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Abstract. The Munn representation of an inverse semigroup S, in which
the semigroup is represented by isomorphisms between principal ideals of the
semilattice E(S), is not always faithful. By introducing a concept of a pre-

semilattice, Reilly considered of enlarging the carrier set E(S) of the Munn
representation in order to obtain a faithful representation of S as an inverse
subsemigroup of a structure resembling the Munn semigroup TE(S).

The purpose of this paper is to obtain a generalization of the Reilly’s results
for generalized inverse ∗-semigroups.

1. Introduction

A semigroup S with a unary operation ∗ : S → S is called a regular ∗-
semigroup if it satisfies

(i) (x∗)∗ = x,
(ii) (xy)∗ = y∗x∗,
(iii) xx∗x = x.

Let S be a regular ∗-semigroup. An idempotent e in S is called a projection

if it satisfies e* = e. For any subset A of S, denote the sets of idempotents and
projections of A by E(A) and P (A), respectively.

Let S be a regular ∗-semigroup. It is called a locally inverse ∗-semigroup if, for
any e ∈ E(S), eSe is an inverse subsemigroup of S. If E(S) is a normal band,
then S is called a generalized inverse ∗-semigroup.

Let S and T be regular ∗-semigroups. A homomorphism φ : S → T is called a
∗-homomorphism if (aφ)∗ = a∗φ. A congruence σ on S is called a ∗-congruence if
(aσ)∗ = a∗σ. A ∗-congruence σ on S is said to be idempotent-separating if σ ⊆ H,
where H is one of the Green’s relations. Denote the maximum idempotent-
separating ∗-congruence on S by µS or simply by µ. If µS is the identity relation
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on S, S is called fundamental. The following results are well-known, and we use
them frequently throughout this paper.

Result 1.1. [2] Let S be a regular ∗-semigroup. Then we have the following:

(1) E(S) = P (S)2;

(2) for any a ∈ S and e ∈ P (S), a∗ea ∈ P (S);
(3) each L-class and each R-class have one and only one projection;

(4) µS = {(a, b) ∈ S × S : a∗ea = b∗eb and aea∗ = beb∗ for all e ∈ P (S)}.

For a mapping α : A→ B, denote the domain and the range of α by d(α) and
r(α), respectively. For a subset C of A, α|C means the restriction of α to C.

As a generalization of the Preston-Vagner representations, one of the authors
gave two types of representations of locally [generalized] inverse ∗-semigroups
in [4], [6] and [7]. In this paper, we follow [7]. A non-empty set X with a
reflexive and symmetric relation σ is called an ι-set, and denoted by (X; σ). If
σ is transitive, that is, if σ is an equivalence relation on X, (X; σ) is called a
transitive ι-set.

Let (X; σ) be an ι-set. A subset A of X is called an ι-single subset of (X; σ)
if it satisfies the following condition:

for any x ∈ X, there is at most one element y ∈ A such that (x, y) ∈ σ.

We consider the empty set to be an ι-single subset. We remark that if (X; σ) is
a transitive ι-set, a subset A of X is an ι-single subset if and only if, for x, y ∈ A,
(x, y) ∈ σ implies x = y. A mapping α in IX , the symmetric inverse semigroup
on X, is called a partial one-to-one ι-mapping on (X; σ) if d(α), r(α) are both
ι-single subsets of (X; σ), where d(α) and r(α) are the domain and the range of
α, respectively. Denote the set of all partial one-to-one ι-mappings of (X; σ) by
LI(X;σ).

For any ι-single subsets A and B of (X; σ), define θA,B by

θA,B = {(a, b) ∈ A× B : (a, b) ∈ σ} = (A× B) ∩ σ.

Since a subset of an ι-single subset is also an ι-single subset, θA,B ∈ LI(X;σ).
For any α, β ∈ LI(X;σ), define θα,β by θα,β = θr(α),d(β), and let M = {θα,β :
α, β ∈ LI(X;σ)}, an indexed set of one-to-one partial functions. Now, define a
multiplication ◦ and a unary operation ∗ on LI(X;σ) as follows:

α ◦ β = αθα,ββ and α∗ = α−1,

where the multiplication of the right side of the first equality is that of IX .
Denote (LI(X;σ), ◦, ∗) by LI(X;σ)(M) or simply by LI(X;σ). In this paper, we use
LI(X;σ) rather than LI(X;σ)(M).
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Result 1.2. [7] For any ι-set (X; σ), LI(X;σ), defined above, is a locally inverse

∗-semigroup. If (X; σ) is a transitive ι-set, then LI(X;σ) is a generalized inverse

∗-semigroup. In this case, we denote it by GI(X;σ) instead of LI(X;σ).

Moreover, if σ is the identity relation on X, then LI(X;σ) is the symmetric

inverse semigroup IX on X.

We call LI(X;σ) [GI(X;σ)] the ι-symmetric locally [generalized] inverse ∗-semi-

group on the ι-set [the transitive ι-set] (X; σ) with the structure sandwich set

M.
Let S be a regular ∗-semigroup, and define a relation Ω on S as follows:

(x, y) ∈ Ω ⇐⇒ there exists e ∈ E(S) such that xρe = y,

where ρa(a ∈ S) is the mapping of Sa∗ onto Sa defined by xρa = xa.

Result 1.3. [7] Let S be a locally inverse ∗-semigroup. For each a ∈ S, let

ρa : x 7→ xa (x ∈ d(ρa) = Sa∗).

Then a mapping ρ : a 7→ ρa is a ∗-monomorphism of S into LI(S;Ω)(M).

For a partial groupoid X, if there exist a semilattice Y , a partition π : X ∼
∑

{Xe : e ∈ Y } of X and mappings ϕe,f : Xe → Xf (e ≥ f in Y ) such that

(1) for any e ∈ Y , ϕe,e = 1Xe
,

(2) if e ≥ f ≥ g, then ϕe,fϕf,g = ϕe,g,
(3) for x ∈ Xe, y ∈ Xf , xy is defined in X if and only if xϕe,ef = yϕf,ef , and

in this case xy = xϕe,ef ,

then X is called a strong π-groupoid with mappings {ϕe,f : e, f ∈ Y, e ≥ f}, and
it is denoted by X(π;Y ; {ϕe,f}) or simply by X(π).

Let X(π;Y ; {ϕe,f}) be a strong π-groupoid. A subset A of X is called a π-
singleton subset of X(π;Y ; {ϕe,f}), if there exists e ∈ Y such that

|A ∩Xf | =

{

1 if f ∈ 〈e〉,
0 otherwise,

(A ∩Xf)ϕf,g = A ∩Xg for any f, g ∈ 〈e〉 such that f ≥ g,

where 〈e〉 is the principal ideal of Y generated by e. In this case, we sometimes
denote the π-singleton subset A by A(e). If A(e) is a π-singleton subset, then
|A ∩ Xf | = 1 for any f ∈ 〈e〉. We denote the only one element of A ∩ Xf by
af . We remark that, for any π-singleton subset A(e), A(e) = {aeϕe,f : f ∈ 〈e〉}.
Denote the set of all π-singleton subsets of X(π;Y ; {ϕe,f}) by X .

Two π-singleton subsets A(e) and B(f) are said to be π-isomorphic to each
other, if there exists an isomorphism α : 〈e〉 → 〈f〉 as semilattices. In this case,
the mapping α : A(e) → B(f) defined by agα = bg α (g ∈ 〈e〉) is called a π-
isomorphism of A(e) to B(f). It is obvious that α is a bijection of A(e) onto
B(f), and hence α ∈ IX .
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Let X(π;Y ; {ϕe,f}) be a strong π-groupoid. Define an equivalence relation U
on X by

U = {(A(e), B(f)) ∈ X × X : 〈e〉 ∼= 〈f〉 (as semilattices)}.

For (A(e), B(f)) ∈ U , let TA(e),B(f) be the set of all π-isomorphisms of A(e) onto
B(f), and let

TX(π) =
⋃

(A(e),B(f))∈ U

TA(e),B(f).

For any α, β ∈ TX(π), define a mapping θα,β as follows:

d(θα,β) = {a ∈ r(α) : there exist e ∈ Y and b ∈ d(β) such that a, b ∈ Xe},

r(θα,β) = {b ∈ d(β) : there exist e ∈ Y and a ∈ r(α) such that a, b ∈ Xe},

aθα,β = b if r(α) ∩Xe = {a} and d(β) ∩Xe = {b}.

Then θα,β ∈ TX(π). Let M = {θα,β : α, β ∈ TX(π)}, and define a multiplication ◦
and a unary operation ∗ on TX(π) by

α ◦ β = αθα,ββ,

α∗ = α−1.

Then TX(π)(◦, ∗) is a regular ∗-semigroup. We denote it by TX(π)(M).

Result 1.4. [5] A regular ∗-semigroup TX(π)(M) is a generalized inverse ∗-
semigroup whose set of projections is partially isomorphic to X.

Let S be a generalized inverse ∗-semigroup. Hereafter, denote E(S) and P (S)
simply by E and P , respectively. Let E ∼

∑

{Ei : i ∈ I} be the structure
decomposition of E, and let Pi = P (Ei). Then π : P ∼

∑

{Pi : i ∈ I} is a
partition of P . For any i, j ∈ I (i ≥ j), define a mappig ϕi,j : Pi → Pj by

eϕi,j = efe for some (any) f ∈ Pj.

Then P (π; I; {ϕi,j}) is a strong π-groupoid.

Result 1.5. [5] Let S be a generalized inverse ∗-semigroup. For each a ∈ S, let

τa : e 7→ a∗ea (e ∈ d(τa) = P (Sa∗)).

Then a mapping τ : a 7→ τa is a ∗-homomorphism of S into TP (π)(M) such that

τ ◦ τ−1 = µ.

A regular ∗-subsemigroup T of a regular ∗-semigroup S is said to be P-full if
P (T ) = P (S).
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Result 1.6. [5] A generalized inverse ∗-semigroup S is fundamental if and only if

it is ∗-isomorphic to a P-full generalized inverse ∗-subsemigroup of TX(π)(M) on

a strong π-groupoid X(π; I; {ϕi,j}) such that P (TX(π)(M)) is partially isomorphic

to P (S).

In § 2, by introducing the concept of partially ordered %-set (X(E); {φx}), we
construct a fundamental generalized inverse ∗-semigroup TX(

�
)(M). Also, we

shall see that TX(
�

)(M) has similar properties with TX(π)(M), where TX(π)(M)
has been given by T. Imaoka, I. Inata and H. Yokoyama [5]. And we shall
show that two concepts, strong π-groupoids and partially ordered %-sets, are
equivalent.

In § 3, we shall introduce the notion of ω-set (X(4); σ), and construct a gen-
eralized inverse ∗-semigroup T(X( � );σ)(M). Furthermore, let S be a generalized
inverse ∗-semigroup with the set of projections P , we shall make two generalized
inverse ∗-semigroups TP (

�
)(M) and T(S( � );Ω)(M), where the former is obtained

in § 2, and the latter is constructed in this section. Then we shall show that
these three semigroups make a commutative diagram.

In § 3, we shall introduce the notion of ω-set (X(4); σ), and construct a gen-
eralized inverse ∗-semigroup T(X( � );σ)(M). Furthermore, let S be a generalized
inverse ∗-semigroup with the set of projections P , we shall make two generalized
inverse ∗-semigroups TP (

�
)(M) and T(S( � );Ω)(M), where the former is obtained

in § 2, and the latter is constructed in this section. Then we shall show that
these three semigroups make a commutative diagram.

2. Fundamental generalized inverse ∗-semigroups

2.1. TX(
�

)(M). Let X(E) be a partially ordered set and, for each x ∈ X,
consider an order-preserving mapping φx : X → X. If a relation % = {(x, y) ∈
X ×X : yφx = x, xφy = y} is an equivalence relation on X such that

(P1) x E y =⇒ for each y
′

∈ y%, there exists x
′

∈ x% such that x
′

E y
′

,

(P2) a relation ≤= {(x%, y%) ∈ X/%×X/% : there exists x
′

∈ x% such that
x

′

E y} is a partial order and X/%(≤) is a semilattice,

(P3) x1 E y, x2 E y and x1% ≤ x2% =⇒ x1 E x2,

then (X(E); {φx}) is called a partially ordered %-set.
Let (X(E); {φx}) be a partially ordered %-set. Define an equivalence relation

U on X by

U = {(〈a〉, 〈b〉) ∈ X × X : 〈a〉 ' 〈b〉(order isomorphic)},

where X is the set of all principal ideals of (X(E); {φx}). For (〈a〉, 〈b〉) ∈ U , let
T〈a〉,〈b〉 be the set of all (order) isomorphisms of 〈a〉 onto 〈b〉, and let

TX(
�

) =
⋃

(〈a〉,〈b〉)∈ U

T〈a〉,〈b〉.
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For any α, β ∈ TX(
�

), define a mapping θα,β as follows:

θα,β = {(x, y) ∈ r(α) × d(β) : (x, y) ∈ %},

where % is the equivalence relation on X induced by {φx}, as defined above.

To show that θα,β ∈ TX(
�

), assume that r(α) = 〈a〉, d(β) = 〈b〉 and a%∧b% = c%
(c ∈ X). Since c% ≤ a% and c% ≤ b%, there exist c1, c2 ∈ c% such that c1 E a
and c2 E b. For any x ∈ d(θα,β), there exists y ∈ 〈b〉 such that (x, y) ∈ %. Since
x E a, c1 E a and x% ≤ c1%, we have x E c1 and so x ∈ 〈c1〉. Thus d(θα,β) ⊆ 〈c1〉.

Conversely, let x be any element of 〈c1〉. Since x% ≤ c1% = c2%, there exists
y ∈ x% such that y E c2. Therefore, x ∈ 〈c1〉 ⊆ 〈a〉, y ∈ 〈c2〉 ⊆ 〈b〉 and (x, y) ∈ %,
and so x ∈ d(θα,β). Thus 〈c1〉 ⊆ d(θα,β), and hence d(θα,β) = 〈c1〉. Similarly,
r(θα,β) = 〈c2〉. Since it is obvious that θα,β is a bijection, we have θα,β ∈ TX(

�
)

Let M = {θα,β : α, β ∈ TX(
�

)}, and define a multiplication ◦ and a unary
operation ∗ on TX(

�
) by

α ◦ β = αθα,ββ,

α∗ = α−1.

Then it is clear that TX(
�

)(◦, ∗) is a regular ∗-subsemigroup of the ι-symmetric
generalized inverse ∗-semigroup GI(X;%)(M). Hence it is a generalized inverse ∗-
semigroup and denoted by TX(

�
)(M).

Let S be a generalized inverse ∗-semigroup and P = P (S). We consider P
as a partially ordered set with respect to the natural order. Now, we have the
following results.

Theorem 2.1. A regular ∗-semigroup TX(
�

)(M) is a generalized inverse ∗-semi-

group whose set of projections is order isomorphic to X(E).

Proof. It remains to show that TX(
�

)(M) is order isomorphic to X(E). It is clear
that P (TX(

�
)(M)) = {1〈a〉 : a ∈ X}. Define a mapping ψ : X → P (TX(

�
)(M))

by aψ = 1〈a〉 for a ∈ X. It is obvious that ψ is onto. For a, b ∈ X,

1〈a〉 = 1〈b〉 =⇒ 〈a〉 = 〈b〉
=⇒ a E b and b E a
=⇒ a = b.

Thus ψ is one-to-one, and hence it is bijection.

Suppose that a E b. Then 〈a〉 ⊆ 〈b〉. Thus 1〈a〉 ◦ 1〈b〉 = θ〈a〉,〈b〉 = θ〈a〉,〈a〉 = 1〈a〉,
and so 1〈a〉 ≤ 1〈b〉. Conversely, let 1〈a〉 ≤ 1〈b〉. Then 1〈a〉 = 1〈a〉 ◦ 1〈b〉, and so 〈a〉 =
r(1〈a〉) = r(1〈a〉 ◦ 1〈b〉) ⊆ 〈b〉. Thus a E b, and hence ψ is an isomorphism.

Corollary 2.2. A partially ordered set X is order isomorphic to the set of pro-

jections of a generalized inverse ∗-semigroup if and only if it is a partially ordered

%-set.
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2.2. Representations. Let S be a generalized inverse ∗-semigroup. Hereafter,
denote E(S) and P (S) simply by E and P , respectively. Let E ∼

∑

{Ei : i ∈ I}
be the structure decomposition of E, and let Pi = P (Ei). For any e ∈ P , define
a mapping φe : P → P by

fφe = efe.

Let ≤ be the natural order on S, that is,

a ≤ b ⇐⇒ a = eb = bf for some e, f ∈ P .

Since S is a generalized inerse ∗-semigroup, it follows from [3] that ≤ is compat-
ible. Let E be the restriction of E to P . It is obvious that for e, f ∈ P ,

e E f ⇐⇒ e = fef .

Lemma 2.3. The set (P (E); {φe}), defined above, is a partially ordered %-set.

Proof. Let e, f and g be any elements of P such that f E g. Since ≤ is compat-
ible, fφe = efe E ege = gφe. Thus φe is order preserving.

For e ∈ Pi and f ∈ Pj,

e%f ⇐⇒ fφe = e and eφf = f
⇐⇒ efe = e and fef = f
⇐⇒ eJ Ef
⇐⇒ i = j.

Then % = J E|P , and so P/% = {Pi : i ∈ I}. It is easily to see that % satisfies the
conditions (P1), (P2) and (P3), and we have the lemma.

Now, we can consider the generalized inverse ∗-semigroup TP (
�

)(M), where
M = {θα,β : α and β are order isomorphisms among principal ideals of (P (E
); {φe})}.

Lemma 2.4. For any a ∈ S, P (Sa) (= P (Sa∗a)) is a principal ideal of (P (E
); {φe}).

Proof. We shall show that P (Sa) = 〈a∗a〉. Let xa be any element of P (Sa).
Since xa is a projection, xa = (xa)∗xa, and so xa E a∗a. Thus P (Sa) ⊆ 〈a∗a〉.
Conversely, let e ∈ P such that e E a∗a. Then a∗aea∗a, and so e ∈ P (Sa).
Therefore, we have P (Sa) = 〈a∗a〉.

For any a ∈ S, define a mapping τa : 〈aa∗〉 → 〈a∗a〉 by

eτa = a∗ea.

It follows from [5] that τa ∈ TS(
�

) and τ ∗a = τa∗ . Moreover, for any a, b ∈ S,
θτa,τb

= τa∗abb∗ . And we have the following theorems.

Theorem 2.5. Let S be a generalized inverse ∗-semigroup such that E(S) = E
and P (S) = P . Let E ∼

∑

{Ei : i ∈ I} be the structure decomposition of E and

Pi = P (Ei). Denote the restriction of the natural order on S to P by E. For

any e ∈ P , define a mapping φe : P → P by fφe = efe. Then (P (E); {φe}) is a

partially ordered %-set and TP (
�

)(M) is a generalized inverse ∗-semigroup.
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Moreover, for any a ∈ S, define a mapping τa : 〈aa∗〉 → 〈a∗a〉 by eτa = a∗ea.
Then a mapping τ : S → TP (

�
)(M) (a 7→ τa) is a ∗-homomorphism and the

kernel of τ is the maximum idempotent-separating ∗-congruence on S.

Theorem 2.6. A generalized inverse ∗-semigroup S is fundamental if and only

if it is ∗-isomorphic to a P-full generalized inverse ∗-subsemigroup of TX(
�

)(M)
on a partially ordered %-set (X(E); {φx}) such that P (TX(

�
)(M)) is order iso-

morphic to P (S).

Denote the sets of all partially ordered %-sets and the set of all strong π-
groupoids by P and S, respectively.

Remark 2.7. Let (X(E); {φx}) be any element of P. For any x%, y% ∈ X/% (x%
≥ y%), define a mapping ϕx%,y% : Xx% → Xy% by

x
′

ϕx%,y% = y
′

, where y
′

∈ y% such that y
′

E x
′

.

Moreover, we define a partial product on X as follows:

xy =







xϕx%,(x%)(y%) if xϕx%,(x%)(y%) = yϕy%,(x%)(y%)

undefined otherwise.

Then (X(E); {φx})λ = X(π%;X/%; {ϕx%,y%}) is a strong π-groupoid, where π% is

the partition of X induced by %.
Conversely, let X(π;Y ; {ϕe,f}) be any element of S. For any x ∈ X, define a

mapping
∼

φx : X → X by

y
∼

φx = xϕe,ef ,

where x ∈ Xe and y ∈ Xf . If we define J = {(x, y) ∈ X ×X : x
∼

φy = x}, then

X(π;Y ; {ϕe,f})µ = (X(J); {
∼

φx}) is a partially ordered %-set.
Hence the mappings λ, µ from P to S and from S to P,respectively, are well-

defined. Moreover µλ = 1 � , and for any (X(E); {φx}) ∈ P, if (X(E); {φx})λµ

= (X(J); {
∼

φx}), then E = J.

By the above argument, for any (X(E); {φx}) in P, without loss of generality,
we can consider (X(E); {φx}) as a member of Pλµ.

Now, let X(π;Y ; {ϕe,f}) be any element of S. If X(π;Y ; {ϕe,f})µ = (X(E
); {φx}). Then we can construct two generalized inverse ∗-semigroups TX(π)(M)
and TX(

�
)(M). In this case, these two generalized inverse ∗-semigroups are ∗-

isomorphic.

3. Extensions of TX(
�

)(M)

3.1. T(X( � );σ)(M). By a pre-order on a set X we shall mean a reflexive and
transitive relation. Let X(4) be a pre-ordered set and let ν = {(a, b) ∈ X ×X :
a 4 b and b 4 a}. Then ν is an equivalence relation on X and X/ν is a partially
ordered set with respect to the following induced relation
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aν E bν if and only if a 4 b.(3.1)

We call E the naturally induced order on X/ν from 4. Clearly ν is the smallest
equivalence relation on X for which (C1) defines a partial order on X/ν. We call
ν the minimum partial order congruence (mpo-congruence) on X from 4.

A subset A of X is an ideal of X provided that x 4 y and y ∈ A implies
x ∈ A. For a ∈ X, we call {x ∈ X: x 4 a} the principal ideal generated by a
and denote it by 〈a〉.

A bijection α of one pre-ordered set X onto another Y will be called an iso-

morphism provided that, for a, b ∈ X, a 4 b if and only if aα 4 bα. In particular,
if νX and νY denote the respective mpo-congruences then (a, b) ∈ νX if and only
if (aα, bα) ∈ νY .

Let X(4) be a pre-ordered set and ν the mpo-congruence from 4. Then X is
a partially pre-ordered %-set if and only if X/ν is a partially ordered %-set with
respect to the naturally induced order E from 4.

Let X(4) be a partially pre-ordered %-set and σ an equivalence relation on X
such that

(O1) for any x in X, 〈x〉 is an ι-single subset with respect to σ,

(O2) for x, y in X, if (x, y) ∈ σ then (xν, yν) ∈ %,

(O3) for x, y, z in X, if (xν)%∧(yν)% = (zν)%, z1ν E xν and z2ν E yν (z1ν, z2ν
∈ (zν)%), then for any a ∈ 〈zi〉, there exists b ∈ 〈zj〉 such that (a, b) ∈ σ,
where 1 ≤ i, j ≤ 2.

Then (X(4); σ) is called an ω-set.
Let (X(4); σ) be an ω-set and let T(X( � );σ) denote the set of all isomorphisms

from a principal ideal onto another one.
For any α, β ∈ T(X( � );σ), define a mapping θα,β as follows:

θα,β = {(a, b) ∈ r(α) × d(β) : (a, b) ∈ σ}.

Then θα,β ∈ T(X( � );σ). Let M = {θα,β : α, β ∈ T(X( � );σ)}, and denote a multipli-
cation ◦ and a unary operation ∗ on T(X( � );σ) by

α ◦ β = αθα,ββ,

α∗ = α−1.

Clearly, α ◦ β is an isomorphism from 〈z1α
−1〉 onto 〈z2β〉. It is obvious that

T(X( � );σ)(◦, ∗) is a regular ∗-semigroup. Hence it is a generalized inverse ∗-
semigroup and denoted by T(X( � );σ)(M).

Theorem 3.1. A regular ∗-semigroup T(X( � );σ)(M) is a generalized inverse ∗-
subsemi-group of GI(X;σ)(M) whose set of projections is order isomorphic to

X/ν.

Proof. Clearly, T(X( � );σ)(M) is a generalized inverse ∗-semigroup of GI(X;σ)(M).
It remains to show that P (T(X( � );σ)(M)) is order isomorphic to X/ν. Hereafter,
denote P (T(X( � );σ)(M)) simply by P . It is easy to see that P = {1〈x〉 : x ∈ X}.
Now, we define a mapping ψ of P to X/ν as follows: for any 1〈x〉 ∈ P ,
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1〈x〉ψ = xν

Let 1〈x〉, 1〈y〉 be elements of P , then

1〈x〉 = 1〈y〉 ⇐⇒ 〈x〉 = 〈y〉
⇐⇒ x ∈ 〈y〉 and y ∈ 〈x〉
⇐⇒ x 4 y and y 4 x
⇐⇒ xν = yν,

thus ψ is well-defined and one-to-one, and we can easily see that it is a bijection.
For x, y ∈ X,

1〈x〉 ≤ 1〈y〉 ⇐⇒ 〈x〉 = 〈x〉 ◦ 〈y〉
⇐⇒ 〈x〉 ⊆ 〈y〉
⇐⇒ x 4 y
⇐⇒ xν E yν.

Then ψ is an order isomorphism.

Remark 3.2. In T(X( � );σ)(M), if 4 = E and σ = % then T(X(
�

);%)(M) =
TX(

�
)(M).

Let (X(4); σ) be an ω-set and let Y = X/ν, where ν is the mpo-congruence
from 4. For any element α in T(X( � );σ), assume that d(α) = 〈a〉. Then we can

define a new mapping α
′

∈ TY (
�

) as follows:

d(α
′

) = {xν : x ∈ d(α)},

(xν)α
′

= (xα)ν.

Since α is an isomorphism, α’ is a bijection of 〈aν〉 onto 〈(aα)ν〉. For xν, yν ∈
〈aν〉, we have

xν = yν ⇐⇒ x 4 y
⇐⇒ xα 4 yα
⇐⇒ (xα)ν E (yα)ν
⇐⇒ (xν)α′ E (yν)α′.

Then α
′

∈ TY (
�

).

Proposition 3.3. The mapping ξ : α 7→ α
′

of T(X( � );σ)(M) into TY (
�

)(M) is

a ∗-homomorphism of T(X( � );σ)(M) onto a P-full generalized inverse ∗-subsemi-

group of TY (
�

)(M) such that ξ ◦ ξ−1 = µ, where µ is the maximum idempotent

separating ∗-congruence on T(X( � );σ)(M).

Proof. First we shal show that ξ is a ∗-homomorphism. It is obvious that (α−1)′ =
(α′)−1 for any α ∈ T(X( � );σ)(M). Let α, β ∈ T(X( � );σ)(M) such that r(α) = 〈x〉
and d(β) = 〈y〉. There exist z1ν, z2ν ∈ (xν)% ∧ (yν)% such that z1ν E xν and
z2ν E yν. Then d(θα,β) = 〈z1〉 and r(θα,β) = 〈z2〉. Thus d(α ◦ β) = 〈z1α

−1〉
and so d((α ◦ β)′) = 〈(z1α

−1)ν〉. On the other hand, Since r(α′) = 〈xν〉 and
d(β ′) = 〈yν〉, we have

d(α′ ◦ β ′) = d(α′θα′,β′β ′) = 〈z1ν〉(α
′)−1 = 〈(z1α

−1)ν〉.
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Then d((α ◦ β)ξ) = d((αξ) ◦ (βξ)).
To show that ξ is a ∗-homomorphism, it is sufficient to show that θα′,β′ =

(θα,β)′. It is clear that d(θα′,β′) = d((θα,β)′) = 〈z1ν〉. For any aν ∈ 〈z1ν〉, set
aν(θα,β)′ = (aθα,β)ν = bν and aνθα′ ,β′ = cν. Since (a, b) ∈ σ, (aν, bν) ∈ %. On
the other hand, (aν, cν) ∈ %. Since 〈z1ν〉 is an ι-set, bν = cν, and we have
θα′,β′ = (θα,β)′.

It is clear that (T(X( � );σ)(M))ξ is P-full and fundamental. To show that
ξ ◦ ξ−1 = µ, it is sufficient to prove ξ separates projections. For 1〈x〉, 1〈y〉 ∈
P (T(X( � );σ)(M)),

1〈x〉ξ = 1〈y〉ξ =⇒ 1〈xν〉 = 1〈yν〉

=⇒ xν ∈ 〈yν〉 and yν ∈ 〈xν〉
=⇒ xν E yν and yν E xν
=⇒ x 4 y and y 4 x
=⇒ 〈x〉 ⊆ 〈y〉 and 〈y〉 ⊆ 〈x〉
=⇒ 1〈x〉 = 1〈y〉.

Thus we have the proposition.

Hereafter, we shall refer to ξ as the natural projection of T(X( � );σ)(M) to
TY (

�
)(M).

3.2. Inflated representations. Let S be a generalized inverse ∗-semigroup.
Hereafter, denote E(S) and P (S) simply by E and P , respectively. Define a
relation 4 on S by:

a 4 b if and only if a∗a ≤ b∗b,(3.2)

for a, b ∈ S. Then clearly 4 is a pre-order on S for which the mpo-congruence
from 4 is ν = L. Hence S/L = S/ν, under the naturally induced order E

from 4, is just the set of L-classes of S under the usual partial ordering of the
L-classes of a generalized inverse ∗-semigroup and so is order isomorphic to the
partially ordered %-set P of S. Hence S is a partially pre-ordered %-set under 4.
Then % = J E|P and hence (aν)%(bν) ⇐⇒ a∗aJ Eb∗b. Hereafter, for any a ∈ S,
we think aν = La∗a as a∗a.

For any a ∈ S, define a mapping ρa : Sa∗ → Sa as follows:

d(ρa) = Sa∗(= Saa∗),

xρa = xa.

Let ρ : S → GI(S;Ω)(M) by aρ = ρa, where the relation Ω defined by: for
x, y ∈ S,

(x, y) ∈ Ω ⇐⇒ xρe = y for some e ∈ E.(3.3)

Since S is a regular ∗-semigroup, the representation ρ is faithful. Moreover, it
follows from [6, Lemma 3.3] that it is a ∗-monomorphism.

Lemma 3.4. The set (S(4); Ω), defined above, is an ω-set.
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Proof. Let a be any element of S. Then

x ∈ Sa ⇐⇒ x∗x = a∗ax∗xa∗a ≤ a∗a
⇐⇒ x 4 a
⇐⇒ a ∈ 〈a〉.

Thus we have Sa = 〈a〉. By Lemma 3.2 [7], 〈a〉 is an ι-single subset.
Next, let (a, b) be any element of Ω. It follows from Lemma 3.1 [7] that b = ab∗b

and a∗aReLb∗b for some e ∈ E. Thus a∗aJ Eb∗b, and hence (aν)%(bν).
Assume that Ja∗a ∧ Jb∗b = Jc∗c. Then Jc∗c = Ja∗ab∗b = Jb∗ba∗a. Also, we have

a∗ab∗ba∗a ≤ a∗a, b∗ba∗ab∗b ≤ b∗b, and hence b∗ba∗a 4 a and a∗ab∗b 4 b. Let
x (= xb∗ba∗a) be any element of 〈b∗ba∗a〉 and let y = xa∗ab∗b. Then it is clear
that x = yx∗x and y = y∗y. It follows from Lemma 3.1 [7] that y ∈ 〈a∗ab∗b〉 ans
(x, y) ∈ Ω. Similarly, for any y ∈ 〈a∗ab∗b〉, we have x = yb∗ba∗a ∈ 〈b∗ba∗a〉 and
(x, y) ∈ Ω. Hence (S(4); Ω) is an ω-set.

Again, we consider ρa : Sa∗ → Sa. By Lemma 3.4, d(ρa) = 〈a∗〉 and r(ρa) =
〈a〉. For x, y ∈ d(ρa), x

∗x, y∗y ≤ a∗a. Now x 4 y if and only if x∗x ≤ y∗y
while xa 4 ya if and only if a∗x∗xa = (xa)∗(xa) ≤ (ya)∗(ya) = a∗y∗ya. But,
since x∗x, y∗y ≤ a∗a it follows that x∗x ≤ y∗y if and only if a∗x∗xa ≤ a∗y∗ya.
Therefore x 4 y if and only if xa 4 ya. Thus ρa is an isomorphism of 〈a∗〉 onto
〈a〉, and hence Sρ ⊆ T(S( � );Ω)(M).

Now, we have the following theorem.

Theorem 3.5. Let S be a generalized inverse ∗-semigroup and let 4 be the re-

lation on S defined in (3.2). Then 4 is a pre-order on S with respect to which

S is a partially pre-ordered %-set. Moreover, if Ω is the relation defined in (3.3),
then (S(4); Ω) is an ω-set. The faithful representation ρ, defined above, embeds

S as a P-full generalized inverse ∗-subsemigroup of T(S( � );Ω)(M).
If ν is the mpo-congruence on S from 4, then ν = L and S/ν is order iso-

morphic to the partially ordered %-set P of S. Moreover, ρξ = τ , where ξ is the

natural projection and τ is the representation which is defined in Theorem 2.5.

Proof. It remains to show that Sρ is a P-full generalized inverse ∗-subsemigroup
of T(S( � );Ω)(M) and that ρξ = τ . Let 1〈a〉 (a ∈ S) be any projection of
T(S( � );Ω)(M) and let e = a∗a. Then 1〈a〉 and ρe are both identity mappings
on 〈a〉. Thus 1〈a〉 = ρe and Sρ is a P-full generalized inverse ∗-subsemigroup of
T(S( � );Ω)(M).

Next, let ρa (a ∈ S) be an element of Sρ. Then

d(ρ′) = {x∗x : x ∈ Sa∗}
= {x∗x : x∗x ∈ Sa∗ ∩ P}
= Sa∗ ∩ P ,

and hence d(ρ′) = d(τa). Moreover, for any x∗x ∈ d(ρ′),

(x∗x)ρ′a = (xa)∗(xa) = a∗x∗xa = (x∗x)τa.

Thus ρ′a = τa, and hence ρaξ = τa. Therefore, ρξ = τ , as required.
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