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Let L = − � i,j ∂i(aij∂j) be a Hölder continuous uniformly elliptic op-

erator on an NTA domain and let LV = L+V be a generalized Schrödinger operator
for a nonnegative function V . Let G and GV be the Green function for the Dirichlet

problem with respect to L and LV , respectively. In case V is a function of the distance

to the boundary, a necessary sufficient condition for G and GV to have comparable
decay near the boundary is given. This is based on an integral identity of L-harmonic

functions and integral inequalities of L-superharmonic and L-subharmonic functions,

which may be of independent interest.

1. Introduction

Let L = −
∑

i,j ∂i(aij∂j) be a smooth uniformly elliptic operator on a domain

D ⊂ R
n, n ≥ 2, such that aij(x) = aji(x) is Hölder continuous on D and

Λ−1|ξ|2 ≤ A[ξ] ≤ Λ|ξ|2 for all ξ ∈ R
n,

where A[ξ] =
∑

i,j aijξiξj and Λ > 1 is a constant independent of ξ ∈ R
n and

x ∈ D. We also consider the Schrödinger operator LV = L + V for a nonnegative
function V on D. Let G and GV be the Green function for the Dirichlet problem
in D with respect to L and LV , respectively. This means that for any y ∈ D,
G(·, y) and GV (·, y) vanish on ∂D and LG(·, y) = LV GV (·, y) = δy, where δy is the
Dirac measure at y. Since L and LV are self adjoint, it follows that G and GV are
symmetric.

We are interested in the relationship between G and GV . It is easy to see that

GV (x, y) ≤ G(x, y) for x, y ∈ D.
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Let x0 ∈ D be fixed. We say that V is semibounded perturbation of LV if

G(x0, y) ≤ CGV (x0, y) for y ∈ D

with C > 1 independent of y ∈ D (see [13, §3]). The main purpose of this paper is to
give a necessary and sufficient condition for V of a certain form to be semibounded
perturbation in the case when D is an NTA domain (see [10]). By the symbol
C we denote an absolute positive constant whose value is unimportant and may
change from line to line. We shall say that two positive functions f1 and f2 are
comparable, written f1 ≈ f2, if and only if there exists a constant C ≥ 1 such that
C−1f1 ≤ f2 ≤ Cf1. The main result of this paper is the following.

Theorem 1. Let D be an NTA domain. Let v(r) be a locally bounded nonnegative
function for 0 < r ≤ r0 = diam(D) such that v(r) ≈ v(2r) and r2v(r) is nonde-
creasing for small r > 0. Set V (x) = v(δ(x)) with δ(x) = dist(x, ∂D). Then V is
semibounded perturbation of LV if and only if

(1)

∫
0

rv(r)dr <∞.

It is known that the Martin boundary of an NTA domain with respect to L is
the Euclidean boundary and every boundary point is minimal ([10, Theorem 5.9
and p.158]). Hence, in view of [14, Theorem 2], we have the following corollary
immediately.

Corollary 1. Let D be an NTA domain and let v and V be as above. If (1) holds,
then the Martin boundary of D with respect to LV is the Euclidean boundary of D
and every boundary point is minimal.

When L = −∆ and D is smooth, Suzuki [14] showed the sufficiency part of
the above theorem and we gave an alternative proof as well as the necessity part
([4, Theorems 2 and 3] see also [3]). Both proofs use the smoothness of D and
do not apply to an NTA domain. Instead, we shall employ the following integral
identity of L-harmonic functions and integral inequalities of L-superharmonic and
L-subharmonic functions, which may be of independent interest. These are gen-
eralizations of our previous results [1] (see also [2] and [5, pp.171–182]), which is
based on the coarea formula.

Theorem 2. Let D be a regular domain. Let ϕ(t) be a nonnegative function for
t > 0. Let x0 ∈ D and g(x) = G(x0, x). Suppose 0 ≤ a < b ≤ ∞. Then the
following statements hold:

(i) If h is L-harmonic on D, then

∫
{x∈D:a<g(x)<b}

h(x)ϕ(g(x))A[∇g(x)]dx= h(x0)

∫ b

a

ϕ(t)dt.
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(ii) If u is L-superharmonic on D, then

∫
{x∈D:a<g(x)<b}

u(x)ϕ(g(x))A[∇g(x)]dx≤ u(x0)

∫ b

a

ϕ(t)dt.

(iii) If s is L-subharmonic on D, then

∫
{x∈D:a<g(x)<b}

s(x)ϕ(g(x))A[∇g(x)]dx≥ s(x0)

∫ b

a

ϕ(t)dt.

We shall estimate |∇g(x)| to obtain some corollaries of Theorem 2, which will
be needed for the proof of Theorem 1. The upper estimate is easy. The lower
estimate is more difficult. If D is an NTA domain, then |∇g(x)| can be estimated
by g(x)/δ(x) in a certain sense with the help of the boundary Harnack principle
([10, Theorem 5.1 and p.138]). For details see Section 2.

For the proof of Theorem 1 we also need the decay estimate of g(x) near the
boundary. We find 0 < β ≤ 1 ≤ α <∞ such that

(2) C−1δ(x)α ≤ g(x) ≤ Cδ(x)β for x ∈ D close to ∂D.

The above inequalities are rather easy. The first inequality actually holds for a John
domain (see e.g. [9, p.185 and (2.6)]) and the second does for a domain satisfying
the capacity density condition (see e.g. [7]). In general, β < 1 < α. Only in the
case when D is smooth, we have α = β = 1, which was essential in [4, Theorems 2
and 3]. Surprisingly, the weak estimate (2) is sufficient for the proof of Theorem 1.

Recently, Ancona [8] studied Green functions for elliptic operators on manifolds
or domains. By using a completely different method, he proved a better result
than the sufficiency part of Theorem 1. He proved that under the condition (1), V
becomes bounded purtabation of LV , i.e., G(x, y) ≈ GV (x, y) for all x, y ∈ D.

2. Proof of Theorem 2 and corollariesi

Proof of Theorem 2. The proof is essentially the same as in [1]. We shall prove only
(i), since the remaining can be proved in the same fashion. Let h be L-harmonic on
D. Let Dt = {x ∈ D : g(x) > t} for t > 0. Observe that Dt is a relatively compact
subset of D. We see that the Green function Gt for Dt with respect to L satisfies
that Gt(x0, x) = g(x) − t. By the Sard theorem (see e.g. [11, Corollary on p.35]),
∂Dt is a smooth surface for a.e. t > 0. For such t we see that the outward normal
n of ∂Dt is given by −∇g/|∇g|. On the other hand the Poisson integral formula
for Dt with respect to L shows that

h(x0) = −

∫
∂Dt

h(x)(∇g(x), A(x)n(x))dσ(x),
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where A(x)n(x) = (
∑

j aijnj) is the conormal vector (see [12, (10.4) on p.21]).
Hence

h(x0) =

∫
∂Dt

h(x)
A[∇g(x)]

|∇g(x)|
dσ(x).

By the coarea formula (see e.g. [11, pp.37–39])

h(x0)

∫ b

a

ϕ(t)dt =

∫ b

a

dt

∫
∂Dt

h(x)ϕ(g(x))
A[∇g(x)]

|∇g(x)|
dσ(x)

=

∫
{x∈D:a<g(x)<b}

h(x)ϕ(g(x))A[∇g(x)]dx.

Thus the required identity holds.

Let us estimate ∇g(x) and give some corollaries of Theorem 2, which will be
needed for the proof of Theorem 1. Since g(x) is positive and L-harmonic near ∂D,
it follows that |∇g(x)| ≤ Cg(x)/δ(x). Since A = (aij) is uniformly elliptic, we have
the following corollary from the above proof.

Corollary 2. Let 0 ≤ a < b ≤ ∞. Suppose that s is a positive L-subharmonic
function on {x ∈ D : g(x) > a}. Then

s(x0)

∫ b

a

ϕ(t)dt ≤ C

∫
{x∈D:a<g(x)<b}

s(x)ϕ(g(x))
g(x)2

δ(x)2
dx,

where C is independent of s, a and b.

The inequality |∇g(x)| ≥ Cg(x)/δ(x) does not hold in a pointwise sense. How-
ever, it holds in a certain weak sense for an NTA domain. In [1] this was observed
for L = −∆. The key ingredient was the boundary Harnack principle. For a gen-
eral uniformly elliptic operator L the boundary Harnack principle is available also
(see [10, Theorem 5.1 and p.138]) and hence the same proof as in [1] works for the
present case. We have the following corollary.

Corollary 3. Let D be an NTA domain. Let ϕ(t) ≈ ϕ(2t) for t > 0 and let
0 ≤ a < b < ∞. Suppose that u is a positive L-superharmonic function on D.
Then ∫

{x∈D:a<g(x)<b}

u(x)ϕ(g(x))
g(x)2

δ(x)2
dx ≤ Cu(x0)

∫ b

a

ϕ(t)dt,

where C is independent of u, a and b.

Remark. Note that the simplified proofs in [2] and [5, pp.171–182] use the analytic-
ity of harmonic functions ([2, Lemma 1] and [5, Lemma 9.6.2 on p.180]). In general,
L-harmonic functions need not be analytic. Instead of the analyticity, we can use
the unique continuation property of those functions for the present situation.
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3. Proof of Theorem 1

Proof of Theorem 1. Sufficiency: Let us recall the resolvent equation

(3) G(x, y) = GV (x, y) +

∫
D

GV (x, z)V (z)G(z, y)dz for x, y ∈ D.

In view of [14, §4] and [13, Theorem 1.5], it is sufficient to show that for any ε > 0
there is a compact subset K of D such that

(4)

∫
D\K

g(z)V (z)G(z, y)dz ≤ εg(y) for y ∈ D,

where we recall g(y) = G(x0, y).
Suppose (1) holds. Let ϕ(t) = t2/α−1v(t1/α), in other words, v(r) = rα−2ϕ(rα)

with α > 1 in (2). By assumption tϕ(t) is nondecreasing. Let b > 0 be sufficiently
small such that

V (z) = v(δ(z)) = δ(z)α−2ϕ(δ(z)α) ≤ Cg(z)ϕ(g(z))δ(z)−2 for g(z) < b,

where (2) and the monotonicity of tϕ(t) are used. Hence, Corollary 3 with u =
G(·, y) yields

∫
{z∈D:g(z)<b}

g(z)V (z)G(z, y)dz ≤ C

∫
{z∈D:g(z)<b}

G(z, y)ϕ(g(z))
g(z)2

δ(z)2
dz

≤ Cg(y)

∫ b

0

ϕ(t)dt.

By an elementary calculation

∫ b

0

ϕ(t)dt = α

∫ b1/α

0

rv(r)dr <∞.

Hence (4) holds with K = {z ∈ D : g(z) ≥ b} for sufficiently small b > 0.
Necessity: Suppose V is semibounded perturbation of LV . Then by the resolvent

equation (3)

(5)

∫
D

g(z)V (z)G(z, y)dz ≤ Cg(y) for y ∈ D.

Let ψ(t) = t2/β−1v(t1/β), in other words, v(r) = rβ−2ψ(rβ) with 0 < β < 1 in (2).
By assumption tψ(t) is nondecreasing. We choose b > 0 sufficiently small such that

V (z) = v(δ(z)) = δ(z)β−2ψ(δ(z)β) ≥ Cg(z)ψ(g(z))δ(z)−2 for g(z) < b,
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where (2) and the monotonicity of tψ(t) are used. Let 0 < a < b and take y ∈ D
close to the boundary such that g(y) < a. Then G(·, y) is L-harmonic on {z ∈ D :
g(z) > a}. Hence, Corollary 2 with G(·, y) and ψ(t) in place of s and ϕ(t) yields

∫
{z∈D:a<g(z)<b}

g(z)V (z)G(z, y)dz ≥ C

∫
{z∈D:a<g(z)<b}

G(z, y)ψ(g(z))
g(z)2

δ(z)2
dz

≥ Cg(y)

∫ b

a

ψ(t)dt.

In view of (5) we have ∫ b

a

ψ(t)dt ≤ C,

where C is independent of a and hence

∞ >

∫ b

0

ψ(t)dt = β

∫ b1/β

0

rv(r)dr.

Thus (1) holds. The proof is complete.
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