo for each z € X. Thus 4(a) = 0 and
||duy,(y) — du(y)|| — 0 as n — oo for each y € Y. Since {D(u,)} is bounded, we
see that @ € D(N; ) by Fatou’s lemma. For any € > 0, there exists ng such
that D(u, — u,,) < €2 for all n,m > ny. For any finite subset Y’ of Y,

> ey (r@)d(tn — ) (y), d(tn — um)(y)) < D(un — um).

Letting m — oo, we have
> ey (r@)d(un — @)(y), d(u, — W)(y))) < €
for all n > ng, so that D(u, — ) < €2. Hence, D(u,, — @) — 0 as n — oo. O
Denote by Do(N; #;a) the closure of the set
Lo(X; 9;a) = {u € Ly(X; 5);u(a) =0}
in the Hilbert space D(N; ;).

2. J-FLOWS

Definition 2.1. Let a and b be distinct two nodes. We say that w € L(Y; )
is an JC-flow from a to b if the following conditions are fulfilled:

(F.1) ow(z) =0 for all z € X\ {a,b};

(F.2) Ow(a)+ ow(b) = 0.

Denote by F'(a,b; 7) the set of all s#-flows from a to b.

Definition 2.2. For each w € F(a,b; 5), we introduce the following two quan-
titres:
L(w) = ((Qw(b),e)) = —((Ow(a),e)),
(w) = [JOw(a)| = |ow(b)]|
Let us put Fy(a,b; H) := F(a,b; ) N Lo(Y;.7°) and denote by Fy(a,b; 7)
the closure of Fy(a,b; ) in Ly(Y; ).

w
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Lemma 2.1. Assume that N is a finite network. If w € L(Y;5) satisfies
(F.1), then it does also (F.2).

Proof. Since N is a finite network and
> K@y =0
for each y € Y, we have by changing the order of summation
0w(a) 4+ 0w(b) = ZzEX ow(x) = ZyGY[ZIGX K(z,y)jw(y)=0. O
Similarly we have

Lemma 2.2. Ifw € Ly(Y; ) satisfies (F.1), then it does (F.2).
Corollary 2.1. (F.1) implies (F.2) for every w € Fyg(a,b; 7).
Lemma 2.3. Let u € L(X; %) and w € Lo(Y; 7). Then

> (), 5u(y)) < H(w)2D(u)'”.
Proof. We have by Lemma 1.2

> oy (Wly), du(y)) = H(w, du) < H(w)*H(du)"? < H(w)"*D(u)"’2.

Corollary 2.2. Let u € D(N; ) and w € Fy(a,b; 7). Then

> ey (W), u(y)) < H(w)' D ()",

Proof. There exists a sequence {w,} in Fy(a,b;.7) such that H(w, —w) — 0
as n — oo. We have by Lemma 2.3 H(w,,du)) < H(w,)"?D(u)"?. Since
du € Ly(Y;), we see that H(wp,du) — H(w,du) and H(w,) — H(w) as
n— oo. U

Lemma 2.4. Let u € D(N; ) and w € Fg(a,b; 7). Then
> ex((u@), ow(@) = 3 ((Guly), w(y))).

Proof. There exists a sequence {w,} in Fy(a,b;.7) such that H(w, —w) — 0
as n — 00. Since the support of w,, is a finite set, we have

((u(a),0wp(a))) + ((u(d), Ow, (b)) = Zmex((u(gj)ﬁwn(gj)))
= 2o (Ouly), waly))) = H(du, w,).

By letting n — 0o, we obtain the desired inequality, since du € Ly (Y; 7)) and
ow(zx) =0forx € X \{a,b}. O
Denote by Cy(IV) the set of all finite cycles on N, i.e.,

Co(N) :={w € Ly(Y; H); Ow(x) = 0 on X }.

Lemma 2.5. Letw € F(a,b; ) such that H(w) < oo. Suppose that H(w,w) =
0 for every w € Co(N). Then there exists t € D(N;.7;a) such that du = —1b.
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Proof. Let p;,ps be path indices of paths from a to x (cf. [4]). First we shall

prove
> ey PL@r@W)m(y) =3 | pa(y)r(y)w(y).

In fact, for any h € S, w(y) := (p1(y) — p2(y))h belongs to Cy(N), so that we
have by our assumption

0=H(w,(pr —p2)h) =>_ _ ((r@)(p1(y) = p2(v)) @ (y)], 1))-
Since (p1 — p2)w € Lo(Y; ), we see by Lemma 1.3.

(32, ey T@P1(y) = p2(v)) ()], b)) = 0.

Since h € S is arbitrary, our assertion follows. Define @ € L(X;.7) by @(a) =0

and

a(x) =, pa(y)i(y) for z # a,
where p, is the path index of a path from a to x. This function is well-defined
by the above observation. Let ¢ € Y and {z € X; K(x,vy') # 0} = {x1,22}. Let
Pz, be the path index of a path P,, from a to xs which passes the arc y’ after
the node z;. Namely P,, consists of a path P,, from a to x; and the single arc
y'. We have

Y)W (y)

i(r) = Y, pev)
Y+ r(y)K (21, )iy
)
(v

= Z prl

= u(x1) +7(
so that a(xe) = (1) + r(y) K (21, y')w

(
(
YK (21, y)0(y),

), or du(y’) = —r(y)w(y’). O

3. INVERSE RELATION I

Now let us consider the following pair of extremum problems on the Hilbert
network N which are related to .7#-valued functions on X or Y:

de(a,b;.2) = inf{D(u);u € L(X; ), ((u(a),e)) =0, ((u(b),e)) = 1},
d*(a,b; 5 ¢) = inf{H(w);w € Fy(a,b; ), Ow(b) = e}
First we have
Theorem 3.1. 1 < d.(a,b; 7)d*(a,b; 7 ¢).

Proof. Let u be a feasible solution for d.(a, b; .7) and let w be a feasible solution
for d*(a,b; #;e). It suffices to show that 1 < H(w)2D(u)'/?. There exists a
sequence {w,} in Fy(a,b; ) such that H(w —w,) — 0 as n — oo. We have by
Lemma 2.3

1= ((u(b),e)) = ((uld), aw(b))) = lim. <<u<b> Ow, (b))
= lim 37 ((u(2),0w,(2))) = lim > wa(y)))
< ,;ggoH<wn>l/2D<u>”2:H< w)2D(u >1/2. 0

To prove the converse inequality, we prepare
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Lemma 3.1. There exists a unique optimal solution for d*(a,b; 7 ;e).

Proof. Let {w,} be a minimizing sequence for d*(a,b; 7 ;e), ie., {w,} C
Fy(a,b; ), Ow,(b) = e and H(w,) — d*(a,b; #;e) as n — oo. Since (w,, +
wy,)/2 is a feasible solution for d*(a, b; .7; e), we have
d*(a,b; 5 e) < H((wn +wpn)/2)
< H((wp +win)/2) + H((wn — wi)/2)
[H (wn) + H(w)]/2 — d*(a, b; H; €)

as m,n — oo. Therefore H(w,, —w,,) — 0 as n,m — oo. It follows that {w,} is
a Cauchy sequence in the Hilbert space Ly (Y; 7). There exists w € Ly (Y;.7)
such that H(w, —w) — 0 as n — oo. Then @ € Fy(a,b; ), 0w(b) = e and
d*(a,b; #;e) = H(w). Namely @ is an optimal solution for d*(a, b; 7;€). Since
H(w) is a strictly convex function of w € Lg(Y;.%), the uniqueness of the
optimal solution follows. O

Lemma 3.2. Let @ be the optimal solution for d*(a,b; #;¢e). Then H(w,w) =0
for every w € Cy(N).

Proof. For any w € Cy(N) and t € R, @ + tw is a feasible solution for
d*(a,b; ;e). Thus

H(w) < H(W + tw) = H(W) + 2tH (0, w) + t* H(w).
By the standard variational argument, we obtain H(w,w) =0. O

Lemma 3.3. Let w(y) be the same as above. There exists u € D(N; ) such
that a(a) = 0, ((a(b),e)) = d*(a,b; s e) and 0t = —b.

Proof. Let @ be the function defined by @ in Lemma 3.2. Then @(a) = 0 and
du = —w. There exists {w, } C Fy(a,b; ) such that H(w, —w) — 0 as n — oo.
Let p, a path index of a path from a to b. Since w, — pOw,(b) € Cy(N), we
have H(w,w, — ppdw, (b)) = 0. From OJw,(b) — Odw(b) = e, it follows that
H(w,w — ppe) = 0, so that

d*(a,b; A5 ) = H(w) = H(w, pre) = ((a(b), e)). O
Theorem 3.2. d.(a,b; 7)d*(a,b; 7 ;e) = 1.

Proof. Let @ be the optimal solution for d*(a, b; 7; €) and let @ be the function
defined in Lemma 3.3. Then v := @/d*(a,b; 5 ;¢e) is a feasible solution for
de(a,b; ) and
de(a, by ) < D(v) = D(a)/d"(a,b; 7 ¢)*
= H(w)/(d*(a,b; ;) = 1/d*(a,b; H; €),

so that d.(a, b; 7)d*(a,b; 7#;e) < 1. Thus the equality holds by Theorem 3.1.
O
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4. INVERSE RELATION II

Let us consider further extremum problems on the Hilbert network /NV:
d(a,b; 7;e) = inf{D(u);u € L(X;5),u(a) =0, u(b) = e},

d(a,b; ) = inf{D(u);u € L(X;5),u(a) =0, ||u(b)| =1},
di(a,b; ) = inf{H(w);w € Fy(a,b; ), I.(w) =1},
d*(a,b; ) = inf{H(w);w € Fy(a,b; ), I(w)=1}.

Clearly

de(a,b; ) < d(a,b; H;e), d(a,b; ) <d(a,b; H;e),
di(a,b; ) < d*(a,b; 7 5e), d*(a,b; ) < d*(a,b; H;e).
We have
Theorem 4.1. 1 < d(a,b; 5;e)d:(a,b; H).

Proof. It suffices to show that 1 < H(w)?D(u)"/? holds for any feasible solution
u for d(a,b; 7; e) and any feasible solution w for d’(a,b; 7). By the corollary
of Lemma 2.3 and Lemma 2.4, we have

L=TI(w) = ((Qw(b),e))=>_ _ ((Qw(z) u()))
= 3 ((w(y), du(y))
< Hw)"?Dw)*?. O
To prove the converse inequality, we prepare
Lemma 4.1. There ezists a unique optimal solution for d(a,b; 7 ;e).

Proof. Let {u,} be a minimizing sequence for d(a, b; 7; e), i.e., {u,} C D(N;;a),
un(b) = e and D(u,) — d(a,b; H;e) as n — oo. Since (u, + u,,)/2 is a feasible
solution for d(a, b; #; e), we have
d(a, b; A, 6) D((un + um)/2)
D((un + um)/2) + D((un — tm)/2)

= [D(un) + D(um)]/2 — d(a,b; ; €)
as n — oo. Therefore D(u, —u,,) — 0 as n,m — oco. It follows from Proposition
1.1 that there exists u € D(N; #; a) such that D (u,, —u) — 0 as n — oo. Clearly
u(b) = e and @« = D(@). Namely @ is an optimal solution. The uniqueness of the

optimal solution follows from the fact that D(u) is strict convex on D(N; 3¢ a).
O

IAIA

Lemma 4.2. Assume that N is a finite network. Let @ be the optimal solution
ford(a,b; 5;e) and put w(y) := du(y). Thenw € F(a,b; ) and I.(w) = D(q).

Proof. Let f € D(N; ) satisty f(a) = f(b) = 0. Then, for any t € R, @ + tf
is a feasible solution for d(a, b; 7;e), so that

D(@) < D(a+tf) = D(a) + 2tD(a, f) + t*D(f).
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By the standard variational argument, we have D(%, f) = 0. On the other hand,
we have

D f) = X, (). Y K(9)f()
= Y X (K i), ()
= ¥ (08(), f(2))).

Denote by ¢, the characteristic function of {z}, i.e., e,(x) =1 and ¢,(z) = 0 for
z # x. Let x # a,b. For any h € 7, we may take ¢,h for f, which leads to

((0w(z), h)) = 0.

Therefore Ow(x) = 0 for x # a,b. Namely w satisfies (F.1). Since N is a finite
network, we have w € F(a,b; ) by Lemma 2.1. By taking @ — e for f, we
obtain D(a, — g,¢) = 0, so that

D(u) = D(u,epe) = ((0w(b), e)).
Therefore I.(w) = D(a). O
Theorem 4.2. Assume that N is a finite network. Then the inverse relation
d(a,b; 7;e)d’(a,b; ) =1 holds.

Proof. Let @ be the optimal solution for d(a, b; #; ) and let W = du. We see
by Lemma 4.2 that w(y)/D(a) is a feasible solution for d*(a, b; ), so that

de(a,b; ) < H(w(y)/D(a))
D(a)/D(u)?
= 1/D(a) = 1/d(a,b; 7 ;e).
Thus d(a, b; 75 e)di(a,b; ) < 1. O
In order to establish the equality in Theorem 4.2 in the case where N is an
infinite network, we consider an exhaustion {G,}(G, =< X,,y, >) of G (cf.
[4]) with a,b € X;. A Hilbert subnetwork N,, of N is defined as the pair of the

pair of (G,, and the restriction of r onto Y,,.
On each finite subnetwork N,,, we define the Dirichlet mutual sum of u, us €

L(Xy; ) by
Dy (u,u2) =3 ((r(y)dur(y), dus(y)))
and put D,,(u) = D, (u,u). For w € L(Y,; ), we define H,(w) and 0,w by
Hy(w) = > ((rm)w(y), wy))),
Ohw(z) = ZyEYn K(z,y)w(y).

For large n, we have d,w(a) = dw(a) and J,w(b) = dw(b). Let us consider the
following extremum problems on N,,:
dy, = d(a,b; Np; 7€) = inf{D,(u);u € L(X,; 7),u(a) =0, u(a) =e
d; :=d(a,b; Ny; ) = inf{H,(w);w € F,(a,b;.7), ((0,w(b),e)) =1
where F,,(a,b; 7)) := {w € L(Y,; #);0,w(z) =0 on X, \ {a,b}}.
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Lemma 4.3. {d(a,b; N,; 7 ;e)} converges to d(a,b; #;e) as n — oo.

Proof. Let @ and u, be the optimal solutions of d(a, b; 7; €) and d,, respectively.
Then for every f € L(X,; %) satisfying f(a) = f(b) = 0, we have D,,(u,, f) =0
as in the proof of Lemma 4.2. For n < m, we have

Dy (4 — up,u,) =0 and  Dy(ty, — Uy, uy,) = 0.

Furthermore
D, (u,) < Dp(u) < D(1) < 0.
By the relation
0 < Dy(tm — up) = Dp(tm) — Dp(un) < Dp(t,) — Dp(uy),
we see that the limit of {D,,(u,)} exists, and hence
nh_)rrolo D, (t, — uy,) = 0.
For k <n < m, we have

Dy(tm — upn) < Dy, — uy) — 0 (0 — 00).

Thus {u,} is a Cauchy sequence with respect to Dy, and the limit of {u,(x)}
exists for all x € X, both in the sense of D, and in the sense of norm convergence
in . Let v be the limit of {u,}. Then v(a) = 0 and v(b) = e, so that
D(a) < D(v). Since Dy (uy) < Dy (u,) if & < n, we have

Dy (v) = limy, 00 Dy (uy,) < limy, 00 Dy (uy,) < D(@).

Letting & — oo, we obtain D(v) < D(a), and hence D(v) = D(@). By the
uniqueness of the optimal solution, we have v = u and

lim Dy (uy) = D(a). O

Theorem 4.3. d(a,b; 5;e)d:(a,b; ) = 1.
Proof. It is easily seen that for large n we have

d; = inf{H(w);w € F(a,b; ), I.(w) = 1,w, =00on Y \ Y, }.
Therefore we obtain dy > d_ | > d%(a,b; F), so that

de(a,b; A7) < lim d.
Since d,, - d} = 1 by Theorem 4.2, we have by Lemma 4.3
d(a,b; A ; e)d;(a,b; 7°) < lim dy, - d, = 1.

Our equality follows from Theorem 4.1. O
Corollary 4.1. {d}(a,b; N,,; 7€)} converges to d:(a,b; 7) as n — oc.
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5. EXTREMAL LENGTH

Let a and b be two distinct nodes and let P,, b be the set of all paths from a
to b. For a path P and a function w on Y, we set for simplicity

2p W)= o py W)

The extremal length EL(a,b; 7) of N between a and b is defined by the
inverse of the value of the extremum problem:

EL(a,b; )" == inf{H(w);w € EL(Pyy; 7)},
where EL(P,,; 7€) is the set of all w € L(Y; ) satistying
ZP Ir(y)w(y)|| >1 forall P &P,y

The extremal length EL.(a,b; 7) of N between a and b is defined by the inverse
of the value of the extremum problem:

EL(a,b; )" == inf{H(w);w € EL(Po; H)},
where EL.(P,;; ) is the set of all w € L(Y'; 7)) satistying

ZP |((r(y)w(y),e))| >1 forall P &P,y
We have
EL(a,b; ) > EL.(a,b; ),
since |((r(y)w(y), )| < [lr(y)w(y)lllel]] = [[r(y)wy)]l.
Lemma 5.1. EL.(a,b; )" <d.(a,b; H).

Proof. Let u be any feasible solution for d.(a,b; 7)) and put w(y) = du(y).
Then w(y) € A foreachy € Y. Let P € P, with Cx(P) := {xo,z1, - ,x,} (xo =
a,z, =0b), Cy(P):={y1,y2, - ,yn} and {z € X; K(x,y;) # 0} = {x;_1, x;} for
(t=1,2,--- ,n) as in the proof of Lemma 1.4. Then we have

> l(rwwly), )l = > 1((6ulys), )]

i=1

v
[+
=
&

|
=
&
L
:_/
>

> ((u(b), ) — ((u(a),e)) = 1.
Therefore
EL(a,b; )" < H(w) = D(u),
and hence EL(a,b; )" <d.(a,b;¢). 0O
Lemma 5.2. Let w be a feasible solution for EL.(a,b; 7). Then

de(a, b 20) < 3 ((rw)w (), wy))((r(y)e, e))(r(y) e, e)).
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Proof. Put V(y) := |((r(y)w(y), e))|. Then
S V(y) =1 forall PPy,

By the duality between the max-potential problem and the min-work problem (cf.
[4]), we can find # € L(X;R) such that f(a) =0, £(b) =1 and [63(y)| < V(y)
on Y. Let u(x) := f(z)e. Then u € L(X;.7), u(a) = 0 and u(b) = e, so that
by Lemma 1.1

dea,b; ) < D)= _ (r(y)"'duly), suly))
= > .68 <>><<r<y>1 ¢))
< YL VW) e )
< ZyEY«r(y) w(y), wy))(ry)e,e)(r(y) 'e,e)) O
(

)

Theorem 5.1. Let M(r) := sup{((r(y)e,e))((r(y) e e));y € Y}. Then
EL.(a,b; )" <d.(a,b; #) < M(r)EL.(a,b; )"

Corollary 5. 1 Assume that (( (y)e,e))((r(y)~te,e)) =1 for ally € Y. Then

d.(a,b; #) = EL(a,b; )"

Remark 1. Let [ be the identity map of .7 and let v € L(Y;R) be positive.
Then r(y) = v(y)I is positive and invertible. Clearly, we have ((r(y)e,e)) = v(y)
and ((r(y)~'e,e)) = 1/7(y), so that the condition in the above theorem holds in
this case.

We shall prove
Theorem 5.2. Assume that the graph G = {X,Y, K} is a tree. Then

de(a,b; ) = EL(a,b; )™ = H(pe) ™ =) _ ((r(y)e, e)),
where p is the path index of the path P from a to b.

Proof. Since the graph is a tree, there exists a unique path P from a to b. Let
p be the path index of P. Then

Fy(a,b; ) = {tph;h € H, t € R}.
If w is a feasible solution for d*(a, b; #; €), then w = pe and
d'(a,b; €)= Hlpe) =3 . Ipw)l((r(y)e.e))
= D _,((r(yee)).

Let w be a feasible solution for E'L (a b; #)~!. Then we have by Lemma 1.2
L< >, )l =2, [(r@w(y), p(y)e))|
< H(w)l/2H(p6)l/2,

so that H(pe)™' < H(w). Therefore by Theorem 3.2
d(a,b; ) = H(pe) ' < ELc(a,b; )"



EXTREMUM PROBLEMS ON A HILBERT NETWORK 69

Our equality follows from Lemma 5.1. O
We show by an example that the equality d.(a,b; #) = EL.(a,b; 7))~ does
not hold in general.

Example. Let X = {z¢, 21,22} and Y = {y1, 99, y3} and define K by

K(zo,y1) = K(zo,y2) = K(x1,y3) = —1,
K(z1,y2) = K(xg,y1) = K($2,y3) =1

and K (z,y) = 0 for any other pair. Then G = {X,Y, K} is a finite graph. Take
A as R? with the usual inner product and define r(y) by

T(yz'):((l) 2)

with ¢; > 0 for s = 1,2,3. Then

) = ( ) (1)/151. ) '

Let a = xy, b = @y in the above setting and let ¢ = (ej,ey)? € R?. For
w e L(Y;R?), set w(y;) = (&,m:)" for i =1,2,3. Then
3

H(w) =3 (& +tm;).

i=1
Let w be a feasible solution for d*(a,b;R?e). Then w(ys) = w(ys) or & =
§3, M2 =13 and
Sit+&=e, m+n=e.
Minimizing H (w) subject to this constraints, we obtain
2, tita+ts)
2, L2 T

d*(a,b;R?; ¢) = ,
( ) t+ty+ts

=3¢
so that by Theorem 3.2
3(ty +ta +t3)
2(t1 +to + t3)ed + 3ty (ta + t3)e3
On the other hand, the feasibility of w € L(Y; R?) for EL.(a, b; R?) implies
&ier +times > 1,
(&2 +&)er + (tap + tamg)ez > 1.
Minimizing H (w) subject to this constraints, we obtain
3e3 4 (t1 + to + t3)e3
(el +tied)[2ef + (t2 + t3)ed]

de(a,b;R?) =

EL.(a,b;R?)™ =

We have

(to + t3 — 2t;)%e3e3

d.(a,b;R?) — EL.(a,b;R?)~" = 1% >,

(67
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where
o = (€3 4 t1e2)[2e? + (ty + t3)e2][2(t, + Lo + t3)e? + 3t1(ty + t3)ed].
The equality holds in case e; = 0, or e; = 0 or ty + t3 = 2t4.

6. EXTREMAL WIDTH

Let a and b be distinct two nodes and let Q,; be the set of all cuts between
a and b (cf. [4]).
The extremal width EW (a,b; #°) of N between a and b is defined by the

inverse of the value of the extremum problem:
EW (a,b; )" := inf{H(w);w € EW (Qquu; )},
where EW (Qqp; 7€) is the set of all w € L(Y; 7)) satisfying
ZyeQ |lw(y)| >1 forall @ € Qup-

The extremal width EW,(a, b; #) of N between a and b is defined by the inverse
of the value of the extremum problem:

EW,(a,b; 52)7" := inf{H(w); w € EW.(Quu; )},
where EW,(Qqp; ) is the set of all w € L(Y; ) satisfying
S o (@) =1 forall Q€ Qu.

We have
EW (a,b; ) > EW,(a,b; ),

since |((w(y), e))| < [lw(y)llell = [[w(y)ll
Lemma 6.1. EW,(a,b; )" < di(a,b; H).

Proof. Let ) € Q,p. Then there exist two disjoint subsets Q(a) and Q(b) of X
such that

a€Qa), beQb), X =Q(a)UQ() and Q= Q(a)SQ(D).

For a subset A of X, denote by €4 € L(X;R) the characteristic function of A.
Then |dequy(y)| =1 for y € Q and |dege)(y)| = 0 for y ¢ Q. Let w be a feasible
solution for d*(a,b; #°). There exists a sequence {w,} C Fy(a,b; #) such that
H(w — w,) — 0 as n — co. We have

L(wn) = ((Own(b),e)) =3 _ (Own(z),qw)(2)e))
= 2o ((wn(y),02¢(y)e))
> ol
Namely w,,/I.(w,) is a feasible solution for EW,(a,b; ), so that
EWe(a,b; )" < H(wy/Ie(wn)) = H(wn)/(I(wn))*.

Letting n — oo, we obtain EW,(a,b; )~ < H(w), so that EW,(a,b; 7)1 <
di(a,b; ). O

IA
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Lemma 6.2. Let w be a feasible solution for EW,(a,b; ). Then
di(a,b;.0) <3 ((r(mw(y), wy)((r)e. e)(r(y) e, e)).
Proof. Put V(y) := |((w(y),e))|. Then
DoV 21 forall Q€ Quy.

By the duality between the max-flow problem and the min-cut problem (cf. [4]),
we can find ¢ € L(Y; R) such that |¢(y)| < V(y) on Y,

Op(x) =0 for xe€ X\{a,b} and —Jdyp(a)=0p(b)=
Let w(y) := ¢(y)e. Then w € F(a,b; #) and I.(w) = 1. Thus we have
di(a,b;. ) < H(w) =3 ((r)ee ey)e))

= Zyey[ p(y)*((r(y)e,e))
< 2oy (@), e)P((r(y)e, €)
< Zyey r(y)w(y), wm))(r(y)e.e))(r(y)e,e)). O

Theorem 6.1. Let M(r) := sup{((r(y)e,e))((r(y)~te,e));y € Y}. Then
EW,(a,b; )"t < d(a,b; ) < M(r)EW,(a,b; )"

Corollary 6.1. Assume that ((r(y)e,e))((r(y)'e,e)) =1 for ally € Y. Then
di(a,b; ) = EWe(a,b; )"

We show by an example that the equality d¥(a,b; 7#) = EW,(a,b; 7))~ does
not hold in general.
Example. Let X = {zg, 21,22} and Y = {y;, 92} and define K by

K(%‘;yi) =1, K(iﬁi—byi) =-1 (Z = 1a2)

and K (z,y) = 0 for any other pair. Then G = {X,Y, K} is a finite graph. Notice
that G is a tree. Take . as R? and define r(y) by

T(yz'):((l) 7(5]2>

where t; > 0 for © = 1,2. Then

) = ( 0 1 ) ‘

Let a = x9, b = x5 in the above setting and let e = (el,eQ)T c R2. For
w(y;) = (&,m:) € L(Y;R?), we have

2

H(w) =) (& + tany).

=1
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If w is a feasible solution for d*(a,b; R?), then & = &,n; = 2 and L (w) = 1
implies &1eq + mex = 1. Minimizing H (w) subject to this constraints, we obtain
1
e1/2+e3/(t +12)
On the other hand, if w is feasible for EW,(a, b; R?)™!, then we have
§ier +mer > 1, &aeq + ez > 1.

Minimizing H (w) subject to this constraints, we obtain

d:(a,b; R2) =

_ t 123
EW.(a,b;R?)™! = .
@R =g g adr a
Therefore
_ t — ty)%e2el
d*(a,b;R?*) — EW,(a,b; R*) ™ = (t 12 > ()
( ) ( ) [(t1 + t2)ed + 2e3](t1e3 + €3)(tae? +€3) —

and the equality holds if ¢t =t or ey = 0 or e; = 0.
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