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ABSTRACT. Let £ = —3%", - 0i(a;;j0;) be a Holder continuous uniformly elliptic op-
erator on an NTA domain and let £y = L+ V be a generalized Schrédinger operator
for a nonnegative function V. Let G and Gy be the Green function for the Dirichlet
problem with respect to £ and Ly, respectively. In case V is a function of the distance
to the boundary, a necessary sufficient condition for G and Gy to have comparable
decay near the boundary is given. This is based on an integral identity of £-harmonic
functions and integral inequalities of £-superharmonic and £-subharmonic functions,
which may be of independent interest.

1. INTRODUCTION

Let £ = —>_, ;0i(a;;0;) be a smooth uniformly elliptic operator on a domain
D C R", n > 2, such that a;;(z) = a;;(z) is Hélder continuous on D and

ATER < AlE] < AP for all € € R™,

where A[¢] = 7, -a;;§:¢ and A > 1 is a constant independent of { € R™ and
x € D. We also consider the Schrédinger operator £y = £ + V' for a nonnegative
function V on D. Let G and Gy be the Green function for the Dirichlet problem
in D with respect to £ and Ly, respectively. This means that for any y € D,
G(-,y) and Gy (-,y) vanish on 0D and LG(-,y) = Ly Gy (-,y) = 0y, where J, is the
Dirac measure at y. Since £ and Ly are self adjoint, it follows that G and Gy are
symmetric.
We are interested in the relationship between G and Gy . It is easy to see that

Gv(x,y)SG(x,y) for ZE,yED.
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Let zg € D be fixed. We say that V is semibounded perturbation of Ly if
G(zo,y) < CGv(zo,y) foryeD

with C' > 1 independent of y € D (see [13, §3]). The main purpose of this paper is to
give a necessary and sufficient condition for V' of a certain form to be semibounded
perturbation in the case when D is an NTA domain (see [10]). By the symbol
C we denote an absolute positive constant whose value is unimportant and may
change from line to line. We shall say that two positive functions f; and fy are
comparable, written f; = fs, if and only if there exists a constant C' > 1 such that
C~'f1 < fo < Cf,. The main result of this paper is the following.

Theorem 1. Let D be an NTA domain. Let v(r) be a locally bounded nonnegative
function for 0 < r < rq = diam(D) such that v(r) ~ v(2r) and r?>v(r) is nonde-
creasing for small v > 0. Set V(x) = v(d(x)) with 6(x) = dist(z,0D). Then V is
semibounded perturbation of Ly if and only if

(1) /rv(r)dr < 00.
0
It is known that the Martin boundary of an NTA domain with respect to L is
the Euclidean boundary and every boundary point is minimal ([10, Theorem 5.9
and p.158]). Hence, in view of [14, Theorem 2], we have the following corollary
immediately.

Corollary 1. Let D be an NTA domain and let v and V be as above. If (1) holds,
then the Martin boundary of D with respect to Ly is the Fuclidean boundary of D
and every boundary point is minimal.

When £ = —A and D is smooth, Suzuki [14] showed the sufficiency part of
the above theorem and we gave an alternative proof as well as the necessity part
([4, Theorems 2 and 3] see also [3]). Both proofs use the smoothness of D and
do not apply to an NTA domain. Instead, we shall employ the following integral
identity of £-harmonic functions and integral inequalities of L-superharmonic and
L-subharmonic functions, which may be of independent interest. These are gen-
eralizations of our previous results [1] (see also [2] and [5, pp.171-182]), which is
based on the coarea formula.

Theorem 2. Let D be a regular domain. Let o(t) be a nonnegative function for
t > 0. Let xg € D and g(x) = G(xg,x). Suppose 0 < a < b < oco. Then the
following statements hold:

(i) If h is L-harmonic on D, then

/ W) o(g(x) AV g (2))dz = h(zo) / (1),
{z€D:a<g(z)<b} a
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(ii) If w is L-superharmonic on D, then

/ u(z)p(g(x))A[Vg(z)lde < u(wo) / p(t)dt.
{z€D:a<g(z)<b} a

(iii) If s is L-subharmonic on D, then

/ s(@)p(g(x) AV g(x)]dz > s(xo) / o(t)d.
{z€D:a<g(z)<b} a

We shall estimate |Vg(x)| to obtain some corollaries of Theorem 2, which will
be needed for the proof of Theorem 1. The upper estimate is easy. The lower
estimate is more difficult. If D is an NTA domain, then |Vg(x)| can be estimated
by g(z)/é(z) in a certain sense with the help of the boundary Harnack principle
([10, Theorem 5.1 and p.138]). For details see Section 2.

For the proof of Theorem 1 we also need the decay estimate of g(z) near the
boundary. We find 0 < f <1 < a < oo such that

(2) C16(2)* < g(x) < Cs(x)?  for x € D close to OD.

The above inequalities are rather easy. The first inequality actually holds for a John
domain (see e.g. [9, p.185 and (2.6)]) and the second does for a domain satisfying
the capacity density condition (see e.g. [7]). In general, § < 1 < a. Only in the
case when D is smooth, we have « = 3 = 1, which was essential in [4, Theorems 2
and 3]. Surprisingly, the weak estimate (2) is sufficient for the proof of Theorem 1.
Recently, Ancona [8] studied Green functions for elliptic operators on manifolds
or domains. By using a completely different method, he proved a better result
than the sufficiency part of Theorem 1. He proved that under the condition (1), V'
becomes bounded purtabation of Ly, i.e., G(z,y) =~ Gy (z,y) for all x,y € D.

2. PROOF OF THEOREM 2 AND COROLLARIESI

Proof of Theorem 2. The proof is essentially the same as in [1]. We shall prove only
(i), since the remaining can be proved in the same fashion. Let h be £-harmonic on
D. Let Dy ={x € D : g(x) >t} for t > 0. Observe that D, is a relatively compact
subset of D. We see that the Green function G* for D; with respect to £ satisfies
that G*(zo,z) = g(x) — t. By the Sard theorem (see e.g. [11, Corollary on p.35]),
0D; is a smooth surface for a.e. t > 0. For such ¢ we see that the outward normal
n of 0Dy is given by —Vg/|Vg|. On the other hand the Poisson integral formula
for D; with respect to £ shows that

(o) = — hz)(Vg(x), A(z)n(x))do(x),
0D,
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where A(z)n(z) = (3_; ain;) is the conormal vector (see [12, (10.4) on p.21]).
Hence

[ AN
o) = [, M) Tt

By the coarea formula (see e.g. [11, pp.37-39])

AlVg(z)]
h(zo) / / i [ hwelo(@) (g e

hx)p(g(x)) AlVy(z)]de.

/{wGD:a<g(m)<b}
Thus the required identity holds.

Let us estimate Vg(x) and give some corollaries of Theorem 2, which will be
needed for the proof of Theorem 1. Since g(z) is positive and L-harmonic near 9D,

it follows that |Vg(x)| < Cg(z)/d(x). Since A = (a;;) is uniformly elliptic, we have
the following corollary from the above proof.

Corollary 2. Let 0 < a < b < 0o. Suppose that s is a positive L-subharmonic
function on {x € D : g(z) > a}. Then

b 9(x)
mmlwwﬁsqkwmwmwmw@m%@ﬂa

where C' is independent of s, a and b.

The inequality |Vg(z)| > Cg(x)/d(x) does not hold in a pointwise sense. How-
ever, it holds in a certain weak sense for an NTA domain. In [1] this was observed
for £L = —A. The key ingredient was the boundary Harnack principle. For a gen-
eral uniformly elliptic operator £ the boundary Harnack principle is available also
(see [10, Theorem 5.1 and p.138]) and hence the same proof as in [1] works for the
present case. We have the following corollary.

Corollary 3. Let D be an NTA domain. Let o(t) =~ @(2t) for t > 0 and let
0 <a<b< oo. Suppose that u is a positive L-superharmonic function on D.
Then

b
/{xeD:a<g(m)<b} U(x>80(9(~'17))5(x)2dw < C’u(:z:o)/a o(t)dt,

where C' is independent of u, a and b.
Remark. Note that the simplified proofs in [2] and [5, pp.171-182] use the analytic-
ity of harmonic functions ([2, Lemma 1] and [5, Lemma 9.6.2 on p.180]). In general,

L-harmonic functions need not be analytic. Instead of the analyticity, we can use
the unique continuation property of those functions for the present situation.
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3. PROOF OF THEOREM 1

Proof of Theorem 1. Sufficiency: Let us recall the resolvent equation
(3) G(ZB, y) = GV(‘,L y) +/ GV(‘,L Z)V(Z)G(Z, y)dZ for T,y € D.
D

In view of [14, §4] and [13, Theorem 1.5], it is sufficient to show that for any € > 0
there is a compact subset K of D such that

(4) léwﬂ@W@ﬂ%wﬁéw@)fmyea

where we recall g(y) = G(xo,y).

Suppose (1) holds. Let o(t) = t2/*~1y(t1/®), in other words, v(r) = r*~2p(r®)
with a > 1 in (2). By assumption t¢(t) is nondecreasing. Let b > 0 be sufficiently
small such that

V(z) = v(8(2)) = 8(2)*(8(2)") < Cy(2)p(g(2))d(2) 2 for g(2) <,

where (2) and the monotonicity of tp(t) are used. Hence, Corollary 3 with u =
G(-,y) yields

/{ZED:g(sz} 9(2)V(2)G(z,y)dz < C/ Gz )elo() 5 sz

{z€D:g(z)<b}
b

< Cg(y)/ p(t)dt.
0

By an elementary calculation

b bt/
/ p(t)dt = a/ ro(r)dr < oo.
0 0
Hence (4) holds with K = {z € D : g(z) > b} for sufficiently small b > 0.

Necessity: Suppose V' is semibounded perturbation of Ly,. Then by the resolvent
equation (3)

(5) tLM@W@a%wwécﬂw-hyED

Let ¢(t) = t2/8=y(t*/8), in other words, v(r) = r?=2(r?) with 0 < 8 < 1 in (2).
By assumption ¢t (t) is nondecreasing. We choose b > 0 sufficiently small such that

V(2) = v(8(2)) = 6(2)""21(8(2)") = Cg(2)9(g(2))d(2) 7> for g(2) <b,
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where (2) and the monotonicity of ti(t) are used. Let 0 < a < b and take y € D
close to the boundary such that g(y) < a. Then G(-,y) is L-harmonic on {z € D :
g(z) > a}. Hence, Corollary 2 with G(-,y) and () in place of s and ¢(t) yields

/{zED:a<g(z)<b} {z€D:a<g(z)<b} (5(2:)2

92V (2)G(zy)dz 2 O Gz (o) I

b
> Cyly) [ »@)dt.

a

In view of (5) we have

B(t)dt < C,

a

where C' is independent of a and hence

pl/B

00 > /Obw(t)dt = ﬂ/o ro(r)dr.

Thus (1) holds. The proof is complete.
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