ANNIHILATORS IN BCK-ALGEBRAS II

Michiro Kondo

(Received: December 10, 1997)

ABSTRACT. In this paper we show that for every BCI-algebra X,

(1) the family CI(X) of all closed ideal in X forms a pseudo-complemented

distributive lattice if and only if X is the BCK-algebra;

(2) $\forall A \in CI(X)A \subseteq A^{**} \iff X$ is the *BCK*-algebra;

1. BCK-Algebra

Firstly we define a *BCI*-algebra and a *BCK*-algebra. An algebra (X; *, 0) of type (2,0) is called a *BCI*-algebra when it satisfies the conditions: For every $x, y, z \in X$,

(1) $(x * y) * (x * z) \le z * y$

 $(2) \quad x * (x * y) \le y$

(3) x * x = 0

(4) $x * y = y * x = 0 \Longrightarrow x = y$, where the relation " \leq " is defined by

 $x \le y$ if and only if x * y = 0.

It is well known that the relation is a partially ordered relation on any BCI-algebra (cf [2]).

In *BCI*-algebras, the following properties hold:

$$(a) \quad x * 0 = x$$

(b) 0 * (x * y) = (0 * x) * (0 * y)

(c)
$$(x * y) * z = (x * z) * y$$

- $(d) \quad (x*z)*(y*z) \le x*y$
- (e) $x \le y \Longrightarrow x * z \le y * z$
- (f) $x \le y \Longrightarrow z * x \le z * y$

We say that a BCI-algebra X is a BCK-algebra if

(5) 0 * x = 0 for $x \in X$.

By an ideal we mean a subset I of X such that it satisfies the conditions:

 $(I1) \ 0 \in I$

$$(I2) \ x * y, y \in I \Longrightarrow x \in I.$$

1991 Mathematics Subject Classification. 06F35, 06D15.

 $Key\ words\ and\ phrases.$ annihilator, BCK-algebra.

An ideal I is called closed whenever $0 * x \in I$ for any $x \in I$. By CI(X), we denote the set of all closed ideals of X.

For every non-empty subset A of X, we define a subset A^* which is called an annihilator of A :

 $A^* = \{ x \in X \mid \forall a \in A \ (a * (a * x) = 0) \}.$

The set A is called involutory if $A = A^{**}$. By S(X) we mean the set of all involutory ideals of X. It is proved in [1] that if X is a *BCK*-algebra and A is a non-empty subset of X then A^* is the ideal of X. We can show the same result for *BCI*-algebras.

Proposition 1. Let A be a non-empty subset of a BCI-algebra X. Then A^* is a closed ideal of X.

Proof. For every $a \in A$, since a * (a * 0) = a * a = 0, we have $0 \in A^*$. Next we suppose that $x, y * x \in A^*$. We obtain from definition that

(6) a * (a * x) = 0 and

(7) a * (a * (y * x)) = 0.

It follows from (2) and (6) that 0 * x = 0 and hence (a * x) * a = (a * a) * x = 0 * x = 0. This means that a = a * x by (4). Similarly we have a = a * (y * x). From these, we have in turn

$$a = a * (y * x) = (a * x) * (y * x) \le a * y$$
 (by (d))

 $0 = a * a \le (a * y) * a = 0 * y$ (by (e))

 $0 = 0 * (0 * y) \le y$, which implies that 0 * y = 0.

It follows that (a * y) * a = (a * a) * y = 0 * y = 0 and hence a = a * y. Thus $y \in A^*$ and A^* is the ideal of X_I .

Lastly we show that A^* is closed, that is, $0 * x \in A^*$ whenever $x \in A^*$. For $x \in A^*$, we obtain that $0 = a * (a * x) \le x$ for every $a \in A$. Thus we have $0 * x = 0 \in A^*$. This means that A^* is closed.

Let X be a BCI-algebra. We define a subset G called BCK-part of X as

$$G = \{x \in X | 0 * x = 0\}$$

For the subset G it is proved that

Proposition 2. (1) G is the closed ideal, that is, $G \in CI(X)$.

```
(2) G = \{0\}^*
(3) G^* = \{0\}
```

Proof. We only prove the case of (1). The other cases are proved similarly (cf. [3]). It is obvious that $0 \in G$. If $x, y * x \in G$, then 0 * x = 0 * (y * x) = 0. Since 0 * (y * x) = (0 * y) * (0 * x), we have 0 * y = 0. Thus G is the ideal. Moreover, for any $x \in G$, it follows from definition of G that $0 * x = 0 \in G$. This means that G is closed.

Proposition 3. Let X be a BCI-algebra and A a subset of X. Then we have $0 \in A$ if and only if $A \cap A^* = \{0\}$

Proof. We show the "only if" part. We suppose that $0 \in A$. First of all we note that $A \cap A^* \neq \emptyset$ because of $0 \in A^*$. For every $x \in A \cap A^*$, we have

x * (x * x) = 0 by definition of A^* . On the other hand x * (x * x) = x * 0 = x. It follows that x = 0 and hence $A \cap A^* = \{0\}$.

Corollary 1. $A \cap A^* = \emptyset$ or $A \cap A^* = \{0\}$

Hence we have $A \cap A^* = \emptyset$ for every ideal A in any *BCI*-algebra (cf [1]).

2. Structure of I(X)

In this section we consider the set I(X) of all ideals of a *BCK*-algebra X. In case of the *BCK*-algebra X, every ideal of X is identical with the closed ideal, that is, I(X) = CI(X). In [4], it is proved that if X is a *BCK*-algebra then the set I(X) of all ideals of X forms the pseudo-complemented distributive lattice. In this section we show the converse, that is, for every *BCI*-algebra X, if CI(X) is the pseudo-complemented distributive lattice then X is the *BCK*-algebra.

Proposition 4. $A \subseteq B \implies B^* \subseteq A^*$

Proof. [3]

We consider the following condition (BCK) which is proved to be equivalent to that X is a BCK-algebra ([4]):

(BCK) For every ideal A, if $x \in X$ and $a \in A$ then $a * (a * x) \in A$.

Proposition 5. Let X be any BCI-algebra. Then we have X : BCK-algebra \iff the condition (BCK) holds.

Lemma 1. Let X be a BCK-algebra and $A, B \in I(X)$. $A \cap B = \{0\} \iff A \subseteq B^*$.

Proof. See [4]

Lemma 2. If X is a BCK-algebra, then $A \subseteq A^{**}$ for every $A \in I(X)$.

Proof. Let $a \in A$. For any $x \in A^*$, since A^* is the ideal, it follows from (BCK) that $x * (x * a) \in A^*$. On the other hand, since $x * (x * a) \leq a \in A$, we have $x * (x * a) \in A \cap A^* = \{0\}$. This implies that x * (x * a) = 0 for every $x \in A^*$. Hence we have $A \subseteq A^{**}$.

Remark: In [1] the results above are proved for every commutative BCK-algebra. But we see that the commutativity is unnecessary.

Lemma 3. Let X be a BCI-algebra. Then $\{0\}^* = X \iff X : BCK - algebra.$

Proof. For any $x \in X = \{0\}^*$, we have 0 * (0 * x) = 0 by definition of annihilator. This means that 0 * x = 0, that is, X is the *BCK*-algebra.

The converse is trivial.

Theorem 1. Let X be a BCI-algebra. Then $\forall A \in CI(X) \ (A \subseteq A^{**}) \iff X : BCK - algebra$ Proof. Suppose that $A \subseteq A^{**}$ for every $A \in CI(X)$. Clearly X is a closed ideal of X, we have $X \subseteq X^{**}$ and hence $X = X^{**} = \{0\}^*$. It follows from lemma 3 that X is the *BCK*-algebra.

In [6], it is proved that the set I(X) of all ideals of *BCK*-algebra X is the distributive lattice, where

 $A \wedge B = A \cap B$

 $A \lor B = \{x \in X \mid \exists a \in A, \exists b \in B; (x * a) * b = 0\}.$

It is clear from the argument above that the set I(X) = CI(X) of all ideals of *BCK*-algebra X forms the pseudo-complemented distributive lattice (cf [4]). In the following we show that the converse holds, that is, if CI(X) is a pseudocomplemented distributive lattice then X is the *BCK*-algebra. We also give an example which indicates that the pseudo-complementedness of CI(X) is essential.

Theorem 2. Let X be a BCI-algebra. If $(CI(X); \land, \lor, \phi, X)$ is the pseudocomplemented distributive lattice, then X is the BCK-algebra.

Proof. We assume that CI(X) is the pseudo-complemented distributive lattice. For every closed ideal $A \in CI(X)$, we have

$$A \wedge (A \vee A^{**}) = (A^* \wedge A) \vee (A^* \wedge A^{**})$$

= {0} \ {0}
= {0}.

By pseudo-complementedeness, it follows that $A \vee A^{**} \subseteq A^{**}$ and hence $A \vee A^{**} = A^{**}$. This implies that $A \subseteq A^{**}$ for every $A \in CI(X)$. Thus X is the *BCK*-algebra.

By the example below we know that the pseudo-complementedness is essential, that is, X is not need the BCK-algebra even if CI(X) is distributive.

$\mathbf{E}\mathbf{x}$	an	ıple	Э
*		1	6

*	0	1	2	3
0	0	0	3	3
1	1	0	3	2
2	2	3	0	1
3	3	3	0	0
.				

It is easy to see that $CI(X) = \{\{0\}, \{0, 1\}, \{0, 3\}, X\}$ and hence that CI(X) is a distributive lattice. The algebra is not a *BCK*-algebra, because we have $\{0, 1\} \cap \{0, 3\} = \{0\}$ but $\{0, 3\}$ is not a subset of $\{0, 1\}^* = \{0\}$.

It is proved in [4] that the set $S(X) = (S(X); \land, \sqcup, *, \phi, X)$ of all involutory ideals of a *BCK*-algebra X forms a Boolean algebra, where $A \sqcup B$ is defined as $(A^* \cap B^*)^*$ for every $A, B \in S(X)$. If we consider the map $\xi : I(X) \to S(X)$ defined by $\xi(A) = A^*$, then we have $ker\xi$ is a congruence over I(X). From the general theory of universal algebras, we can conclude that

Theorem 3. $I(X)/ker\xi \cong S(X)$. Hence $I(X)/ker\xi$ is the Boollean algebra.

References

- M. Aslam and A. B. Thaheem, On certain ideals in BCK-algebras, Math. Japonica vol. 36 (1991), 895-906.
- [2] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica vol. 23 (1978), 1-26.
- [3] Y. B. Jun, E. H. Roh, and J. Meng, Annihilators in BCI-algebras, Math. Japonica vol. 43 (1996), 559-562.
- [4] M. Kondo, Annihilators in BCK-algebras, submitted.
- [5] M. Palasinski, On ideals and congruence lattices of BCK-algebras, Math. Seminar Notes vol. 9 (1981), 441-443.
- [6] S. M. Wei and Y. B. Jun, *Ideal lattices of BCI-algebras*, Math. Japonica vol. 44 (1996), 303-305.

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVARSITY, MATSUE 690-8504 JAPAN