FUNCTIONAL FREENESS FOR THE BERMAN CLASS $K_{m,n}$ OF OCKHAM ALGEBRAS

Michiro Kondo

(Received December 25, 1996)

ABSTRACT. In this paper we show that an algebra $\Omega(m, n)$ is functionally free for the Berman class $K_{m,n}$ of Ockham algebras, that is, for any two polynomials f and g, they are identically equal in $K_{m,n}$ if and only if f = gholds in $\Omega(m, n)$. This result can be applied to the well-known algebras, e.g., Boolean, de Morgan, Kleene, Stone, Bunge algebras, and so on.

1. INTRODUCTION

It is well known that, in order to show whether two polynomials f and g are identically equal in the class of Boolean algebras, we only calculate the values of polynomials in the typical Boolean algebra $2 = \{0, 1\}$. If their values are always identical then they are equal as polynomials otherwise not. The property is called a functional freeness of Boolean algebras. There are results about the properties of other algebras, e.g., de Morgan, Kleene algebras ([1],[2]). The classes of these algebras are subvarieties of the Berman class $K_{m,n}$ of Ockham algebras. In this paper we think about the functional freeness of the algebras in the Berman class $K_{m,n}$ and show that the algebra $\Omega(m, n)$ defined below is functional free for the Berman class $K_{m,n}$. From the result we can deduce the properties of the other algebras (e.g., Boolean, de Morgan, Kleene, Stone, Bunge algebras) without difficulty.

2. Algebras in $K_{m,n}$

We shall define algebras in the Berman class $K_{m,n}$ of Ockham algebras. Let m and n be intergers such that $m \ge 1$ and $n \ge 0$. An algebraic structure $L = (L; \land, \lor, N, 0, 1)$ of type (2, 2, 1, 0, 0) is called an Ockham algebra when

(1) $(L; \land, \lor, N, 0, 1)$ is a bounded distributive lattice;

(2) $N: L \to L$ is a map satisfying the following conditions

¹⁹⁹¹ Mathematics Subject Classification. 06D30.

Key words and phrases. Ockham algebras, Berman class, functional freeness.

(c1)
$$N0 = 1, N1 = 0$$

(c2) $N(x \wedge y) = Nx \vee Ny, \ N(x \vee y) = Nx \wedge Ny$

An algebra in the Berman class ${\cal K}_{m,n}$ is the Ockham algebra satisfying the condition

(c3) $N^{2m+n}x = N^n x$,

where $N^n x$ is defined recursively as $N^0 x = x, N^{n+1} x = N(N^n x)$.

We have many examples of the algebras in the Berman class. We list some familiar algebras which form the subvarieties of the Berman class $K_{m,n}$.

(a) $K_{1,0}$: It is the class of de Morgan algebras.

(b) $K_{1,0}$ with the condition $x \wedge Nx = 0$: This is the class of Boolean algebras.

(c) $K_{1,0}$ with the condition $x \wedge Nx \leq y \vee Ny$: The class of Kleene algebras [2].

(d) $K_{1,1}$ with the condition $x \wedge Nx = 0$: The class of Stone algebras [3].

(e) $K_{1,1}$ with the condition $x \vee Nx = 1$: The class of Bunge algebras [9].

Now we define an algebraic structure $\Omega(m, n)$ which is in the Berman class $K_{m,n}$. The algebra plays an important role to prove the functional freeness for the class of algebras.

For brevity we put k = 2m + n. Let $\Omega(m, n) = \{(x_1, x_2, ..., x_k) | x_i \in \{0, 1\}\}$. We denote an element of $\Omega(m, n)$ by x and the *i*-th factor by $(x)_i = x_i$. For $x, y \in \Omega(m, n)$, we define x = y if every factor of the elements is identical, that is, $(x)_i = (y)_i$ hence $x_i = y_i$ for every $i \ (1 \le i \le k)$. We introduce the operations \land, \lor , and N in the set $\Omega(m, n)$. If no confusion arises then we denote $\Omega(m, n)$ simply by Ω .

For every $x = (x_i)_i, y = (y_i)_i \in \Omega$, we define

$$(x \wedge y)_i = \begin{cases} \min\{x_i, y_i\} = x_i \cdot y_i & \text{if } i \text{ is odd} \\ \max\{x_i, y_i\} = x_i + y_i - x_i \cdot y_i & \text{if } i \text{ is even} \end{cases}$$

$$(x \lor y)_i = \begin{cases} \max\{x_i, y_i\} = x_i + y_i - x_i \cdot y_i & \text{if } i \text{ is odd} \\ \min\{x_i, y_i\} = x_i \cdot y_i & \text{if } i \text{ is even} \end{cases}$$

 $Nx = (x_2, x_3, ..., x_k, x_{n+1})$, that is,

$$(Nx)_i = \begin{cases} x_{i+1} & \text{if } i \neq k \\ x_{n+1} & \text{if } i = k \end{cases}$$

We set the special elements 0 = (0, 1, 0, 1, ...) and 1 = (1, 0, 1, 0, ...). Clearly the structure $\Omega = (\Omega; \land, \lor, N, 0, 1)$ is a bounded lattice.

Lemma 1. $x \land (y \lor z) = (x \land y) \lor (x \land z)$ $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $N(x \land y) = Nx \lor Ny$ $N(x \lor y) = Nx \land Ny$ Proof. We show only the first case. The other cases can be proved similarly. If i is odd, then the left-hand side is

 $(x \land (y \lor z))_i$ = min{ x_i , max{ y_i, z_i }} = $x_i \cdot (y_i + z_i - y_i \cdot z_i)$ = $x_i \cdot y_i + x_i \cdot z_i - x_i \cdot y_i \cdot z_i$. On the right-hand side is $((x \land y) \lor (x \land z))_i$

$$= \max\{\min\{x_{i}, y_{i}\}, \min\{x_{i}, z_{i}\}\}\$$

=
$$\max\{x_{i} \cdot y_{i}, x_{i} \cdot z_{i}\}\$$

=
$$x_{i} \cdot y_{i} + x_{i} \cdot z_{i} - (x_{i})^{2} \cdot y_{i} \cdot z_{i}, \text{ since } (x_{i})^{2} = x_{i},\$$

=
$$x_{i} \cdot y_{i} + x_{i} \cdot z_{i} - x_{i} \cdot y_{i} \cdot z_{i}.$$

We can also show the equality in case of *i* being even. Therefore we have $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$.

The above indicates that the structure $\Omega = (\Omega; \wedge, \lor, N, 0, 1)$ is the Ockham algebra.

It is neccessary to show that the structure Ω is in the Berman class $K_{m,n}$. Before doing so, we think about the *i*-th factor of $N^p x$ for every integer $p \geq 1$. To see each factor of the element $N^p x$, when x is denoted by $(x_1, x_2, ..., x_k)$, we consider an infinite sequence of factors of x:

$$x_1, x_2, \dots, x_k, x_{k+1}(=x_{n+1}), x_{k+2}(=x_{n+2}), \dots, x_{k+2m}(=x_k), x_{k+2m+1}(=x_{n+1}), x_{k+2m+2}(=x_{n+2}), \dots, x_{k+2m+2m}(=x_k), x_{k+2m+2m+1}(=x_{n+1}), \dots$$

It follows that $(N^p x)_i = x_{i+p}$ for every *i*. In general the *j*-th term of the sequence is obtained as follows. When *j* is denoted as $2m \cdot \alpha + \beta$ ($0 \le \alpha, 0 \le \beta < 2m$), the *j*-th term x_j is x_β . Using the fact, we can show the next lemma.

Lemma 2. For every $x \in \Omega$ and $i \leq k$, we have $N^k x = N^n x$

Proof. It is sufficient to show that $(N^k x)_i = (N^n x)_i$ for every $i \leq k$. By the argument above, we have that $(N^k x)_i = x_{i+k}$ and $(N^n x)_i = x_{i+n}$. If we denote $i + n = 2m \cdot a + b$ $(0 \leq a, 0 \leq b < 2m)$, since $i + k = 2m \cdot (a + 1) + b$, then we have $(N^k x)_i = x_{i+k} = x_b = x_{i+n} = (N^n x)_i$. This means that $(N^k x)_i = (N^n x)_i$ and hence that $N^k x = N^n x$.

Consequently we can conclude that the structure $\Omega = (\Omega; \wedge, \vee, N, 0, 1)$ is in the Berman class $K_{m,n}$.

3. Functional freeness

In this section we show that the algebra Ω is functionally free for the Berman class $K_{m,n}$ of Ockham algebras. In general, an algebra A is said to be functionally free for a non-empty class C of algebras provided that the following condition is satisfied: any two polynomials are identically equal in A iff they are identically equal in each algebra in C. For example, (1) two-element Boolean algebra $2 = \{0, 1\}$ is functionally free for the class B of all Boolean algebras, (2) three-element Kleene algebra $3 = \{0, a, 1\}$ is so for the class K of all Kleene algebras, and (3) four-element de Morgan algebra $M = \{0, a, b, 1\}$ is so for the class M of all de Morgan algebras.

We define polynomials before proving the functional freeness of Ω .

Let $V = \{p_1, p_2, ...\}$ be the set of variables. We define polynomials as follows.

1. Every variable $p_n \in V$ is a polynomial;

2. If f and g are polynomials, then so are $f \wedge g, f \vee g$, and Nf.

Let L be an arbitrary algebra. The map $v: V \to L$ is called a valuation on L. The valuation v is extended uniquely to v^* of all the polynomials as follows; For any polynomials f and g,

(v1)
$$v^*(p_n) = v(p_n)$$
 for every $p_n \in V$

(v2) $v^*(f \wedge g) = v^*(f) \wedge v^*(g)$

(v3) $v^*(f \lor g) = v^*(f) \lor v^*(g)$

(v4) $v^*(Nf) = N(v^*(f))$

Hence the value $v^*(f)$ of the polynomial f is determined by the values of p_n which are components of f. We note that the symbols \land , \lor , and N of the righthand side of the equations are in L. If no confusion arises we denote v^* by v simply.

We say that f and g are identically equal in L (or simply f = g in L) if $v^*(f) = v^*(g)$ for every valuation v on L. We also say that f and g are identically equal in the class C of algebras (or simply f = g in C) when f = g holds in every algebra L in C. In the following, we shall show that f = g in $K_{m,n}$ iff f = g in Ω . Therefore, to investigate whether f = g holds or not in the class $K_{m,n}$ of Ockham algebras, it is sufficient only to calculate the values $v^*(f)$ and $v^*(g)$ for all valuations v on Ω .

Proposition 1. Let D be any bounded distributive lattice and $a, b \in D$. If $a \neq b$, then there is a prime filter P of D such that $a \in P$ but $b \notin P$.

Proof. This is a well-known fact about distributive lattices. Hence we omit the proof. See [5].

In general if there is a partition of a set then we can introduce an equivalence relation on it. Let P be a prime filter of $L \in K_{m,n}$. The set L can be divided into 2^k subsets by P as follows:

$$\begin{split} L_{111...1} &= \{ x | x \in P, Nx \in P, N^2 x \in P, ..., N^{k-1} x \in P \} \\ L_{101...1} &= \{ x | x \in P, Nx \notin P, N^2 x \in P, ..., N^{k-1} x \in P \} \\ \dots \\ L_{000...0} &= \{ x | x \notin P, Nx \notin P, N^2 x \notin P, ..., N^{k-1} x \notin P \} \end{split}$$

Thus we can define an equivalence relation \sim_P on L as

 $\sim_P \ni (x, y) \iff \exists L_{s_1 s_2 \dots s_k} (x, y \in L_{s_1 s_2 \dots s_k})$, where $s_i \in \{0, 1\}$.

This means that

 $(x,y) \in \sim_P$ iff $\forall i (N^i x \in P \Leftrightarrow N^i y \in P).$

We say \sim_P an induced equivalence relation by P. For that relation we can show the next lemma.

Lemma 3. If P is a prime filter of L, then the induced relation \sim_P by P is a congruent relation on L.

Proof. We have to prove that for any $(x, y), (a, b) \in \sim_P$

- (1) $(x \wedge a, y \wedge b) \in \sim_P$;
- (2) $(x \lor a, y \lor b) \in \sim_P$;
- (3) $(Nx, Ny) \in \sim_P$.

From the fact $N^k x = N^n x$, it is clear that the condition (3) holds. We only show the case of (1).

We simply denote an element $x \in L$ as a sequence of 0 and 1 as follows: $x = x_1 x_2 x_3 \dots x_k$, where x_i is deined by

$$x_k = \begin{cases} 1 & \text{if } N^i x \in P \\ 0 & \text{if } N^i x \notin P \end{cases}$$

By definition of \sim_P , we have

 $(x,y) \in \sim_P$ iff $\forall i(x_i = y_i).$

Hence it is sufficient to show that $\forall i((x \land a)_i = (y \land b)_i)$ when $x_i = y_i$ and $a_i = b_i$ for all *i*.

Since P is the prime filter, we have that

 $(x \wedge y)_i = \min\{x_i, y_i\}$ if *i* is even

 $(x \wedge y)_i = \max\{x_i, y_i\}$ if *i* is odd.

Thus if i is even then it follows that

 $(x \wedge a)_i = \min\{x_i, a_i\} = \min\{y_i, b_i\} = (y \wedge b)_i.$ In case of *i* odd, we also obtain that

 $(x \wedge a)_i = \max\{x_i, a_i\} = \max\{y_i, b_i\} = (y \wedge b)_i.$

Therefore in either case we can conclude that $\forall i((x \land a)_i = (y \land b)_i)$, that is, $(x \land a, y \land b) \in \sim_P$.

The other case (2) can be proved similarly. This means that \sim_P is the congruence relation on L.

When P is the prime filter of L, we define $L/_{\sim_P} = \{[x] \mid x \in L\}$ and $[x] = \{y \in L \mid x \sim_P y\}$. Since the relation \sim_P is congruent on L, we can consistently define the oparations \land, \lor , and N on $L/_{\sim_P}$:

 $[x] \land [y] = [x \land y]$ $[x] \lor [y] = [x \land y]$ N[x] = [Nx]

It is easy to show the next theorem.

Theorem 1. (1) The structure $L/_{\sim_P} = (L/_{\sim_P}; \land, \lor, N, [0], [1])$ is in the Berman class.

(2) The map $\eta: L \to L/_{\sim_P}$ defined by $\eta(x) = [x]$ is a homomorphism.

Lemma 4. The map $\xi : L/_{\sim_P} \to \Omega$ is an embedding, where ξ is defined by $\xi([x]) = (s_1, s_2, ..., s_k)$ if $x \in L_{s_1s_2...s_k}$.

Proof. It is clear that ξ is well-defined and an injection. We only show that ξ is a homomorphism, that is,

 $\begin{aligned} \xi([x] \wedge [y]) &= \xi([x]) \wedge \xi([y]) \\ \xi([x] \vee [y]) &= \xi([x]) \vee \xi([y]) \\ \xi(N[x]) &= N(\xi([x])). \end{aligned}$ Since P is the prime filter, it follows that $x \wedge y \in P$ iff $x \in P$ and $y \in P$, $N(x \wedge y) \in P$ iff $Nx \in P$ or $Ny \in P$, Hence we have $\xi([x] \wedge [y]) &= \xi([x]) \wedge \xi([y]).$ The other cases are proved similarly.

Theorem 2. Ω is functionally free for the Berman class $K_{m,n}$ of Ockham algebras, that is, f = g in $K_{m,n}$ if and only if f = g in Ω .

Proof. It is clear that a equation f = g holds for polynomials f and g in $K_{m,n}$ then it holds in Ω . To prove the converse we suppose that f = g does not hold in $K_{m,n}$. It is sufficient to indicate the existence of some algebra in $K_{m,n}$ and a valuation τ on it such that $\tau(f) \neq \tau(g)$.

By definition there are algebra $L \in K_{m,n}$ and a valuation $v : V \to L$ such that $v^*(f) \neq v^*(g)$. By Proposition 1, there is a prime filter P of L such that $v^*(f) \in P$ but $v^*(g) \notin P$. We devide L into 2^k subsets by use of P and take the congruent relation \sim_P induced by P. That is, for every $x, y \in L$,

 $x \sim_P y \iff \exists L_{s_1 s_2 \dots s_k}$ such that $x, y \in L_{s_1 s_2 \dots s_k}$.

We define a valuation $\tau: V \to \Omega$ by $\tau = \xi \circ \eta \circ v$, that is, $\tau(p_n) = \xi([v(p_n)])$. It is clear from definition that for each polynomial h,

 $\tau^*(h) = \xi([v^*(h)]).$

Since $v^*(f) \in P$ but $v^*(g) \notin P$, we have $[v^*(f)] \neq [v^*(g)]$. Since ξ is injective, it follows that $\xi([v^*(f)]) \neq \xi([v^*(g)])$. This means that $\tau^*(f) \neq \tau^*(g)$.

Thus the theorem can be proved completely.

References

- A. Bialynicki-Birula, Remarks on quasi-Boolean algebras, Bull. Ac. Pol. Sc, 5 (1957), 615-619.
- A. Bialynicki-Birula and H. Rasiowa, On constructible falsity in the constructive logic with strong negation, Colloquium Mathematicum, 6 (1958), 287-310.
- 3. T.S. Blyth and J.C. Varlet, Ockham algebras, Oxford Sicence Publications, 1994.

- 4. M. Dunn, *Relevance logic and entailment*, in Handbook of Philos. Logic **3**, 117-224, D.Gabbay and F. Guenthner eds., D. Reidel, 1987.
- 5. G.Gratzer, Lattice theory : first concepts and distributive lattices, Freeman, San Francisco, 1971.
- M.Kondo, Completeness theorem of Kleene logic, Mem. Fac. Sci. Shimane univ., 29 (1995), 77-87.
- 7. M.Kondo, Characterization theorem of 4-valued DeMorgan logic, submitted.
- 8. J.Lukasiewicz, *On three-valued logic*, in Polish Logic, McCall, ed., Clarendon Press, Oxford, 1967.
- J. P. Marquis, Approximation and logic, Notre Dame J. of Formal Logic, 32 (1992), 184-196.
- H. Rasiowa, An Algebraic Approch to Non-Classical Logics, North-Holland, Amsterdam, 1974.

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY, MATSUE 690 JAPAN *E-mail address*: kondo@cis.shimane-u.ac.jp