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We generalize Theorem 2.1 of H. Ōshima and K. Tsukiyama [12] and

prove Theorem 2.3 of I. M. James [7] without his condition. We identify the boundary
homomorphism of the homotopy exact sequence of the evaluation fibration with the

generalized Whitehead product. The new point is that we work not in the category

of CW -complexes but in the category of well based weak Hausdorff k-spaces.

§0. Introduction

In §1 we introduce weak Hausdorff k-spaces. After studying numerable principal
bundles in §2, we prove the function Φ : mapG(E,E′) → map(B,B′) is continuous
in §3, if spaces involved have the k-ification of the compact-open topology. Here
mapG(E,E′) is the set of G-equivariant maps from a numerable principal G-space
E to another E′, map(B,B′) is the set of maps from B to B′ and Φ assigns the
induced map on base spaces to each G-map. At the end of this section we give
a reasonable topology on mapG(E,E′) which makes Φ continuous with respect
to the compact-open topology of map(B,B′) and whose k-ification is the same
as that of the k-ification of the compact-open topology of mapG(E,E′). In §4,
by using of A. Dold [2] we prove that the k-ification of the space mapG(E,EG)
having the compact-open topology is contractible, where EG is the total space
of a universal principal G-bundle. D. H. Gottlieb [5] proved this by a different
method. We generalize Theorem 2.1 of H. Ōshima and K. Tsukiyama [12] and
prove Theorem 2.3 of I. M. James [7] without his condition. In §5 we identify
the boundary homomorphism of the homotopy exact sequence of the evaluation
fibration with the generalized Whitehead product(see G. E. Lang [9]). The new
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point is that we work not in the category of CW - complexes but in the category of
well based weak Hausdorff k-spaces. As a Corollary we generalize Theorem 2.2 of
H. Ōshima and K. Tsukiyama [12]. In §6 we generalize Theorem 2.1 of I. M. James
[7] to a theorem in the category of F -spaces of J. P. May [10]. In §7 we slightly
generalize the fibration map theory of [16](cf. [3], [4]).

§1. Weak Hausdorff k-spaces

The papers of [11], [14] and [15] show that why it is convenient to work in
the category of weak Hausdorff k-spaces. We review this notion briefly. In this
note compact means quasi-compact and Hausdorff, and a map is a continuous
function(see Remark in §7).

A subset A of the topological space X is compactly closed if f−1(A) is closed
for all compact spaces K and all maps f : K → X. U is a regular open subset of a
space X if each point of U has a neighborhood whose closure is contained in U .

Let us call a space X is a k-space if all compactly closed subsets are closed.
A space X is weak Hausdorff if f(K) is closed for all compact spaces K and

all maps f : K → X. We let WH be the category of weak Hausdorff spaces
and maps, and let WHK(Top) be the category of weak Hausdorff k-spaces and
maps (topological spaces and maps). And WHK∗(Top∗) will denote the well-
based category of the respective one. In particular, if X is a topological space, let
k(X) denote the space whose underlying set is that of X and whose closed sets are
compactly closed subsets of X.

If f : X → Y is a function, we let k(f) : k(X) → k(Y ) be the same function.
Then k is a retraction functor from the category of all topological spaces onto the
category of k-spaces. The weak Hausdorff property holds under the functor k.

Let Ar be the space given by a subset A of the space X with the relative topology.
And if A is a subset of a k-space X, then the space k(Ar) is called the k-subspace
of X. If X and Y are spaces, let X ⊗ Y = k(X × Y ), where × denotes the usual
Cartesian product. It is easy to see that the quotient space of a k- space is a k-space.
For pairs of spaces (X,K), (Y, U) we denote by W (K,U) the set of maps f : X → Y
with f(K) ⊂ U . We consider map(X,Y ) as a topological space having the compact
open topology, that is, the topology generated by the family of subsets W (K,U) for
all compact subsets K of X and all open subsets U of Y , unless otherwise stated.
We set Map(X,Y ) = k(map(X,Y )). The following lemma is used in §4.

Lemma 1.1. If u : A → X and v : A → Y are maps in WHK, then the double
mapping cylinder M(u, v) is a weak Hausdorff k-space. In particular the mapping
cylinder M(u) = M(u, idA) is a weak Hausdorff k-space.

Proof. Recall that M(u, v) is the quotient space of I × A+X + Y with respect to
the relations

(0, a) ∼ u(a), (1, a) ∼ v(a)(a ∈ A).
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Let p : I × A + X + Y → M(u, v) be the projection. Since I × A + X + Y is a
weak Hausdorff k-space, it suffices by [11, 2.4], to show that (p × p)−1(4M(u, v))
is compactly closed. We have

(p× p)−1(4M(u,v)) = {4I×A ∪ Z} + 4X + 4Y+

Im(u1) + Im(u2) + Im(v1) + Im(v2)},

where Z is the union of ∪[{0}×u−1(x)×{0}×u−1(x) | x ∈ X] and [{1}×v−1(y)×
{1} × v−1(y) | y ∈ Y ], and u1 : A → I × A × X, u2 : A → X × I × A, v1 :
A → I × A × Y, v2 : A → Y × I × A are defined by u1(a) = (0, a, u(a)), u2(a) =
(u(a), 0, a), v1(a) = (1, a, v(a)), v2(a) = (v(a), 1, a). It follows from [11, 2.3]that
4I×A,4X , Im(ui) and Im(vi) are compactly closed. Set u′ = id×u : I×A→ I×X
and v′ = id× v : I ×A→ I × Y . Then (u′ × u′)−1(4I×X) and (v′ × v′)−1(4I×Y )
are compactly closed and hence so is Z = [{0}×A×{0}×A∩ (u′×u′)−1(4I×X)]∪
[{1}×A×{1}×A∩ (v′×v′)−1(4I×Y )]. Therefore (p×p)−1(4M(u,v)) is compactly
closed. �

§2. G-spaces

A topological group G inWHK is a weak Hausdorff k-space equipped with group
structure such that the multiplication G ⊗ G → G and the inversion G → G are
continuous. We note that if G is a weak Hausdorff topological group in Top, then
k(G) is a topological group in WHK. If G is not assumed to be a k-space, then
the left or right translation by g ∈ G is continuous as a function k(G) → G but not
as a function G→ G. An(right) action of the topological group G in WHK on the
space X in WHK is a map µ : X⊗G→ X such that xe = x and (xg1)g2 = x(g1g2),
where xg = µ(x, g), for each x ∈ X, g1, g2 ∈ G(e is the unit of G). A G-space is a
space in WHK with an action of G in WHK.

Definition 2.1. A G-bundle is a triple (E, p,B) of which E is a G-space and
p : E → B is a map such that p = fpE, where pE : E → E/G is an orbit map and
f : E/G→ B is a homeomorphism. The G-space E, with the given map p, is called
a G-bundle over B and the space B is called the the base space of the bundle.

A G-subspace A of a G-space X is a G-invariant subset A of X with the topology
k(Ar) and the G-action k(Ar)⊗G = Ar⊗G→ k(Ar). Let (X, p,B) and (X ′, p′, B′)
be G-bundles and let u : X → X ′ be a G-map. Then there exists a unique map
f : B → B′ such that fp = p′u. The map f is called the induced map of u and the
pair (u, f) is called a G-bundle map. If B = B′ and if f = idB, then u is called a
G-map over B.
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Definition 2.2. A G-space X is called nice if {(x, xg) | x ∈ X, g ∈ G} is closed in
X ⊗X.

We note that a G-space X is nice if and only if X/G ∈WHK ([11, 2.3]).
Let X be a G-space. We set

X∗′

= {(x, xg) ∈ X ×X | x ∈ X, g ∈ G} ⊂ X ⊗X,

X∗ = k(X∗′

).

The function τ : X∗ → G defined by τ(x, xg) = g is called the translation function.
For every x ∈ X, the function κ(x) : G → k(xG) defined by κ(x)(g) = xg is called
the admissible map for X with respect to x. Note that the admissible map is a
continuous bijection. Note also that if X is nice, then X∗′

= (pX ⊗ pX)−1(4X/G)

is closed in X ⊗X. Hence X∗ = X∗′

.

Definition 2.3. A G-space X is called principal provided it is a nice and free G-
space with a continuous translation function τ : X∗ → G. A principal G-bundle
over B is a G-bundle X over B, where X is a principal G-space.

It is easily shown that every G-subspace of a principal G-space is principal.

Proposition 2.4. If (X, p,B) is a principal G-bundle, then every admissible map
is a homeomorphism κ(x) : G→ p−1(p(x)).

Proof. Since B is T1, it follows that p−1(p(x)) = xG is closed and hence xG ∈
WHK. The inverse function of κ(x) is

τ(x, ) : p−1(p(x)) ∼= x⊗ p−1(p(x)) ⊂ X∗ → G.

Since τ is continuous, so is τ(x, ). Therefore κ(x) is a homeomorphism. �

Lemma 2.5. The product G-space B ⊗ G, where the action of G is given by
(b, g1)g2 = (b, g1g2), is principal whenever B is weak Hausdorff.

Proof. Let p : B⊗G→ B′ = B⊗G/G be the quotient map. There exists canonically
a continuous bijection f : B′ → k(B) such that fp = q, where q : B ⊗ G → k(B)
is the projection. Since q is an open map, it follows that f is a homeomorphism
and hence B′ ∈ WHK. Thus the G- space B ⊗ G is nice by [11, 2.3], and hence

(B ⊗G)∗ = (B ⊗G)∗
′

.
To prove the continuity of the translation function, observe that ((b, g),

(b′, g′)) ∈ (B ⊗G)∗ if and only if b = b′, and the translation function has the form
τ((b, g), (b, g′)) = g−1g′. Since τ factorizes as (B ⊗ G)∗ ⊂ (B ⊗ G) ⊗ (B ⊗ G) →
G ⊗ G → G, where the middle function is the projection and the last function as-
signs to (g, g′) the element g−1g′, it is continuous and hence so is τ . This completes
the proof. �

Notions of principal G-bundle map and an isomorphism are defined as usual.
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Definition 2.6.

(1) The product principal G- bundle over B is the principal G-bundle (B ⊗
G, p,B), where B ∈ WHK and p is the projection on the first factor. A
principal G-bundle over B is called trivial if it is isomorphic to the product
principal G-bundle over B.

(2) (2) A principal G-bundle (X, p,B) is trivial over B ′ ⊂ B if the principal
G-bundle k(p−1B′) → (k(p−1B′))/G is trivial.

Definition 2.7. A principal G-bundle X over B is numerable if there exists a
locally finite partition of unity {θj : B → I} such that the bundle is trivial over

θ−1
j (0, 1] for each j.

Lemma 2.8. If f : Z → I is a map, then f−1(0, 1] is a regular open subset of Z.
If in addition Z ∈WHK, then so is f−1(0, 1].

Proof. Let z ∈ f−1(0, 1]. Then f−1(f(z)/2, 1] is a neighborhood of z,
f(Cl(f−1(f(z)/2, 1])) ⊂ [f(z)/2, 1] ⊂ (0, 1] and Cl(f−1(f(z)/2, 1]) ⊂ f−1(0, 1],
so f−1(0, 1] is regular open. The second assertion follows from [14, 2.4]. �

By this lemma, we have the following by [14, 2.4]

Proposition 2.9. Let (X, p,B) be a principal G-bundle, and let θ : B → I be a
map. Then p−1θ−1(0, 1] and θ−1(0, 1] are weak Hausdorff k-spaces, and
(p−1θ−1(0, 1])/G = θ−1(0, 1].

Proposition 2.10. Let (X, p,B) be a G-bundle, where X is a free G-space, and let
{θj : B → I} be a set of maps such that ∪jθ

−1
j (0, 1] = B and the bundle is trivial

over θ−1
j (0, 1] for every j. Then X is principal.

Proof. Since p−1θ−1
j (0, 1] is a k-space by 2.8, and since p : p−1θ−1

j (0, 1] → θ−1
j (0, 1]

is proclusive, it follows that θj−1(0, 1] is a k-space. Hence the triviality of the bundle
over θ−1

j (0, 1] implies that p−1θ−1
j (0, 1] ∼= θ−1

j (0, 1]⊗G. Thus θ−1
j (0, 1]⊗G ∈WHK

and hence θ−1
j (0, 1] ∈WHK. Therefore the diagonal set 4j ⊂ θ−1

j (0, 1]⊗ θ−1
j (0, 1]

is closed by [11, 2.3]. We want to prove that X is nice, by showing 4B is closed in
B⊗B. Let 4I ⊂ I⊗I be the diagonal set. Then 4B = ∪j4j ⊂ ∪j(θj⊗θj)

−1(4I).
Let {za} be a directed family of points in 4B which converges to a point z0 ∈ B⊗B.
Since (θj ⊗ θj)(za) ∈ 4I and 4I is closed, it follows that (θj ⊗ θj)(z0) ∈ 4I for all

j. Choose j such that (θj ⊗ θj)(z0) ∈ (0, 1]⊗ (0, 1]. Then z0 ∈ θ−1
j (0, 1]⊗ θ−1

j (0, 1].
Since the last space is an open subspace of B ⊗B by 2.3, there exists a0 such that
za ∈ θ−1

j (0, 1] ⊗ θ−1
j (0, 1] for all a ≥ a0. Thus {za|a ≥ a0} is a convergent directed

family of points in the closed subset 4j of θ−1
j (0, 1] ⊗ θ−1

j (0, 1], so z0 ∈ Cl(4j) ∩

θ−1
j (0, 1] ⊗ θ−1

j (0, 1] = 4j ⊂ 4B. Therefore 4B is closed. We must show that
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τ : X∗ → G is continuous. Let (x, y) ∈ X∗. Choose j with p(x) ∈ θ−1
j (0, 1]. Since

p−1θ−1
j (0, 1] is regular open by 2.8, it follows easily that p−1θ−1

j (0, 1]⊗p−1θ−1
j (0, 1]

is an open neighborhood of (x,y) in X ⊗X. Since p−1θ−1
j (0, 1] ∼= θ−1

j (0, 1]⊗G and

since θ−1
j (0, 1] is weak Hausdorff, τ is continuous on (p−1θ−1

j (0, 1])∗
′

by 2.5, so τ

is continuous at (x, y) as a function X∗′

→ G, and τ is continuous as a function
X∗ → G. �

Proposition 2.11. Let (X, p,B) be a G-bundle and let f : B1 → B be a map. We
set

X1 = {(b1, x) ∈ B1 ×X | f(b1) = p(x)}

and let p1 : X1 → B1 and f1 : X1 → X be the projections.

(1) The spaces X1 and k(X1) have natural G-actions for which f1 is a G-map
and there is a homeomorphism h : X1/G → B1 making the following dia-
gram commutative and there is a homeomorphism h : X1/G → B1 making
the following diagram commutative

k(X1)
id

−−−−→ X1
=

−−−−→ X1
f1

−−−−→ X




y

p





y





y

p1





y

p

k(X1)/G
id

−−−−→ X1/G
h

−−−−→ B1
f

−−−−→ B.

If B1 ∈WH, then k(X1) is a G-space.
(2) If X is a nice G-space and B1 ∈WH, then k(X1) is also a nice G-space.
(3) If X is a free G-space and B1 ∈WH, then k(X1) is also a free G-space.
(4) If X is a free G-space having continuous translation function and if B1 ∈

WH, then the translation function of k(X1) is also continuous.
(5) If (X, p,B) is a numerable principal G-bundle and B1 ∈ WHK, then

(k(X1), p, k(X1)/G) is also a numerable principal G-bundle and id : k(X1)/G→
X1/G is a homeomorphism.

Proof. We define the G-actions on X1 and k(X1) by (b1, x)g = (b1, xg). Since they
are determined by maps

k(X1) ⊗G −→ X1 ⊗G
f1⊗id
−−−−→ X ⊗G

π
−→ X

k(X1) ⊗G −→ X1 ⊗G
p1⊗id
−−−−→ B1 ⊗G

π
−→ B1,

they are continuous, where π are the projections. Obviously f1 is a G-map. If
B1 ∈ WH, then k(X1) ∈ WHK, which is a G-space. We define h((b1, x)G) = b1.
Since X1/G has the quotient topology, the function h is continuous. As is easily
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seen, h is bijective. Note that p is an open map. It follows from [6, p.1]that p1

is an open map, and so is h, hence h is a homeomorphism. This proves (1). To
prove (2), suppose that X is nice and B1 ∈ WH. Then Ω = {(x, xg) | x ∈ X, g ∈
G} and 4B are closed in X ⊗ X and B ⊗ B = k(B) ⊗ k(B) respectively. Thus
{((b, x), (b, xg) | x ∈ X, g ∈ G} = ((f1 ◦ id) ⊗ (f1 ◦ id))−1Ω ∩ (kp1 ⊗ kp1)

−14B is
closed in k(X1) ⊗ k(X1). Therefore k(X1) is a nice G-space.

(3) is trivial. To prove (4), suppose that X is a free G-space with continuous
translation function and B1 ∈ WH. Since the translation function τ1 for k(X1) is
the composite of the maps

(k(X1))
∗ r∗−→ X∗ τ

−→ G,

where r = f1 ◦ id : k(X1) → X is the projection and τ is the translation function
of X, it follows that τ1 is continuous. This proves (4).

Suppose that (X, p,B) is a numerable principal G-bundle and B1 ∈ WHK.
Then k(X1) is a principal G-space, by (2), (3) and (4). Let {θj : B → I} be
a partition of unity which defines the numerability of the bundle (X, p,B). Then
{θjfh◦id} is a locally finite partition of unity on k(X1)/G. Put Uj = π−1

j (0, 1], Vj =

f−1π−1
j (0, 1], Xj = p−1

1 (Vj), and pj = p1 | Xj : Xj → Vj . Then π−1
j (0, 1] and

f−1π−1
j (0, 1] are in WHK by 2.8. Without loss of generality, we can assume that

p : p−1(Uj) → Uj is the product G-bundle. Then Xj = {(v, u, g) ∈ Vj × (Uj ⊗G) |
u = f(v)} and pj(v, f(v), g) = v. Let t : Vj ⊗ G → Xj be defined by t(v, g) =
(v, f(v), g). Then t is continuous and factorizes into Vj ⊗ G → k(Xj) → Xj.
As is easily seen, t : Vj ⊗ G → k(Xj) is a homeomorphism. This implies that
p : k(X1) → k(X1)/G is trivial over (πjfh ◦ id)−1(0, 1] if id : k(X1)/G → X1/G is
a homeomorphism. Since k(pj)t : Vj ⊗ G ∼= k(Xj) → Vj is the projection, k(pj) is
proclusive. Consider the following commutative diagram

∐

j k(Xj) −−−−→ k(X1)

�
k(pj)





y





y

k(p1)

∐

j Vj −−−−→ B1.

Since
∐

k(pj) and i are proclusive, so is k(p1). By the commutative diagram

k(X1)
=

−−−−→ k(X1)

p





y





y

k(p1)

k(X1)
id

−−−−→ X1/G ∼= B1,

it follows that h ◦ id is a homeomorphism, and so is id : k(X1)/G → X1/G. Thus
p : k(X1) → k(X1)/G is trivial over (πjfh◦id)

−1(0, 1] for all j. This proves (5). �

Under the notations of 2.11, we define
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Definition 2.12.

(1) Let (X, p,B) be a G-bundle, B1 ∈ WH, and f : B1 → B be a map. The
G-space k(X1) is denoted by f∗X and is called the induced G-space under
f .

(2) Let ξ = (X, p,B) be a numerable principal G-bundle and let f : B1 → B
be a map, where B1 ∈ WHK. The bundle k(p1) : f∗X = k(X1) → B1 is
called the induced G-bundle of ξ under f .

By 2.11(5), we have

Proposition 2.13. Any induced G-bundle of a numerable principal G-bundle is
numerable.

§3. Equivariant function spaces

In this section, we prove the function Φ : mapG(E,E′) → map(B,B′) which is
defined in 3.5, is continuous, if spaces involved have the k-ification of the compact-
open topology.

For G-spaces X and Y , we define functions

ψ, ψ1, ψ2 : map(X,Y ) ×G→ map(X,Y )

by

ψ(f, g)(x) = f(xg−1)g,

ψ1(f, g)(x) = f(x)g,

ψ2(f, g)(x) = f(xg−1),where f ∈ map(X,Y ).

Then ψ factorizes into map(X,Y ) ×G → map(X,Y ) ×G → map(X,Y ), where
the first function assigns (ψ1(f, g), g) to (f, g) and the second function is ψ2.

Lemma 3.1. For each g ∈ G,ψ( , g) : map(X,Y ) → map(X,Y ) is a homeomor-
phism.

Proof. Obviously ψ(ψ(f, g), g′) = ψ(f, gg′) and ψ(f, e) = f , so ψ(, g) is a bijection
and ψ( , g)−1 = ψ( , g−1). Similar relations hold for ψi. Thus it suffices to prove
that ψi( , g) : map(X,Y ) → map(X,Y ) are continuous.

Let f ∈ map(X,Y ) and first assume ψ1(f, g) ∈ W (K,U). Then f ∈
W (K,Ug−1). If f ′ ∈ W (K,Ug−1), then ψ1(f

′, g)(K) = f ′(K)g ⊂ U , so
ψ1(W (K,Ug−1), g) ⊂ W (K,U). If U is open in Y , then so is Ug−1. Thus this
shows that ψ1( , g) is continuous.

Let f ∈ map(X,Y ) and assume ψ2(f, g) ∈ W (K,U). Then f ∈ W (Kg−1, U),
and ψ2(W (Kg−1, U), g) ⊂ W (K,U). If K is compact, then so is Kg−1. Thus
ψ2( , g) is continuous. �
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Proposition 3.2. If X and Y are G -spaces, then Map(X,Y ) is also a G-space
by the actions ψ.

Proof. Since map(X,Y ) × G is weak Hausdorff, it suffices to show that ψi is con-
tinuous on each compact set. We prove this by showing that ψi is continuous on
map(X,Y ) ×D for D compact. Let Rg : G→ G be the map Rg(g

′) = g′g. By the
commutative square

map(X,Y ) ×D
ψi

−−−−→ map(X,Y )

id×Rg





y





y

ψi( ,g)

map(X,Y ) ×Dg
ψi

−−−−→ map(X,Y ),

it suffices to show that ψi is continuous at (f, e) on map(X,Y )×D for each compact
set D with e ∈ D.

Assume ψ1(f, e) ∈ W (K,U). Since the action is continuous, the composition

Y ×D = Y ⊗D ⊂ Y ⊗G→ Y

is continuous, so for each x ∈ K there exist open neighborhoods V (f(x)) of e
in D and V ′(f(x)) of f(x) in Y such that V ′(f(x))V (f(x)) ⊂ U . Since f(K) is
quasi compact, there exist x1, ..., xn in K such that ∪iV

′(f(xi)) ⊃ f(K). Let V =
∩iV (f(xi)) and V ′ = ∪iV

′(f(xi)). Then f ∈ W (K,V ′) and ψ1(W (K,V ′), V ) ⊂
W (K,U). This shows that ψ1 is continuous at (f, e) on map(X,Y ) ×D.

Assume ψ2(f, e) ∈ W (K,U), that is, f(K) ⊂ U . By the similar methods, we
see that there exist a compact neighborhood V of e in D and a neighborhood
V ′ of K in X such that V = V −1 and f(V ′V ) ⊂ U . It then follows that f ∈
W (KV,U) and ψ2(W (KV,U), V ) ⊂W (K,U), so that ψ2 is continuous at (f, e) on
map(X,Y ) ×D. �

Proposition 3.3. Let X and Y be G-spaces. Suppose one of the following two
conditions. Then ψ : map(X,Y ) ×G→ map(X,Y ) is continuous.

(1) X has the trivial G-action and Y is locally compact.
(2) G is locally compact.

Proof. Assume (1). Then Y ×G = Y ⊗G. By the same proof as above, ψ1 = ψ is
continuous at (f, e) ∈ map(X,Y ) × G, so ψ1 is continuous at each point. Assume
(2). Then X ×G = X ⊗G and ψ1 is continuous by (1). By the same proof as that
of 3.2, ψ2 is also continuous and hence so is ψ. �
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Definition 3.4. Let X and Y be G-spaces. We set

mapG(X,Y ) = map(X,Y )G

= {f ∈ map(X,Y ) | ψ(f, g) = f for all g ∈ G}, and

MapG(X,Y ) = k(mapG(X,Y )).

We note that MapG(X,Y ) is a fixed point set of the action in 3.2.
For any G-bundles (X, p,B) and (X ′, p′, B′), we have canonically the function

Φ : mapG(X,X ′) → map(B,B′)

making the following square commutative for each f ∈ mapG(X,X ′)

X
f

−−−−→ X ′

p





y





y
p′

B
Φ(f)

−−−−→ B′.

Theorem 3.5. The function Φ : MapG(X,X ′) →Map(B,B′) is continuous.

Proof. We prove this by showing that Φ : mapG(X,X ′) → map(B,B′) is continuous
on each compact set. Let D be a compact set of mapG(X,X ′), f ∈ D, and assume
Φ(f) ∈W (K,U) where K is a compact set in B, and U is open in B ′.

Since ev : Map(X,X ′) ⊗ X → X ′ is continuous by [15, 3.5], ev is continuous
on D ×X = D ⊗X. We can define uniquely a map Φ′ which makes the following
square commutative

D ×X
ev

−−−−→ X ′

id×p





y





y
p′

D × B
Φ′

−−−−→ B′.

There exist neighborhoods V of f in D and V ′ of K in B such that Φ′(V, V ′) =
Φ(V )(V ′) ⊂ U . In particular, if v ∈ V , then Φ(v)(K) ⊂ Φ(V )(V ′) ⊂ U , so Φ(V ) ⊂
W (K,U), thus Φ is continuous at f on D, hence Φ : MapG(X,X ′) →Map(B,B′)
is continuous. �

Proposition 3.6. Let (X, p,B) and (X ′, p′, B′) be G-bundles.

(1) If G is compact and X is locally compact, then Φ : mapG(X,X ′) →
map(B,B′) is continuous.

(2) If (X,p,B) is a numerable principal G-bundle and B is locally compact, then
Φ : mapG(X,X ′) → map(B,B′) is continuous.

(3) If X is locally compact, then Φ : mapG(X,X ′) → map(B,B′) is continuous.
(4) If (X, p,B) is a numerable principal G-bundle such that B is a CW -complex,

then Φ : mapG(X,X ′) → map(B,B′) is continuous.
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Proof. Let f ∈ mapG(X,X ′) and assume Φ(f) ∈ W (K,U), where U is an open
subset of B′ and K is a compact subset of B.

First assume G is compact. Then p is a closed mapping by the proof [13,
1.1.1.]. By [1, 7.8(2)], p−1K is quasi-compact. Moreover if X is locally com-
pact Hausdorff and if K is compact, then p−1K is compact by [1, 7.8(3)]. Since
ΦW (p−1K, p′−1U) ⊂W (K,U), this proves (1).

Assume that (X, p,B) is a numerable principal G-bundle and that B is locally
compact. Let a ∈ K. Then there exist an open neighborhood Oa of a and a
G-isomorphism over Oa

ha : Oa ⊗G = Oa ×G ∼= p−1Oa.

Since Φ(f)−1(U)∩Oa is an open neighborhood of a, there exists a compact neigh-
borhood Ba of a such that Ba ⊂ Φ(f)−1(U) ∩ Oa. Since the interiors {Int(Ba) |
a ∈ K} covers the quasi-compact set K, there are finite points a(1), ..., a(n) with
K ⊂ ∪iInt(Ba(i)). Put Di = ha(i)(Ba(i)×{e}) and D = ∪iDi. Then D is compact,

K ⊂ p(D) ⊂ Φ(f)−1(U), f ∈ W (D, p′−1U), and Φ(W (D, p′−1U)) ⊂ W (K,U).
This proves (2).

Assume X is locally compact. Let x ∈ p−1K. Then there exists a compact
neighborhood Lx of x with f(Lx) ⊂ p′−1U . Since {p(Int(Lx)) | x ∈ p−1K} is an
open covering of the quasi-compact set K, there are finite points x(1), ..., x(n) such
that K ⊂ ∪ip(Int(Lx(i)). Put L = ∪iLx(i). Then L is compact by [11, 2.1] and

K ⊂ p(L), f(L) ⊂ p′−1U , so f ∈ W (L, p′−1U), and Φ(W (L, p′−1U) ⊂ W (K,U).
This proves (3).

Assume (X, p,B) is a numerable principal G-bundle with B a CW -complex. Let
f ∈ mapG(X,X ′) and Φ(f) ∈ W (K,U). Since B is a CW -complex, K is closed
and there is a finite subcomplex S containing K. Let {hi : Dn(i) → S} be the set of
characteristic maps of closed cells of S, where Dn is the n-dimensional disk. Notice
that Dn(i) ×G = Dn(i) ⊗G by [14, 4.3]. We have then the following commutative
diagram in which h′i is a G-map

Dn(i) ×G
h′

i−−−−→ X
f

−−−−→ X ′





y





y

p





y
p′

Dn(i) hi−−−−→ B
Φ(f)

−−−−→ B′

Set Di = h′i(D
n(i) × {e}) and K ′ = (∪iDi) ∩ p

−1(K). Then p(K ′) = K, and K ′

is compact, because Di is compact, by [11, 2.1]. Moreover f ∈ W (K ′, p′−1U) and
Φ(W (K ′, p′−1U) ∩mapG(X,X ′)) ⊂ W (K,U), so Φ : mapG(X,X ′) → map(B,B′)
is continuous. �

Sometimes it is convenient to give mapG(X,X ′) a stronger topology as follows
(see §6):
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Definition 3.7. Let (X, p,B) and (X ′, p′, B′) be G-bundles. We define

mapG(X,X ′) = {(f, h) | f ∈ mapG(X,X ′), h ∈ map(B,B′), p′f = hp},

Φ : mapG(X,X ′) → map(B,B′),Φ(f, h) = h,

MapG(X,X ′) = k(mapG(X,X ′)).

Lemma 3.8. Let (X, p,B) and (X ′, p′, B′) be G-bundles. Then

(1) Φ : mapG(X,X ′) → map(B,B′) is continuous.
(2) The projection induces a continuous bijection

π : mapG(X,X ′) → mapG(X,X ′)

and a homeomorphism

π : MapG(X,X ′) ∼= MapG(X,X ′).

Proof. (1) is trivial. The inverse of π assigns f into (f,Φ(f)), and it is continuous

on each compact set by the proof of 3.5. Thus by [14, 3.2], π : MapG(X,X ′) ∼=

MapG(X,X ′). �

§4. Equivariant function spaces of principal bundles

In this section, by using of A. Dold [2] we prove that the k-ification of the space
mapG(E,EG) having the compact-open topology is contractible, where EG is the
total space of a universal principal G-bundle. D. H. Gottlieb [5] proved this by a
different method. We generalize Theorem 2.1 of H. Ōshima and K. Tsukiyama [12]
and prove Theorem 2.3 of I. M. James [7] without his condition.

From now on we assume that a topological group G in WHK is well based,
that is, (G, e) is an NDR-pair, unless otherwise stated. Then there is a universal
principal G-bundle (EG, p,BG) by [11, 9.l7].

Let (X, p,B) and (X ′, p′, B′) be numerable principal G-bundles and let b : B →
BG and b′ : B′ → BG be classifying maps of them. We set

map(B,B′; b, b′) = {h ∈ map(B,B′) | b′h ' b},

Map(B,B′; b, b′) = k(map(B,B′; b, b′)).

Note that Φ : mapG(X,X ′) → map(B,B′) has the image map(B,B′; b, b′).
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Proposition 4.1. Φ : MapG(X,X ′) → Map(B,B′) has the CHP(covering homo-
topy property) for all weak Hausdorff k-spaces (without the assumption that (G, e)
is an NDR-pair), and so is Φ : MapG(X,X ′) → Map(B,B′; b, b′). They have the
CHEP (covering homotopy extension property) for NDR-pairs in WHK.

Proof. The last assertion follows from the former and [8, 6.44]. Let Z ∈ WHK.
Assume the following commutative diagram

{0} ⊗ Z
h
−→ MapG(X,X ′) ⊂ Map(X,X ′)

∩




y
Φ

I ⊗ Z
H
−→ Map(B,B′).

Taking adjoints, we have the following commutative diagram by [15, 3.6]

{0} ⊗ Z ⊗X
h′

−−→ X ′

∩

I ⊗ Z ⊗X




y
p′





y

I ⊗ Z ⊗ B
H′

−→ B′.

Since id⊗ p : Z ⊗X → Z ⊗ B becomes naturally a numerable principal G-bundle,
it follows from the covering homotopy theorem for bundle maps (see [2, 7.8]) that
there exists a G-map H ′′ : I ⊗Z ⊗X → X ′ such that H ′′ = h′ on {0}⊗Z⊗X and
p′H ′′ = H ′(id⊗ id⊗p). Taking adjoint again, we have H ′′′ : I⊗Z →MapG(X,X ′)
such that H ′′′ = h on {0} ⊗ Z and ΦH ′′′ = H. Thus Φ has the CHP for Z. The
rest follows from the following easy fact: If p : E → B has the CHP for a k-space
Z, then so does k(p) : k(E) → k(B). �

The next is a generalization of [7, 2.1]:

Proposition 4.2. Without the assumption that (G, e) is an NDR-pair, we have

(1) If G is compact and X is locally compact, then Φ : mapG(X,X ′) →
map(B,B′) has the CHP for all locally compact weak Hausdorff spaces
and CW -complexes.

(2) If B is locally compact, then Φ : mapG(X,X ′) → map(B,B′) has the CHP
for all spaces Z with Z ×X ∈ WHK.
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(3) If X is locally compact, then Φ : mapG(X,X ′) → map(B,B′) has the CHP
for all spaces in WHK. If in addition X ′ is also locally compact, then Φ
has the CHP for all spaces in Top.

(4) If B is a CW -complex, then Φ : mapG(X,X ′) → map(B,B′) has the CHP
for locally compact weak Hausdorff spaces and CW -complexes.

Proof. The continuity of Φ is proved in Proposition 3.6.
Assume G is compact and let Z be a locally compact weak Hausdorff space.

Then Z ×X, I × Z × X and I × Z × B are weak Hausdorff k-spaces by [14, 4.3].
Assume the commutative diagram

{0} × Z
h
−→ mapG(X,X ′) ⊂ map(X,X ′)

∩




y
Φ

I × Z
H
−→ map(B,B′).

Taking adjoints, then by the covering homotopy theorem for bundle maps (see [2,
7.8]), we have a G-map H ′′ making the following diagram commutative

{0} × Z ×X
h′

−−→ X ′

∩




y

=

I × Z ×X
H′′

−−→ X ′





y





y

I × Z × B
H′

−−→ B′.

Taking adjoint again, we have the desired covering H ′′′ of H, so Φ has the CHP
for locally compact weak Hausdorff spaces. In particular Φ has the CHP for finite
CW complexes and hence for CW complexes. This proves (1).

Assume B is locally compact and Z ×X ∈WHK. The above proof implies (2).
Note that X,X ′, B and B′ are in WHK. Assume X is locally compact. Then B

is locally compact, so Φ has the CHP for spaces in WHK, since p′ has the CHP
for k-spaces, by slightly modified theorems of [2, 4.4, 4.8]. Suppose that X’ is also
locally compact. If p′ has the CHP for all spaces in Top, then the second part
of (3) follows. If τ : B′ → I is continuous, then τ−1(0, 1] is locally compact weak
Hausdorff and hence τ−1(0, 1]⊗G = τ−1(0, 1]×G. It follows from [2, 4.4, 4.8] that
p′ has the CHP for all spaces in Top.

If B is a CW -complex and Z is locally compact weak Hausdorff, then Z×X and
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Z × B are in WHK, so Φ in (4) has the CHP for Z. Thus φ has also the CHP
for CW -complexes by the proof of (1). �

Let (E, p,B) be a numerable principal G-bundle with a classifying map f : B →
BG.

Definition 4.3. We set

autG(E) = {u ∈ mapG(E,E) | uv 'G vu 'G id for some v ∈ mapG(E,E)},

aut(B) = {u ∈ map(B,B) | uv ' vu ' id forsome v ∈ map(B,B)},

aut(B; f) = {u ∈ aut(B) | fu ' f},

AutG(E) = k(autG(E)),

Aut(B) = k(aut(B)),

Aut(B; f) = k(aut(B; f)).

We have the following easily (see [12, p.906]):

Lemma 4.4. Φ−1(aut(B; f)) = autG(E), so Φ : AutG(E) → Aut(B; f) is a sur-
jective Hurewicz fibration in WHK. �

Lemma 4.5. For any numerable principal G-bundle E over B, we can choose a
universal principal G-bundle (EG, p,BG) and a G-bundle map

E
f ′

−−−−→ EG




y





y

p

B
f

−−−−→ BG,

where f and f ′ are embeddings onto closed sets.

Proof. Let (E′, p′, B′) be any universal principal G-bundle and let

E
h′

−−−−→ E′





y





y
p′

B
h

−−−−→ B′

be a G-bundle map. Let M = B × I +B′/(b, 0) ∼ h(b) be the mapping cylinder of
h. Then M is a weak Hausdorff k-space by 1.1. Let q : M ′ = B × I + B′ →M be
the quotient map. Let i′ : B′ →M ′ and j′ : M ′ → B′ be maps defined by i′(y) = y,
j′(b, t) = h(b), and j′(y) = y. Put i = qi′ : B′ → M . Then i is a homeomorphism



42 HIDEAKI ŌSHIMA AND KOUZOU TSUKIYAMA

onto a closed set. Since j ′(b, 0) = j′(h(b)), we have a map j : M → B′ such that
jq = j′. We have

(#) ji = idB , and ij ' idM .

Indeed, a homotopy F : I ×M →M of ij to idM is made from F ′ : I ×M ′ →M ′,
where F ′(s, y) = y and F ′(s, b, t) = (b, st).

Let u : B → M be defined by u(b) = (b, 1). Then ju = h so that u∗j∗E′ ∼=
h∗E′ ∼= E. We then have a commutative diagram

E
α
∼= u∗j∗E′ β

−−−−→ j∗E′ −−−−→ E′





y

p1





y





y

B
u

−−−−→ M
j

−−−−→ B′.

Since u is a homeomorphism onto a closed set, so is β. By (#), (j∗E′, p1,M) is a
universal principal G-bundle, thus taking (EG, p,BG) = (j∗E′, p1,M), f = u and
f ′ = βα, the result follows. �

Proposition 4.6. Let E be a numerable principal G-bundle over B. Then

[X,MapG(E,EG)] = 0

for all X ∈WHK, so MapG(E,EG) is contractible in the weak sense. If (X, ∗) is
an NDR-pair in WHK, then

[X, ∗;MapG(E,EG), h] = 0

for each h ∈MapG(E,EG).

Proof. Let X ∈ WHK and consider it as a trivial G-space. Let Y, Z be G-spaces.
Then we have a commutative square

map(X ⊗ Y, Z) ⊃ mapG(X ⊗ Y, Z)





y





y

map(X,Map(Y, Z)) ⊃ map(X,MapG(Y, Z))

and vertical equivalences preserve homotopies, so we have

[X ⊗ Y, Z]G ∼= [X,MapG(Y, Z)]
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and in particular
[X ⊗E,EG]G ∼= [X,MapG(E,EG)].

By [2, 7.7] we have [X ⊗ E,EG]G = 0. Thus [X,MapG(E,EG)] = 0. Tak-
ing X = {∗}, MapG(E,EG) is path-connected. Taking X = MapG(E,EG),
MapG(E,EG) is contractible in the weak sense. If (X, ∗) is an NDR-pair, then
[X, ∗;MapG(E,EG), f ] = 0. �

Remark. We can prove an analogous theorem to 4.6 in the theory of Hurewicz
fibrations by [3],[4]. In this case base spaces must be CW -complexes (see [16, 2.1]).

Proposition 4.7. Let E be a numerable principal G-bundle over B, and let X ∈
WHK with a trivial G-action. Suppose X × E ∈ WHK. Then
[X,mapG(E,EG)] = 0. In particular mapG(E,EG) is essentially contractible in
the sense of [5].

Proof. Under the assumptions, we have a commutative square

map(X × E,EG) ⊃ mapG(X ×E,EG)





y





y

map(X,map(E,EG)) ⊃ map(X,mapG(E,EG)).

Since vertical equivalences preserve homotopies,

[X ×E,EG]G ∼= [X,mapG(E,EG)].

By [2, 7.7], [X × E,EG]G = 0. Thus [X,mapG(E,EG)] = 0. �

Lemma 4.8. Under the condition of 4.5, we have the following commutative dia-
gram

IG(E) = IG(E) = IG(E)

∩ ∩ ∩

AutG(E) −→ MapG(E,E) ⊂ MapG(E,EG)





y
Φ





y
Φ





y
Φ

Aut(B; f) −→ Map(B,B; f, f) ⊂ Map(B,BG; f, id),

where IG(E) = k(Φ−1(idB)) and three vertical sequences are surjective fibrations
in WHK.

Proof. Easy. �
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Lemma 4.9. Let X, Y be topological monoids in Top or WHK. Let p : X → Y
be a continuous unital homomorphism having the CHEP for (Z, ∗) in Top∗ or
WHK∗. Then F = p−1(1) is a submonoid of X and the connecting function

∆ : [ΣZ, ∗;Y, 1] → [Z, ∗;F, 1]

is a homomorphism of semi-groups, where 1 denotes the unit of monoid.

Proof. By definition ∆ is the composition of

[ΣZ, ∗;Y, 1]
p−1

∗−−→ [CZ,Z, ∗;X,F, 1] −→ [Z, ∗;F, 1],

where the last function maps [w] into [w | F ]. For any map u : (ΣZ, ∗) → (Y, 1), we
denote by u′ : (CZ,Z, ∗) → (X,F, 1) a map such that pu′ = uq, where q : CZ → ΣZ
is the quotient map. Hence p∗([u

′]) = [u]. Such a map u′ exists by the CHEP . As
is well known, [u][v] ∈ [ΣZ, ∗;Y, 1] is represented by uv : ΣZ → Y which is defined
by (uv)(t) = u(t)v(t). Since p is a homomorphism, we can take (uv)′ = u′v′, hence
∆([u][v]) = [(u′v′) | Z] = [u′ | Z ◦ v′ | Z] = [u′ | Z][v′ | Z] = ∆([u])∆([v]). �

By this lemma and (4.8) we have

Proposition 4.10. If E is a numerable G-bundle over B and if Z ∈WHK∗, then
the connecting function

∆ : [ΣZ, ∗;Map(B,BG), f ] → [Z, ∗; IG(E), f ′]

of the fibration IG(E) → MapG(E,EG) → Map(B,BG) is a homomorphism of
semi-groups for every Z ∈ WHK∗. (Note that [ΣZ, ∗;Map(B,BG), f ] =
[ΣZ, ∗;Map(B,BG; f, id), f ] and f ′ = idE if we regard IG(E) ⊂MapG(E,E).)
�

Lemma 4.11. Suppose that the morphism in WHK, p : X → Y , has the CHEP
for (Z, ∗) ∈ WHK∗, y0 ∈ Y, F = p−1(y0) is a topological monoid in WHK, and
that · : X ⊗ F → X is a map such that

(1) if x1, x2 ∈ F, then x1 · x2 is the product in F ,
(2) (x · x1) · x2 = x · (x1 · x2), x ∈ X, x1, x2 ∈ F , and
(3) p(x · x1) = p(x).

Then the connecting function ∆ : [ΣZ, ∗;Y, y0] → [Z, ∗;F, 1] of the fibration is a
homomorphism of semi-groups.

Proof. Let u, v : (ΣZ, ∗) → (Y, y0) be maps. Recall that a map u + v : ΣZ → Y
defined by

(u+ v)(z, t) =

{

u(z, 2t), for 0 ≤ t ≤ 1/2

v(z, 2t− 1), for 1/2 ≤ t ≤ 1.
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Let u′, v′ : (CZ,Z, ∗) → (X,F, 1) be maps such that pu′ = uq and pv′ = vq where
q : CZ → ΣZ is the quotient map. These maps exist by the CHEP . Then, by
definition, ∆[u] = [u′ | Z] and ∆[v] = [v′ | Z]. We define a map r : (CZ,Z, ∗) →
(X,F, 1) by

r(z, t) =

{

u′(z, 2t) · v′(z, 0), for 0 ≤ r ≤ 1/2

v′(z, 2t− 1), for 1/2 ≤ t ≤ 1.

This is well defined by (1), and pr = (u+ v)q, so ∆([u][v]) = ∆[u+ v] = [r | Z] =
[u′ | Z · v′ | Z] = [u′ | Z][v′ | Z] = ∆[u]∆[v]. This completes the proof. �

Since · : MapG(E,EG)⊗IG(E) →MapG(E,EG), defined by α·β = αβ, satisfies
the assumptions of lemma 4.11, we obtain the following by using (4.6), (4.10).

Theorem 4.12. If E is a numerable principal G-bundle over B, then for any
Z ∈WHK∗, we have the following exact sequence of groups and homomorphisms

· · · −→ [ΣnZ, ∗;AutG(E), idE]
Φ∗−→ [ΣnZ, ∗;Aut(B), idB]

f∗
−→

[ΣnZ, ∗;Map(B,BG), f ]
∆
−→ [Σn−1Z, ∗;AutG(E), idE] −→

· · · −→ [ΣZ, ∗;Map(B,BG), f ] −→ [Z, ∗;AutG(E), idE]

−→ [Z, ∗;Aut(B; f), idB] −→ 1.

�

§5. Principal bundles over a suspension space

By Theorem 4.12, we can generalize [12, 2.2] under the assumption that B ∈
WHK∗ and (G, e) is an NDR-pair.

Theorem 5.1. If B,Z ∈ WHK∗ and E is a numerable principal G-bundle over
ΣB with the classifying map f : ΣB → BG, then we have the following commutative
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diagram with exact rows

0 −→ [Σn+1Z ∧B, ∗; ΣB, ∗]/[[Σn+1Z, ∗; ΣB, ∗], 1] −→





y

χ

0 −→ [ΣnZ ∧B, ∗;G, e]/〈[ΣnZ, ∗;G, e], f ′〉 −→

[ΣnZ, ∗;Map(ΣB,ΣB), 1]
ev∗−−→ [ΣnZ, ∗; ΣB, ∗] −→





y

f∗





y

f∗

[ΣnZ, ∗;Map(ΣB,BG), f ]
ev∗−−→ [ΣnZ, ∗;BG, ∗] −→

[ΣnZ ∧ B, ∗; ΣB, ∗]





y

χ

[Σn−1Z ∧ B, ∗;G, e],

where 1 denotes the identity map of ΣB, f ′ : (B, ∗) → (G, e) is the composi-
tion of the adjoint of f and a homotopy inverse of the canonical H-equivalence
G → kΩBG = Map0(S1, BG) given by [11], χ : [ΣmZ ∧ B, ∗; ΣB, ∗] → [ΣmZ ∧
B, ∗;BG, ∗] ∼= [Σm−1Z ∧B, ∗;G, e] is the characteristic homomorphism, ∗ = f(∗) ∈
BG, and 〈 , f ′〉 is defined by the commutative square

[ΣmZ, ∗;BG, ∗]
[ ,f ]

−−−−→ [ΣmZ ∧ B, ∗;BG, ∗]

∼=





y





y

∼=

[Σm−1Z, ∗;G, e]
〈 ,f ′〉

−−−−→ [Σm−1Z ∧ B, ∗;G, e],

where [ , ] denotes the generalized Whitehead product (see [9]).

Proof. By [8, 6.44, 2.l00], the evaluation maps for D = ΣB or BG

Map(ΣB,D) → D,

map(ΣB,D) → D

have the CHEP for NDR-pairs in WHK, so we have a commutative diagram of
fibrations

Map0(ΣB,ΣB) ⊂ Map(ΣB,ΣB) −→ ΣB





y

f∗





y

f∗





y

f

Map0(ΣB,BG) ⊂ Map(ΣB,BG) −→ BG.

Taking the homotopy exact sequences of the fibrations, we have the result by [9]. �
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§6. F-fibration map theory

We shall generalize Proposition 4.1 to F -fibrations of J. P. May [10]. Let F be
a subcategory of Top(respectively WHK).

Definition 6.1. An F-space is a map p : E → B in Top (resp. WHK) such that
p−1(b) is empty or p−1(b) ∈ F for each b ∈ B. Notice that if F ⊂ WHK then
k(p−1(b)) = p−1(b), since B is a T1-space. Let p : E → B and q : D → A be
F-spaces. An F-map (g, f) : q → p is a commutative diagram

D
g

−−−−→ E

q





y





y

p

A
f

−−−−→ B

in Top (resp. WHK) such that g : q−1(a) → p−1(f(a)) is in F for each a ∈ A.
If A = B and f is the identity map, then g is said to be an F-map over B. An

F-homotopy is an F-map (H, h) of the form

I ×D
H

−−−−→ E

id×q





y





y

p

I ×A
h

−−−−→ B.

If A = B and h(s, b) = b, then H is said to be an F-homotopy over B. An F-map
g : D → E over B is an F-homotopy equivalence if there is an F-map g ′ : E → D
over B such that g′g and gg′ are F-homotopic over B to the respective identity
maps. An F-space p : E → B is said to be F-homotopy trivial if it is F-homotopy
equivalent to the projection π1 : B × F (resp.B ⊗ F ) → B for some F ∈ F .

Remark. We can work with the assumption of the surjectivity of F -spaces.

Definition 6.2. An F-space p : E → B has the F-covering homotopy property
(abbreviated F-CHP ) for an F-space q : D → A if for every F-map (g, f) : q → p
and every homotopy h : I × A → B of f , there exists a homotopy H : I ×D → E
of g such that the pair (H, h) is an F-homotopy. An F-space is an F-fibration if it
has the F-CHP for every F-space.

For F -spaces p : E → B and q : D → A, we use the following notations:

mapF(q, p) = the set of F -maps from q to p

⊂ map(D,E) ×map(A,B),

Φ = Φq,p : mapF(q, p) → map(A,B),Φ(g, f) = f,

φ = φq,p : mapF(q, p) → map(D,E), φ(g, f) = g,

MapF(q, p) = k(mapF(q, p)).
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Note that, if q is surjective, then φ : mapF(q, p) → map(D,E) is injective.

Proposition 6.3. Let F ⊂ WHK. With the above notations, we have

(1) Φ : MapF(q, p) →Map(A,B) is continuous.
(2) If p is an F-fibration, then Φ : MapF(q, p) →Map(A,B) has the CHP in

WHK.
(3) If p has the F − CHP for id ⊗ q : K ⊗ D → K ⊗ A(K ∈ WHK), then

Φ : MapF(q, p) →Map(A,B) has the CHP for K.
(4) If D,E ∈WH and q is surjective and proclusive, then

map(D,E) ⊃ Im(φ)
Φφ−1

−−−→ map(A,B)

is continuous on each compact set. Hence

Φφ−1 : k(Im(φ)) →Map(A,B)

is continuous, and

φ : MapF(q, p) ∼= k(Im(φ))

is a homeomorphism.

Proof. Since the projection is continuous, (1) follows. Under the notations of (3),
suppose the commutative diagram

{0} ×K
h
−→ MapF(q, p)

∩




y
Φ

I ×K
H
−→ Map(A,B).

The adjoint of the composition of h with the inclusion and the projection

MapF(q, p) →Map(D,E)⊗Map(A,B) →Map(D,E)

is the map h′ : {0} ⊗K ⊗D → E. By the assumption, there exists a map J such
that (J, ad(H)) is an F -map and the following diagram is commutative

{0} ⊗K ⊗D
h′

−−−−→ E

∩




y

=

I ⊗K ⊗D
J

−−−→ E

id⊗id⊗q





y





y

p

I ⊗K ⊗ A
ad(H)
−−−−→ B.
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The adjoint of J and the map H give a map I⊗K →MapF(q, p) extending h and
lifting Φ. This proves (3).

(2) can be proved by the same way as (3).
To prove (4), suppose that D,E ∈ WH and q is surjective and proclusive. The

surjectivity of q implies that φ : mapF(q, p) → Im(φ) is a bijection. Consider the
functions

map(D,E) ⊃ Im(φ)
φ−1

−−→ mapF(q, p)
Φ
−→ map(A,B).

Let T ⊂ Im(φ) ⊂ map(D,E) be a compact set, g ∈ T , and suppose that Φφ−1(g) ∈
W (K,U), where U ⊂ B is open and K ⊂ A is compact.

Since D,E ∈ WH, ev : Map(D,E) ⊗ D → E is continuous by [l5,3.7]. Thus
ev : T ⊗ D → E is continuous. Since T is compact and q is proclusive, id × q :
T ⊗D → T ⊗ A is proclusive by [14, 4.5], [11, 2.2] and [15, 3.8]. Hence we have a
map Φ′ making the following diagram commutative

T ⊗D
ev

−−−−→ E

id×q





y





y

p

T ⊗ A
Φ′

−−−−→ B

It follows that there exist neighborhoods V of g in T and V ′ of K in A such that
Φ′(V, V ′) ⊂ U . In particular, if v ∈ V , then Φφ−1(v)(K) = Φ′(v,K) ⊂ U, so
Φφ−1(V ) ⊂W (K,U), thus Φφ−1 is continuous on T . �

Example 6.4. Let G be a topological group in WHK and F denote the category
whose objects are right G-spaces Y such that, for all y ∈ Y , the function y′ : G→ Y
defined by y′(g) = yg is a homeomorphism and whose morphisms of F are G-maps.
A principal G-bundle is a surjective F -space by 2.4. If q : D → A and p : E → B
are principal G-bundles, then the maps mapF(q, p) ⊂ map(D,E) ×map(A,B) →
map(D,E) give the homeomorphism

MapF(q, p) →MapG(D,E)

by 6.3 (4). Since a numerable principal G-bundle has the F -CHP for numerable
principal G-bundles by [2, 7.8], 4.1 is a special case of 6.3 (3).

§7. Fibration map theory

Let F be the category whose objects are weak Hausdorff k-spaces and morphisms
are homotopy equivalences. In this case the F -fibration map theory is called the
fibration map theory in [16](cf. [3], [4]). He assumed base spaces of fibrations to be
CW -complexes. We shall see that this assumption will not be necessary for some
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results of [16].
If p : E → B and f : A → B are maps in WHK, then the pull back of them is

denoted by f∗E, that is,

f∗E = k{(a, x) ∈ A×E | f(a) = p(x)}.

Lemma 7.1. If p : E → B is a fibration in WHK, then p is an F-fibration.

Proof. Let q : D → A be any F -space, (g, f) : q → p an F -map, and let h : I×A→
B be a homotopy of f . By the CHP , there exists a map H : I × D → E such
that pH = h(id × q) and H0 = g. We shall prove that (H, h) is an F -homotopy,
that is, Ht : q−1(a) → p−1(ht(a)) is a homotopy equivalence for every a ∈ A and
every t ∈ I, by showing that the map L : I × q−1(a) → h∗E making the following
diagram commutative is a homotopy equivalence on each fibre

I × q−1(a)
L

−−−−→ h∗E −−−−→ E

id×q





y





y
p′





y

p

I × {a}
=

−−−−→ I × {a}
h

−−−−→ B.

Since I×{a} is contractible, it follows by [8, 6.57] that there exists a fibre homotopy
equivalence α, which makes the following diagram commutative

I × (h∗E)(0,a)
α

−−−−→ h∗E




y





y
p′

I × {a}
=

−−−−→ I × {a}.

Let β be a fibre homotopy inverse of α, and let θ : I × q−1(a) → h∗E → I ×
(h∗E)(0,a) → (h∗E)(0,a) be the composition of L, β and the projection. By the
assumption, θ0 is a homotopy equivalence, hence so are θt = βtLt and αtβtLt for
every t. Since the latter is homotopic to Lt, Lt is a homotopy equivalence. This
completes the proof. �

By 6.3(2) and 7.1, we have

Corollary 7.2. If p : E → B is a fibration in WHK and q : D → A is a map in
WHK, then

Φ : MapF(q, p) →Map(A,B)

is a fibration in WHK. �

Under the notations of 7.2, in addition, if q is also a surjective and proclusive
fibration in WHK, for example by [8, 6.36], or if q is a surjective fibration in
Top such that D,A ∈ WHK and A is locally path-connected, then MapF(q, p) ∼=
k(Im(φ)) = G∗(D,E) by 6.3(4), where G∗ is the notation of [16].
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Theorem 7.3. Let q : D → A and p : E → B be fibrations in WHK and (A,A0)
be an NDR-pair in WHK. Set D0 = q−1(A0), q0 = q | D0 : D0 → A0, and let
i : D0 → D be the inclusion. Then

i∗ : MapF(q, p) →MapF(q0, p)

is a fibration in WHK.

Proof. Suppose a commutative diagram

{0} ×K
h
−→ MapF(q, p)

∩




yi∗

I ×K
H
−→ MapF(q0, p).

Taking the adjoints, we have the commutative diagram

I ⊗K ⊗D ⊃ {0} ⊗K ⊗D ∪ I ⊗K ⊗D0
(φh)′∪(φH)′

−−−−−−−−→ E





y





y





y

p

I ⊗K ⊗ A ⊃ {0} ⊗K ⊗ A ∪ I ⊗K ⊗ A0
(Φh)′∪(ΦH)′

−−−−−−−−→ B,

where the prime ′ denotes the adjoint. Since (A,A0) is an NDR- pair, it follows
that (I, 0)⊗K⊗(A,A0) is also an NDR-pair, hence (Φh)′∪(ΦH)′ can be extended
to a map f : I ⊗K ⊗ A→ B, and we have the following commutative diagram

{0} ⊗K ⊗D ∪ I ⊗K ⊗D0
(φh)′∪(φH)′

−−−−−−−−→ E

∩

I ⊗K ⊗D




y

p

id⊗q





y

I ⊗K ⊗ A
f

−−−−−−−−→ B.

By [8, 6.42], (D,D0) is an NDR-pair, and so is (I, 0) ⊗K ⊗ (D,D0). Hence there
exists a map g : I ⊗K ⊗D → E extending (φh)′ ∪ (φH)′ and lifting f(id⊗ q). By
the same proof of 7.1, we know that (g, f) is an F -homotopy. Then g′ : I ⊗K →
MapF(q, p), the adjoint of g, is an extension of h and a lifting of H. This completes
the proof. �

Let q : D → A and p : E → B be fibrations in WHK, A0 a k-subspace of A,
D0 = q−1(A0) the k-subspace of D, and let q0 : D0 → A0 be the restriction of q.
Let (g, f) : q0 → p be an F -map. Under this situation we define
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Definition 7.4. We set

MapF(g,f)(q mod q0, p) = k{(u, v) ∈MapF(q, p);u | D0 = g, v | A0 = f}

= {(u, v) ∈MapF(q, p);u | D0 = g, v | A0 = f}.

Theorem 7.5. If (A,A0) is an NDR-pair in WHK, then, under the above situ-
ation, the restriction of Φ:

MapF(g,f)(q mod q0, p) →Mapf (A mod A0, B)

is a fibration in WHK, where Mapf (A mod A0, B) = k{w ∈Map(A,B);w | A0 =
f} = {w ∈Map(A,B);w | A0 = f}.

Proof. Let K ∈WHK and suppose the left square of

{0} ⊗K
j
−→ MapF(g,f)(q mod q0, p)

i
−→ MapF(q, p)

∩




y
Φ





y
Φ

I ⊗K
h
−→ Mapf (A mod A0, B)

i
−→ Map(A,B)

is commutative, where i are the canonical injections. Then we have the commutative
diagram(note that φ : MapF(q, p) →Map(D,E))

I ⊗K ⊗D0 ∪ {0} ⊗K ⊗D
m∪j′

−−−→ E

∩

I ⊗K ⊗D




y

p





y

I ⊗K ⊗A
h′

−−−→ B,

where m is the composition of the projection I ⊗ K ⊗ D0 → D0 and g, and j′

and h′ are the adjoints of φij and ih respectively. Since (I, 0)⊗K ⊗ (D,D0) is an
NDR-pair, there exists a map n : I ⊗ K ⊗ D → E extending m ∪ j ′ and lifting
h′(id⊗ q). By the proof of 6.1, (n, h′) is an F -map. As is easily seen, the adjoint
of n factorizes into

I ⊗K
n′

→MapF(g,f)(q mod q0, p) →MapF(q, p) →Map(D,E),

and n′ is the desired map. �
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Theorem 7.6. Let q : D → A and p : E → B be fibrations in WHK such that A is
numerably categorical in the sense of [8] (for example, when A is a CW - complex).
Then each non-empty fibre of the fibration Φq,p : MapF(q, p) → Map(A,B) has
the same homotopy type as Φ−1

p,q(idA).

Proof. Let f ∈Map(A,B) be any map such that Φ−1
q,p(f) is non-empty. Let

f∗E
j

−−−−→ E

r





y





y

p

A
f

−−−−→ B

be the commutative square of the induced fibration. Then we have the following
commutative square

MapF(q, r)
j∗×f∗
−−−−→ MapF(q, p)

Φ





y





y
Φ

Map(A,A)
f∗

−−−−→ Map(A,B).

By the last square, we have a map

ξ : Φ−1
q,r(idA) → Φ−1

q,p(f).

Note that the composition of Φ−1(f) ⊂ mapF ⊂ map(D,E) × map(A,B)
→ map(D,A × E) is continuous and has the image in map(D, f ∗E) ⊂
map(D,A × E), where the last map assigns q × g : D → A × E to (g, h). For
simplicity, we denote the image of (g, f) under this map by g′. Since A is numerably
categorical, g′ is a fibre homotopy equivalence by [2, 6.3] (cf.[8, 7.58]). We have a
map

Φ−1
q,p(f) → Φ−1

q,r(idA)

assigning to (g, f) the pair (g′, idA). As is easily seen, this is the inverse of ξ, so ξ
is a homeomorphism.

Choose arbitrary (g0, f) ∈ Φ−1
q,p(f). Let g′′0 : f∗E → D be a fibre homotopy

inverse of g′0. We have the commutative diagram

MapF(q, r)
g′′
0∗

×id
−−−−→ MapF(q, q)

g′
0∗

×id
−−−−→ MapF(q, r)





y

Φq,r





y

Φq,q





y

Φq,r

Map(A,A) = Map(A,A) = Map(A,A).
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Let H : I ×D → D and L : I × f∗E → f∗E be fibre homotopy maps from suitable
identity map to g′′0g

′
0 and g′0g

′′
0 respectively. We define maps

α : Φ−1
q,r(idA) → Φ−1

q,q(idA),

β : Φ−1
q,q(idA) → Φ−1

q,r(idA)

by the restrictions of g′′0∗ × id and g′0∗ × id respectively. Then

βα(u, idA) = (g′0g
′′
0u, idA),

αβ(v, idA) = (g′′0g
′
0v, idA).

Let L′ : I × Φ−1
q,r(idA) → Φ−1

q.r(idA) and H ′ : I × Φ−1
q,q(idA) → Φ−1

q,q(idA) be defined
by L′(t, u, id) = (Ltu, id) and H ′(t, v, idA) = (Htv, idA). Then L′ is a homotopy
of id to βα and H ′s a homotopy of id to αβ. This implies that α is a homotopy
equivalence of which a homotopy inverse is β. Hence Φ−1

q,p(f) and Φ−1
q,q(idA) have

the same homotopy type. �

Theorem 7.7. Let p : E → B be a fibration in WHK, (B,A) an NDR-pair, and
let q : D = p−1(A) → A be the restriction of p. Then

i∗ : Φ−1
q,p(idB) → Φ−1

q,q(idA)

is a fibration in WHK, where i : D ⊂ E is the inclusion.

Proof. Let K ∈WHK and suppose a commutative square

{0} ⊗K
g
−→ Φ−1

p,p(idB)
φ
−→ Map(E,E)

∩




yi∗

I ⊗K
f
−→ Φ−1

q,q(idA)
φ
−→ Map(D,D).

Then we have the commutative diagram

{0} ⊗K ⊗ E ∪ I ⊗K ⊗D
g′∪f ′

−−−→ E

∩

I ⊗K ⊗E




y

p

id⊗p





y

I ⊗K ⊗ B
π

−−−→ B,
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where g′ and f ′ are adjoints of φg and φf respectively, and π is the projection. By
the CHEP , there exists a map h : I ⊗ K ⊗ E → E extending g′ ∪ f ′ and lifting
π(id ⊗ p). By the proof of 7.1, (h, π) ∈ MapF(id ◦ p, p). Note that I ⊗ K →
Map(B,B), the adjoint of π, is constant into idB . Thus the adjoint of h defines
the map I ⊗K → Φ−1

p,p(idB) which is an extension of g and a lifting of f . �

Remark. For function spaces, we have considered the compact open topology. We
note that we can consider the quasi-compact open topology, and that the k-ification
of this topology coincides with the k-ification of the compact-open topology in
WHK.
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