IS A NET MEASURE AN OUTER MEASURE?

KAORU HATANO

(Received: December 25, 1997)

ABSTRACT. In this short note we prove that the net measure m_{α} is not an outer measure in case $0 < \alpha \leq n - 1$.

It is well known that a net measure is an outer measure in R^1 . But in general it is not known whether the measure is so or not ([1, p.9]). In this note we prove that in $R^n (n \ge 2)$ the measure m_{α} is not an outer measure in case $0 < \alpha \le n-1$. For the definition of the net measure and particularly m_{α} , see [1, p.5].

Example. Assume that $n \geq 2$ and $0 < \alpha \leq n-1$. Let F be the set $\{x = (x_1, x_2, \ldots, x_n); 0 \leq x_k \leq 1 \ (k = 1, 2, \ldots, n) \}$. Then $m_{\alpha}(F) = 1$ but

$$\inf_{O\supset F, O open} m_{\alpha}(O) \ge 2,$$

thus m_{α} is not an outer measure.

To prove this, at first it is easily seen that $m_{\alpha}(F) \leq 1$. (As in the following proof we can obtain $m_{\alpha}(F) = 1$.) Thus we shall prove that $\inf_{O \supset F, Oopen} m_{\alpha}(O) \geq 2$. Let O be an open set $\supset F$. Then there exists a positive number a such that $H_1 \cup H_2 \subset O$, where

$$H_1 = \{x; \ 0 \le x_k \le 1 \ (k = 1, 2, \dots, n-1), \ x_n = -a\},\$$

$$H_2 = \{x; \ 0 \le x_k \le 1 \ (k = 1, 2, \dots, n-1), \ x_n = 1+a\}.$$

Let $\{Q_{\nu}\}$ be a closed dyadic covering of O with side length δ_{ν} . Hence, it is sufficient to show that $\sum \delta_{\nu}{}^{\alpha} \geq 2$. Let

$$N_1 = \{\nu; \ Q_\nu \cap H_1 \neq \emptyset\}, \ N_2 = \{\nu; \ Q_\nu \cap H_2 \neq \emptyset\},\$$

then

$$H_1 \subset \bigcup_{\nu \in N_1} Q_{\nu}, \ H_2 \subset \bigcup_{\nu \in N_2} Q_{\nu} \ and \ N_1 \cap N_2 = \emptyset.$$

1991 Mathematics Subject Classification. 31B15.

Key words and phrases. net measure, outer measure.

Therefore we have

$$1 = |H_1| \le \sum_{\nu \in N_1} |H_1 \cap Q_\nu| \le \sum_{\nu \in N_1} \delta_\nu^{n-1},$$

where |E| means the (n - 1) dimensional Lebesgue measure on the hyperplane $\{x; x_n = -a\}$. Using the inequality $(a_1 + a_2 + ...)^{\kappa} \leq \sum a_j^{\kappa}$ for $a_j \geq 0$ in case $0 < \kappa \leq 1$, we obtain

$$\sum_{\nu \in N_1} \delta_{\nu}{}^{\alpha} \ge 1,$$

because $0 < \alpha \leq (n-1)$. Similarly,

$$\sum_{\nu \in N_2} \delta_{\nu}{}^{\alpha} \ge 1.$$

Since $N_1 \cap N_2 = \emptyset$, we obtain $\sum \delta_{\nu}{}^{\alpha} \ge 2$ and so $m_{\alpha}(O) \ge 2$. Hence the proof is complete.

Remark 1. In case $\alpha > n - 1$, it is easily seen that m_{α} is an outer measure, because any hyperplane perpendicular to an axis has zero m_{α} measure.

Remark 2. In the above, we used the net measure defined by coverings consisting of closed dyadic cubes(see, [1, p.5]). Even if we replace such coverings with that consisting of half open dyadic cubes, we can prove that the new net measure is also not an outer measure, in case $0 < \alpha \leq (n-1)$.

Remark 3. By a similar argument, we can prove that the net measure is not translation-invariant.

Remark 4. Let h(t) be an increasing continuous function defined on $[0, \infty)$ with h(0) = 0, h(t) > 0 for t > 0 and $\lim_{t \to 0} h(t)t^{1-n} > 0$. Set $g(t) = h(t^{\frac{1}{n-1}})$. Assume that g is subadditive, i.e., $g(t_1 + t_2) \leq g(t_1) + g(t_2)$, for all $t_1, t_2 \geq 0$. Then, by a similar method as above, for the same F we can obtain $m_h(F) \leq h(1)$ and $\inf_{O \supset F, Oopen} m_h(O) \geq 2h(1)$ and so m_h is not an outer measure.

References

 H. Aikawa and M. Essén Potential Theory-Selected Topics Lecture Notes in Math. vol.1633, Springer, 1996.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, SHIMANE UNIVERSITY, MAT-SUE 690-8504 JAPAN

E-mail address: hatanoka@edu.shimane-u.ac.jp