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We consider certain enlargement operations of sets which are related

to the Nagel-Stein approach regions and the maximal functions. The capacity and

the Hausdorff content of enlarged sets are estimated and their relationship is shown.

These results are applied to the boundary behavior of harmonic functions in the
upper half space.

1. Introduction

Let Ω be a set in R
n+1
+ with Ω ∩ ∂R

n+1
+ = {0}. For any measurable function u

on R
n+1
+ we define the maximal function by MΩu(x) = supx+Ω |u|. In particular,

if Ω is the nontangential cone Γ = {(x, y) : |x| < y}, then we write Nu for MΩu.
This is a nontangential maximal function. We say that Ω satisfies a cone condition
with aperture α > 0 if

(x1, y1) ∈ Ω and |x − x1| < α(y − y1) =⇒ (x, y) ∈ Ω.

Put Ω(y) = {x : (x, y) ∈ Ω}. We say that Ω satisfies a cross section condition if

|Ω(y)| ≤ Ayn,

where |Ω(y)| denotes the Lebesgue measure of Ω(y) and A is an absolute positive
constant whose value is unimportant and may change from line to line. If Ω satisfies
both of the cone condition and the cross section condition, then we say Ω satisfies
the Nagel-Stein condition (abbreviated to (NS)). Andersson and Carlsson [7] proved
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Theorem A. Let Ω satisfy (NS). Then

(1.1) |{x ∈ R
n : MΩu(x) > λ}| ≤ A|{x ∈ R

n : Nu(x) > λ}|

for any measurable function u on R
n+1
+ and λ > 0, whence

‖MΩu‖p ≤ A ‖Nu‖p for p > 0.

A similar and essentially equivalent result has been already observed by Sueiro
[20]. Theorem A has an application to the boundary behavior of harmonic functions.
For a locally integrable function f on R

n we let Pf be the Poisson integral of f .
Letting u = Pf , we obtain from Theorem A and the classical maximal inequality

(1.2) ‖MΩ(Pf)‖p ≤ A ‖f‖p for p > 1

and |{x ∈ R
n : MΩPf(x) > λ}| ≤ A ‖f‖1 /λ (Nagel and Stein [18, Theorem 2]).

Theorem A can also be applied to the local Fatou theorem (Svensson [21]). See
also [14].

In (1.1) the Lebesgue measure of two sets are compared. In this paper, we shall
prove inequalities similar to (1.1). In these inequalities we shall compare capacity
and Hausdorff content of the above sets.

Let K(r) 6≡ 0 be a nonnegative nonincreasing lower semicontinuous function for
r > 0. For x ∈ R

n we define K(x) = K(|x|), and assume that K(x) is locally
integrable on R

n. Let p > 1. For E ⊂ R
n we define the capacity CK,p(E) by

CK,p(E) = inf{‖f‖p
p : f ≥ 0, K ∗ f ≥ 1 on E}.

Let h(r) be a positive nondecreasing function for r > 0 and h(0) = 0. Such a
function is called a measure function. We define the content Λh by

Λh(E) = inf{
∑

h(rj) : E ⊂
⋃

B(xj, rj)},

where B(x, r) stands for the n-dimensional open ball with center at x and radius
r. If h(r) = rβ, then we write Λβ for Λh and call it the β-dimensional Hausdorff
content. We assume that

(1.3) h(r) ≥ Arn for 0 < r < 1,

since otherwise Λh(E) = 0 for any bounded set E.

Theorem 1. Let Ω satisfy (NS).

(i) For any measurable function u on R
n+1
+ and λ > 0

CK,p({x ∈ R
n : MΩu(x) > λ}) ≤ ACK,p({x ∈ R

n : Nu(x) > λ}).

(ii) Suppose h satisfies

(1.4) h(r)h(t) ≤ Ah(rt) for r > 0 and 0 < t < 1.

Then for any measurable function u on R
n+1
+ and λ > 0

Λh({x ∈ R
n : MΩu(x) > λ}) ≤ AΛh({x ∈ R

n : Nu(x) > λ}).



CAPACITY AND HAUSDORFF CONTENT 3

Here we note that if (1.4) holds then, h satisfies the doubling condition

(1.5) h(r) ≤ h(2r) ≤ Ah(r) for r > 0.

In our previous papers [5] and [4] we have considered certain expansions of sets
and their capacity and Hausdorff content. We shall observe that the above result
concerning maximal functions follows from such consideration. For E ⊂ R

n we put

ẼΩ =
⋃

x∈E

(x − Ω(δE(x))) ,

where δE(x) = dist(x, Ec). Theorem 1 will be deduced from the following theorem.

Theorem 2. Let Ω satisfy (NS).

(i) We have CK,p(ẼΩ) ≤ ACK,p(E) for any E ⊂ R
n.

(ii) Suppose h satisfies (1.4). Then Λh(ẼΩ) ≤ AΛh(E) for any E ⊂ R
n

We note that Theorems 1 and 2 have partial converse.

Proposition 1. Let h satisfy (1.3) and (1.4) and let Ω satisfy the cone condition.
Suppose one of the following conditions holds:

(i) Λh({x ∈ R
n : MΩu(x) > λ}) ≤ AΛh({x ∈ R

n : Nu(x) > λ}) for any u,

(ii) Λh(ẼΩ) ≤ AΛh(E) for any E ⊂ R
n.

Then Ω satisfies the cross section condition.

In general, we cannot replace the Hausdorff content Λh by the capacity CK,p in
the assumptions (i) and (ii) in Proposition 1. For special capacities, however, we
can replace them. Let kα(t) = tα−n be the Riesz kernel. The capacity CK,p with
respect to K = kα is called the Riesz capacity of index (α, p) and denoted by Rα,p.

Proposition 2. Let αp < n and let let Ω satisfy the cone condition. Suppose one
of the following conditions holds:

(i) Rα,p({x ∈ R
n : MΩu(x) > λ}) ≤ ARα,p({x ∈ R

n : Nu(x) > λ}) for any u,

(ii) Rα,p(ẼΩ) ≤ ARα,p(E) for any E ⊂ R
n.

Then Ω satisfies the cross section condition.

We can consider “tangential” extension. Let η(t) be a positive nondecreasing
function for t > 0 such that η(0) = 0. Let

Γη = {(x, y) : x ∈ B(0, η(y))} and Ωη = {(x, y) : x ∈ Ω(η(y))}.

It is easy to see that Γη = {(x, y) : |x| < η(y)}, and so Γη is “tangential” if
η(y)/y → ∞ as y → 0. Let

Nηu(x) = sup
x+Γη

|u| and MΩηu(x) = sup
x+Ωη

|u|.

These are tangential maximal functions. The following theorem is a generalization
of Theorem 1. When η(y) = y, the theorem is identical with Theorem 1.
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Theorem 3. Let Ω satisfy (NS).

(i) For any measurable function u on R
n+1
+ and λ > 0

CK,p({x ∈ R
n : MΩηu(x) > λ}) ≤ ACK,p({x ∈ R

n : Nηu(x) > λ}).

(ii) Suppose h satisfies (1.4). Then for any measurable function u on R
n+1
+ and

λ > 0

Λh({x ∈ R
n : MΩηu(x) > λ}) ≤ AΛh({x ∈ R

n : Nηu(x) > λ}).

Let us consider tangential enlargement of sets. Put

Ẽη =
⋃

x∈E

B(x, η(δE(x))) and ẼΩη =
⋃

x∈E

(x − Ω(η(δE(x)))) .

Theorem 4. Let Ω satisfy (NS).

(i) We have CK,p(ẼΩη) ≤ ACK,p(Ẽ
η) for any E ⊂ R

n.

(ii) Suppose h satisfies (1.4). Then Λh(ẼΩη) ≤ AΛh(Ẽη) for any E ⊂ R
n.

We note that Theorem 4 is not a generalization of Theorem 2. When η(y) = y,
Theorem 4 gives inequalities weaker than those in Theorem 2. Both Theorems 3
and 4 will be proved as corollaries to Theorem 2.

Now let us compare the capacity and the Hausdorff content. Hereafter, let
1/p + 1/q = 1. In order to avoid the trivial case, we assume that

∫ ∞

r

K(t)qtn
dt

t
< ∞ for r > 0.

Let

K(r) =
1

rn

∫ r

0

K(t)tn
dt

t
and Φ(r) =

(∫ ∞

r

K(t)qtn
dt

t

)1−p

.

In general, we write f ≈ g if there is A ≥ 1 such that A−1f ≤ g ≤ Af . In [3], we
have shown the following theorem.

Theorem B. Let Φ be as above. Then CK,p(B(x, r)) ≈ Φ(r) for r > 0. In
particular, CK,p(E) ≤ AΛΦ(E) for any E ⊂ R

n. Conversely, if a measure function
h satisfies

(1.6)

∫ ∞

0

h(t)q−1K(t)qtn
dt

t
< ∞,

then Λh(E) ≤ ACK,p(E) for any E ⊂ R
n.

Let us generalize this theorem. A generalization of the first assertion is as follows.
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Theorem 5. Let h(t) satisfy (1.4), η(t) ≥ t and Φ(η(t)) ≤ Ah(t). Then CK,p(Ẽ
η) ≤

AΛh(E) for any E ⊂ R
n.

The opposite direction is more interesting. The following theorem is a general-
ization of [4, Theorems 2 and 2’].

Theorem 6. Let h(t) satisfy (1.5), η(t) ≥ t and h(η(t)) ≤ AΦ(t). Moreover,
suppose

(1.7)

∫ 1

0

h(η(r)t)q−1K(rt)q(rt)n dt

t
≤ A for r > 0

Then Λh(Ẽη) ≤ ACK,p(E) for any E ⊂ R
n.

By the change of the variable it is easy to see that (1.7) implies (1.6). Theorems
5 and 6 apply to maximal functions.

Corollary 1. Let h(t) satisfy (1.4), η(t) ≥ t and Φ(η(t)) ≤ Ah(t). Suppose u is a
measurable function on R

n+1
+ and λ > 0. Then

CK,p({x ∈ R
n : Nηu(x) > λ}) ≤ AΛh({x ∈ R

n : Nu(x) > λ}).

Moreover, if Ω satisfies (NS), then

CK,p({x ∈ R
n : MΩηu(x) > λ}) ≤ AΛh({x ∈ R

n : Nu(x) > λ}).

Corollary 2. Let h(t) satisfy (1.5), η(t) ≥ t, h(η(t)) ≤ AΦ(t) and (1.7) hold.
Suppose u is a measurable function on R

n+1
+ and λ > 0. Then

Λh({x ∈ R
n : Nηu(x) > λ}) ≤ ACK,p({x ∈ R

n : Nu(x) > λ}).

Moreover, if Ω satisfies (NS) and h satisfies (1.4), then

Λh({x ∈ R
n : MΩηu(x) > λ}) ≤ ACK,p({x ∈ R

n : Nu(x) > λ}).

A different type of the comparison can be proved. The following result is obtained
in a joint work with M. Mizuta. This is also used for the proof of Proposition 2.

Theorem 7. Suppose h is strictly increasing and

(1.8)

∫ r

0

(
h(t)

h(r)

)q−1

K(t)qtn
dt

t
≤ A

∫ ∞

r

K(t)qtn
dt

t
.

Then for any set E ⊂ R
n

h−1(Λh(E)) ≤ Φ−1(ACK,p(E)).
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In particular, if n − αp < β ≤ n, then

Λβ(E)1/β ≤ ARα,p(E)1/n−αp.

The above results have applications to norm estimates of maximal functions and
the boundary behavior of harmonic functions. For a function f on R

n and r > 0
we define the integral with respect to the capacity CK,p and the Hausdorff content
Λh by

∫
|f |rdCK,p =

∫ ∞

0

CK,p({x : |f(x)| > λ})dλr,

∫
|f |rdΛh =

∫ ∞

0

Λh({x : |f(x)| > λ})dλr.

The following results are almost immediate from Theorems 1–6.

Corollary 3. Let Ω satisfy (NS) and r > 0. Suppose u is a measurable function
on R

n+1
+ .

(i)

∫
(MΩηu)rdCK,p ≤ A

∫
(Nηu)rdCK,p.

(ii) If h satisfies (1.4), then

∫
(MΩηu)rdΛh ≤ A

∫
(Nηu)rdΛh.

(iii) If h and η satisfy the conditions in Theorem 5, then

∫
(MΩηu)rdCK,p ≤ A

∫
(Nu)rdΛh.

(iv) If h and η satisfy the conditions in Theorem 6, then

∫
(MΩηu)rdΛh ≤ A

∫
(Nu)rdCK,p.

Observe that N(P (K ∗ f)) ≤ K ∗ N(Pf), so that the capacity strong type
inequality ([10]) yields

∫
(N(P (K ∗ f)))pdCK,p ≤

∫
CK,p(K ∗ N(Pf) > λ)dλp ≤ A ‖N(Pf)‖p

p ≤ A ‖f‖p
p ,

where the last inequality follows from the usual maximal inequality. Thus the above
theorem has the following corollaries concerning the Poisson integral P (K ∗ f).
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Corollary 4. Let Ω satisfy (NS). Then for any measurable function f on R
n

∫
(MΩ(P (K ∗ f)))pdCK,p ≤ A ‖f‖p

p .

Moreover, if h and η satisfy the conditions in Theorem 6, then

∫
(MΩη(P (K ∗ f)))pdΛh ≤ A ‖f‖p

p .

In the standard way we can obtain the following result concerning the boundary
behavior of harmonic functions.

Corollary 5. Let Ω satisfy (NS). Suppose ‖f‖p < ∞. Then there is a set E ⊂ R
n

such that CK,p(E) = 0 and for ξ ∈ R
n \ E

lim
(x,y)→ξ

(x,y)∈ξ+Ω

P (K ∗ f)(x, y) = K ∗ f(ξ).

Moreover, if h and η satisfy the conditions in Theorem 6, then there is a set F ⊂ R
n

such that Λh(F ) = 0 and for ξ ∈ R
n \ F

lim
(x,y)→ξ

(x,y)∈ξ+Ωη

P (K ∗ f)(x, y) = K ∗ f(ξ).

The above corollaries generalize some results of [17], [2] and [4]. Corollary 3 (ii)
applies to the boundary behavior of Poisson integral of Sobolev and Besov functions.
Following [9] we introduce some notation. Assume that for each ball B ⊂ R

n there
exists a linear operator AB : L1

loc(R
n) → C(Rn) with the following properties:

(i) There is a constant A > 0 such that for any ball B and any x ∈ B

|AB(x)| ≤ A
1

|B|

∫

B

|f |dy.

(ii) If B′ ⊂ B, then AB′(ABf) = ABf . If λ is a constant, then AB(λ) = λ.

Such a family is called a family of averaging operators and denoted by A. For a > 0
we define

f#
a,A(x) = f#

a (x) = sup
x∈B

r(B)−a 1

|B|

∫

B

|f −ABf |dy,

where r(B) stands for the radius of B. For 1 ≤ p ≤ ∞ we let Cp,a
A (Rn) = Cp,a(Rn)

be the space of those Lp functions f such that
∥∥f#

a

∥∥
p

< ∞, endowed with the norm

‖f‖p,a = ‖f‖p +
∥∥f#

a

∥∥
p
. Then [9, Theorem 3.2] for the Euclidean case can be read

as follows:
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Theorem C. Let 1 < p < n/a, n − ap < β ≤ n, γ = (n − ap)/β and η(t) =
max{ctγ , t} with c > 0. If f ∈ Cp,a(Rn) and u is its Poisson integral, then

∫
(Nηu)pdΛβ ≤ A ‖f‖p

p,a .

With the aid of Corollary 3 (ii) we can generalize Theorem C without any extra
effort.

Corollary 6. Let p, a, β, γ and η be as above. Let Ω satisfy (NS). If f ∈ Cp,a(Rn)
and u is its Poisson integral, then

∫
(MΩηu)pdΛβ ≤ A ‖f‖p

p,a .

Of course, the above corollary implies the existence of the limit of u along x+Ωη

for Λβ-a.e. x ∈ R
n.

2. Proof of Theorem 1 (i) and Theorem 2 (i)

In this section we shall first prove Theorem 2 (i) and use it to prove Theorem
1(i). For E ⊂ R

n we let T (E) = {(x, y) : B(x, y) ⊂ E}. This is a “tent” over E.
For E ⊂ R

n+1
+ we let E∗ =

⋃
(x,y)∈E B(x, y). This is a kind of “projection” of E onto

R
n. We immediately obtain the following relationship between T (E) and E∗.

Lemma 1. Suppose E ⊂ R
n. Then (T (E))∗ ⊂ E. Moreover, if E is an open set

then (T (E))∗ = E.

It is easy to see that if Ω satisfies the cone condition, then Ω(y) is a nondecreasing
set function of y, i.e., Ω(y1) ⊂ Ω(y2) if 0 < y1 < y2.

Lemma 2. Let Ω(y) be a nondecreasing set function of y. Suppose E ⊂ R
n+1
+ .

Then ⋃

(x,y)∈E

(x − Ω(y)) ⊂ ẼΩ with E = E∗.

Proof. Let ξ be a point in the left hand side. Then there is a point (x, y) ∈ E such
that ξ ∈ x − Ω(y). By the definition of E∗ we have B(x, y) ⊂ E∗ = E, and hence
y ≤ δE(x). Since Ω(y) is nondecreasing, it follows that ξ ∈ x − Ω(δE(x)), so that

ξ ∈ ẼΩ.

Lemma 3. Suppose E ⊂ R
n and let

ÊΩ = {ξ ∈ R
n : (ξ + Ω) ∩ T (E) 6= ∅}.
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Then ẼΩ ⊂ ÊΩ. Moreover, if Ω(y) is a nondecreasing set function of y, then

ẼΩ = ÊΩ.

Proof. Suppose ξ ∈ ẼΩ. Then there is x ∈ E such that ξ ∈ x − Ω(δE(x)), or
equivalently (x, δE(x)) ∈ ξ+Ω. By definition B(x, δE(x)) ⊂ E, whence (x, δE(x)) ∈

T (E). Hence (x, δE(x)) ∈ (ξ+Ω)∩T (E) and ξ ∈ ÊΩ. Thus ẼΩ ⊂ ÊΩ. Now suppose
that Ω(y) is a nondecreasing set function of y. We observe that

ÊΩ =
⋃

(x,y)∈T (E)

(x − Ω(y)).

Hence Lemmas 1 and 2 yield ÊΩ ⊂ ẼΩ. The lemma follows.

Proof of Theorem 2 (i). Let f be an nonnegative function such that K ∗ f ≥ 1
on E. Suppose (x, y) ∈ T (E). Then B(x, y) ⊂ E and hence P (K ∗ f)(x, y) ≥
P (χB(x,y))(x, y) = A0 with A0 depending only on the dimension. By definition

MΩ(P (K ∗f)) > A0 on ÊΩ and hence on ẼΩ by Lemma 3. Moreover, by inspection,

MΩ(P (K ∗ f)) ≤ K ∗MΩ(Pf). Hence MΩ(Pf)/A0 is a test function for CK,p(ẼΩ).
Therefore

CK,p(ẼΩ) ≤ ‖MΩ(Pf)/A0‖
p
p ≤ A ‖f‖

p
p ,

where the second inequality follows from (1.2). Taking the infimum with respect to

f , we obtain CK,p(ẼΩ) ≤ ACK,p(E). The theorem follows.

Remark. In the above proof we need the strong (p, p) for MΩ(Pf), which is valid
only for p > 1. The above proof does not work for p = 1. The case p = 1 will be
treated later.

Now let us prove Theorem 1 (i). In the proof we may assume that u ≥ 0. Let
us begin with

Lemma 4. Let u be a nonnegative function on R
n+1
+ and E = {(x, y) : u(x, y) > λ}

for λ > 0. Then

(i) {x ∈ R
n : Nu(x) > λ} =

⋃
(x,y)∈E B(x, y),

(ii) {x ∈ R
n : MΩu(x) > λ} =

⋃
(x,y)∈E(x − Ω(y)).

Proof. We prove only (ii). Observe

MΩu(x) > λ ⇐⇒ ∃(x1, y1) ∈ x + Ω such that u(x1, y1) > λ

⇐⇒ x ∈ x1 − Ω(y1) with (x1, y1) ∈ E .

The lemma follows.



10 HIROAKI AIKAWA

Proof of Theorem 1 (i). We may assume that u ≥ 0. Let E = {(x, y) : u(x, y) > λ}
and E = E∗. We apply Lemmas 2, 4 and Theorem 2 (ii) to obtain

CK,p({x : MΩu(x) > λ}) = CK,p


 ⋃

(x,y)∈E

(x − Ω(y))


 ≤ CK,p(ẼΩ)

≤ ACK,p(E) = ACK,p({x : Nu(x) > λ}).

The theorem is proved.

3. Proof of Theorem 1 (ii) and Theorem 2 (ii)

In this section we shall prove Theorem 2 (ii) and use it to prove Theorem 1 (ii).
The proof is essentially the same as in [4, Section 4]. However, for the completeness
we shall give a complete proof. Let us first observe the following covering property
of the Nagel-Stein approach regions. This is proved by [18, Lemma 1]. For the
convenience of reader we shall give a simple proof.

Lemma 5. Suppose that Ω satisfies the cone condition. Then the following state-
ments are equivalent.

(i) Ω satisfies the cross section condition.
(ii) There is a positive integer N such that for any r > 0 there are points

x1, . . . , xN such that Ω(r) ⊂
⋃N

j=1 B(xj, r).

Proof. It is sufficient to show (i) =⇒ (ii). First we claim

(3.1) B(x, r/2) ⊂ Ω((1 + (2α)−1)r) if x ∈ Ω(r).

Suppose x ∈ Ω(r). By the cone condition we see that (x′, r′) ∈ Ω if |x′ − x| <
α(r′ − r). Let r′ = (1 + (2α)−1)r. Then this means |x′ − x| < r/2 =⇒ x′ ∈
Ω((1 + (2α)−1)r). Thus (3.1) follows.

Let us consider groups of points {x1, . . . , xN} ⊂ Ω(r) with |xi − xj | ≥ r for
i 6= j. Then B(xj , r/2) are disjoint balls included in Ω((1+(2α)−1)r) by the claim.
Hence (i) implies that the number N is bounded by a constant independent of r.
Now we choose {x1, . . . , xN} with maximal N . Then the maximality implies that
for any x ∈ Ω(r), there is xj such that |x − xj | < r, i.e. x ∈ B(xj, r). Hence

Ω(r) ⊂
⋃N

j=1 B(xj, r). The lemma follows.

Since Λh is an outer capacity, i.e., Λh(E) = infE⊂V,V is open Λh(V ), we may
assume that E is an open set V . Let us consider a Whitney decomposition of V ,
i.e. Qk are closed cubes with sides parallel to the axes with the following properties:

(i)
⋃

Qk = V ;
(ii) the interiors of Qk are mutually disjoint;
(iii)

(3.2) diam(Qk) ≤ dist(Qk, V c) ≤ 4 diam(Qk)
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([19, Theorem 1 on p.167]). Let Q̃k be the cube which has the same center as Qk

but is expanded by the factor 9/8. Then

(3.3) the multiplicity of Q̃k is bounded by N1,

where N1 depends only on the dimension n ([19, Proposition 3 on p.169]). In view
of (3.2) we can choose a constant c0, 0 < c0 < 1, with the property that

(3.4) B(x, c0δV (x)) ∩ Qk 6= ∅ =⇒ B(x, c0δV (x)) ⊂ Q̃k.

Using these facts, we can prove the following lemma.

Lemma 6. Let h satisfy (1.4). Suppose V is a proper open subset of R
n. Then

there is a covering B = {B(xj, rj)} of V such that

rj ≥ δV (xj),(3.5)
∑

j

h(rj) ≤ AΛh(V ),(3.6)

where A > 0 depends only on the dimension n and h.

Proof. Since V is an open set, it follows that Λh(V ) > 0. By definition we can find
a covering {B(ξj, ρj)} of V such that

(3.7)
∑

j

h(ρj) ≤ 2Λh(V ).

From this covering we construct a covering B with the required properties.

Let
⋃

k Qk be the Whitney decomposition of V and let Q̃k be the expanded cube
as before the lemma. We let

K1 = {k : there is B(ξj, ρj) meeting Qk such that ρj ≥ c0δV (ξj)},

K2 = {k : if B(ξj, ρj) meets Qk, then ρj < c0δV (ξj)},

where c0 is the constant appearing in (3.4).
First suppose k ∈ K1. We can find j = j(k) such that B(ξj, ρj) ∩ Qk 6= ∅ and

ρj ≥ c0δV (ξj). Let ξ ∈ B(ξj, ρj) ∩ Qk. We have from (3.2)

diam(Qk) ≤ dist(Qk, V c) ≤ δV (ξ) ≤ δV (ξj) + ρj ≤ (1 + c−1
0 )ρj .

Hence Qk ⊂ B(ξj, (2 + c−1
0 )ρj), so that

⋃

k∈K1

Qk ⊂
⋃

k∈K1

B(ξj(k), (2 + c−1
0 )ρj(k)),(3.8)

(2 + c−1
0 )ρj(k) ≥ (2 + c−1

0 )c0δV (ξj(k)) ≥ δV (ξj(k)).(3.9)
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Second suppose k ∈ K2. Since ρj < c0δV (ξj) for B(ξj, ρj) ∩ Qk 6= ∅, we obtain
from (3.4) that

Qk ⊂
⋃

B(ξj ,ρj)∩Qk 6=∅

B(ξj, ρj) ⊂ Q̃k.

In particular, ρj ≤
9

16
diam(Qk). From (1.3) and the first inclusion we have

|Qk| ≤ A
∑

B(ξj ,ρj)∩Qk 6=∅

ρn
j = A|Qk|

∑

B(ξj ,ρj)∩Qk 6=∅

(
ρj

diam(Qk)

)n

≤ A|Qk|
∑

B(ξj ,ρj)∩Qk 6=∅

h

(
ρj

diam(Qk)

)
,

so that (1.4) and the second inclusion yield

h(diam(Qk)) ≤ A
∑

B(ξj ,ρj)∩Qk 6=∅

h(ρj) ≤ A
∑

B(ξj ,ρj)⊂ �Qk

h(ρj).

Hence

(3.10)
∑

k∈K2

h(diam(Qk)) ≤ A
∑

k∈K2

∑

B(ξj ,ρj)⊂ �Qk

h(ρj) ≤ AN1

∑

j

h(ρj),

where the last inequality follows from (3.3). Note that Qk ⊂ B(xQk
, diam(Qk))

with xQk
being the center of Qk. We have from (3.2)

(3.11) δV (xQk
) ≤ dist(Qk, V c) + diam(Qk) ≤ 5 diam(Qk).

We observe from (1.5), (3.7), (3.8) and (3.10) that

B = {B(ξj(k), (2 + c−1
0 )ρj(k)) : k ∈ K1} ∪ {B(xQk

, 5 diam(Qk)) : k ∈ K2}

is a covering of V and

∑

k∈K1

h((2 + c−1
0 )ρj(k)) ≤ A

∑

j

h(ρj) ≤ AΛh(V ),

∑

k∈K2

h(5 diam(Qk)) ≤ A
∑

j

h(ρj) ≤ AΛh(V ).

Thus (3.6) follows. We obtain from (3.9) and (3.11) that our covering B satisfies
(3.5). The lemma is proved.
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Proof of Theorem 2 (i). We may assume that E is a proper open set V . First we
claim

(3.12) −Ω(y) ⊂ x − Ω(y +
2

α
|x|),

where α is the constant appearing in the cone condition. We may assume that
x 6= 0. Suppose ξ ∈ −Ω(y). Then (−ξ, y) ∈ Ω and

|(−ξ + x) + ξ| = |x| < 2|x| = α(y +
2

α
|x| − y).

Hence the cone condition implies that −ξ + x ∈ Ω(y + 2|x|/α), or equivalently
ξ ∈ x − Ω(y + 2|x|/α). The claim is proved.

By Lemma 6 we find a covering B = {B(xj, rj)} of V satisfying (3.5) and (3.6).
Suppose x ∈ B(xj, rj). Then |x − xj | < rj and δV (x) ≤ 2rj by (3.5), so that

−Ω(δV (x)) ⊂ xj − x − Ω(δV (x) +
2

α
|x − xj |) ⊂ xj − x − Ω(A1rj)

with A1 = 2 + 2/α by (3.12). Hence x − Ω(δV (x)) ⊂ xj − Ω(A1rj), so that
⋃

x∈B(xj ,rj)

(x − Ω(δV (x))) ⊂ xj − Ω(A1rj).

By Lemma 5 we find points xj,ν (ν = 1, ..., N) such that

Ω(A1rj) ⊂
N⋃

ν=1

B(xj,ν , A1rj),

where the number N depends only on Ω. Hence by (1.5) and (3.6)

Λh

(
⋃

x∈V

(x − Ω(δV (x))

)
≤ Λh


⋃

j

N⋃

ν=1

B(xj − xj,ν , A1rj)




≤
∑

j

N∑

ν=1

h(A1rj) ≤ AΛh(V ).

The theorem is proved.

Proof of Theorem 1 (ii). We may assume that u ≥ 0. Let E = {(x, y) : u(x, y) > λ}
and E = E∗. We apply Lemmas 2, 4 and Theorem 2 (i) to obtain

Λh({x : MΩu(x) > λ}) = Λh


 ⋃

(x,y)∈E

(x − Ω(y))


 ≤ Λh(ẼΩ)

≤ AΛh(E) = AΛh({x : Nu(x) > λ}).

The theorem is proved.
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4. Proof of Theorems 3 and 4

Proof of Theorem 3. We may assume that u ≥ 0. Let E = {(x, y) : u(x, y) > λ}.
In the same way as in Lemma 4 we have

{x ∈ R
n : Nηu(x) > λ} =

⋃

(x,y)∈E

B(x, η(y)),

{x ∈ R
n : MΩηu(x) > λ} =

⋃

(x,y)∈E

(x − Ω(η(y))).

Let E =
⋃

(x,y)∈E B(x, η(y)) and (x, y) ∈ E . Then, by definition, B(x, η(y)) ⊂ E,

and hence η(y) ≤ δE(x). By the monotonicity of Ω(y) we have Ω(η(y)) ⊂ Ω(δE(x)).
Therefore

{x ∈ R
n : MΩηu(x) > λ} ⊂

⋃

x∈E

(x − Ω(δE(x)) = ẼΩ,

so that Theorem 2 implies

CK,p({x : MΩηu(x) > λ}) ≤ CK,p(ẼΩ) ≤ ACK,p(E) = ACK,p({x : Nηu(x) > λ}),

Λh({x : MΩηu(x) > λ}) ≤ Λh(ẼΩ) ≤ AΛh(E) = AΛh({x : Nηu(x) > λ}).

The theorem follows.

Theorem 4 will follow from the next geometrical observation.

Lemma 7. Suppose Ω(y) is a nondecreasing set function of y. If E ⊂ R
n, then

ẼΩη ⊂
⋃

x∈E

(x − Ω(δ �Eη (x))).

Proof. Let ξ ∈ ẼΩη . Then there is x ∈ E such that ξ ∈ x − Ω(η(δE(x))). By

definition B(x, η(δE(x))) ⊂ Ẽη and hence η(δE(x)) ≤ δ �Eη (x). By the monotonicity
of Ω(y) we have ξ ∈ x − Ω(δ �Eη (x)). The lemma follows.

Proof of Theorem 4. We may assume that E is an open set. Then, by definition,

E ⊂ Ẽη and hence by Lemma 7

ẼΩη ⊂
⋃

x∈ �Eη

(x − Ω(δ �Eη (x))).

Apply Theorem 2 with E replaced by Ẽη. We have

CK,p(ẼΩη) ≤ CK,p


 ⋃

x∈ �Eη

(x − Ω(δ �Eη (x)))


 ≤ ACK,p(Ẽ

η),

Λh(ẼΩη) ≤ Λh


 ⋃

x∈ �Eη

(x − Ω(δ �Eη (x)))


 ≤ AΛh(Ẽη).

The theorem follows.
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5. Proof of Theorem 5

Proof of Theorem 5. Without loss of generality we may assume that E is open.
Then by Lemma 6 we obtain a covering B = {B(xj, rj)} satisfying (3.5) and (3.6).
By definition

Ẽη ⊂
⋃

j

⋃

x∈B(xj ,rj)

B(x, η(δE(x)).

Since δE(x) ≤ δE(xj) + rj ≤ 2rj for x ∈ B(xj, rj) by (3.5), it follows that

Ẽη ⊂
⋃

j

B(xj, η(2rj) + rj) ⊂
⋃

j

B(xj, 2η(2rj)),

where we have used η(t) ≥ t and the monotonicity. By Theorem B and the countable
subadditivity

CK,p(Ẽ
η) ≤

∑

j

Φ(2η(2rj)).

It is easy to see that Φ satisfies the doubling condition. By assumption and the
doubling property of h we have Φ(2η(2rj)) ≤ AΦ(η(2rj)) ≤ Ah(2rj) ≤ Ah(rj), so
that by (3.6)

CK,p(Ẽ
η) ≤

∑

j

Ah(rj) ≤ AΛh(E).

The theorem follows.

6. Proof of Theorem 6

The proof of the theorem is based on the duality theorem of Meyers [16, Theorem
14], Kerman-Sawyer’s inequality [13, (2.7) and (2.8)] and Adams’ proof [1, Theorem
3.2] of Wolff’s inequality [12]. Using these results, we have the following lemma.

Lemma 8. Let

Wµ
K,q(x) =

∫ ∞

0

µ(B(x, r))q−1K(r)qrn dr

r
, Wµ

K,q(x) =

∫ 1

0

µ(B(x, r))q−1K(r)qrn dr

r
.

Then ‖K ∗ µ‖q
q ≤ A

∫
Wµ

K,q(x)dµ(x) for any measure µ and

CK,p(E) ≥ A sup{‖µ‖p
: µ is concentrated on E,

∫
Wµ

K,qdµ ≤ 1}.

Moreover, if
∫∞

0
K(t)tn−1dt < ∞, then ‖K ∗ µ‖q

q ≤ A
∫
Wµ

K,q(x)dµ(x) and

CK,p(E) ≥ A sup{‖µ‖p
: µ is concentrated on E,

∫
Wµ

K,qdµ ≤ 1}.
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For these accounts we refer to [3] and [6, Part II].

Proof of Theorem 6. The proof is a generalization and simplification of [4, Proof of
Theorems 2 and 2’]. In the same way as in [4], without loss of generality, we may

assume that E is a bounded open set. Let F be an arbitrary compact subset of Ẽη.
it is sufficient to show that

(6.1) Λh(F ) ≤ ACK,p(E).

By the Frostman lemma (cf. [8, Theorem 1 on p. 7] and [11, Lemma 5.4]) we can
find a measure µ on F such that ‖µ‖ ≈ Λh(F ) and

(6.2) µ(B(x, r)) ≤ h(r) for all x ∈ R
n and r > 0.

By definition, for each x ∈ Ẽη, there is x∗ ∈ E such that x ∈ B(x∗, η(δE(x∗))). We
let

r(x) = sup
x∗∈E

x∈B(x∗,η(δE(x∗)))

δE(x∗).

We observe that r(x) is a positive bounded function on Ẽη. We see that r(x) is a

bounded positive function on Ẽη. By C(x, r) we denote the closed ball with center
at x and radius r. By the Besicovitch covering lemma (see e.g. [22, Theorem 1.3.5],
we can find {xj} ⊂ F such that

F ⊂
⋃

C(xj , 2η(rj)) with rj = r(xj),(6.3)

the multiplicity of {C(xj , 2η(rj))} is bounded by N .(6.4)

By definition we can find x∗
j ∈ E ∩ B(xj, η(rj)) such that

(6.5) rj/2 < δE(x∗
j ) ≤ rj .

Let µj = µ|C(xj ,2η(rj)) and observe that

(6.6) µ ≤
∑

µj ≤ Nµ.

From µj we construct a measure λj by

λj(S) = µj

(
4η(rj)

rj
(S − x∗

j ) + xj

)
for Borel sets S.

It is easy to see that

λj is concentrated on C(x∗
j , rj/2),(6.7)

‖λj‖ = ‖µj‖ ≤ Ah(η(rj)),(6.8)

λj(B(x, ρ)) = µj(B(x, ρ)) = ‖µj‖(6.9)

for ρ ≥ max{|x − xj | + 2η(rj), |x− x∗
j | + rj/2}.
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In (6.8) we have used (6.2) and the doubling property of h. Moreover, we have

(6.10) λj(B(x, r)) ≤ Ah

(
η(rj)

rj
r

)
for all x ∈ R

n and r > 0 .

In view of (6.5) and (6.7) we see that λj is concentrated on E. Let λ =
∑

λj . Then
λ is a measure concentrated on E. We claim

(6.11) W λ
K,q(x) ≤ A for x ∈ R

n.

If this is shown, then, by (6.6),
∫

Wλ
K,qdλ ≤ A ‖λ‖ ≈ ‖µ‖ ≈ Λh(F ) and hence by

Lemma 8

CK,p(E) ≥ A

∥∥∥∥
λ

(AΛh(F ))1/q

∥∥∥∥
p

≈ Λh(F ),

so that the arbitrariness of F yields the theorem.
Now let us prove (6.11). Hereafter, we fix x ∈ R

n. First we claim

(6.12) W
λj

K,q(x) ≤ A

with A independent of j and x. By (6.10) and change of the variable we have

∫ rj

0

λj(B(x, r))q−1K(r)qrn dr

r
≤ A

∫ 1

0

h(η(rj)t)
q−1K(rjt)

q(rjt)
n dt

t
,

where the last integral is bounded by (1.7). On the other hand, (6.8) yields
∫ ∞

rj

λj(B(x, r))q−1K(r)qrn dr

r
≤ Ah(η(rj))

q−1

∫ ∞

rj

K(r)qrn dr

r

= A[h(η(rj))/Φ(rj)]
q−1,

where the last term is bounded by assumption. Hence (6.12) follows.
Let us write

λ′ =
∑

′λj , λ′′ =
∑

′′λj ,

where
∑

′ (resp.
∑

′′) denotes the summation over j for which x ∈ C(xj , 2η(rj))
(resp. x 6∈ C(xj , 2η(rj))). In view of (6.4) the number of j appearing in

∑
′ is at

most N . Hence by (6.12)

(6.13) W λ′

K,q(x) ≤ A.

In order to treat W λ′′

K,q(x), we estimate λ′′(B(x, r)) =
∑

′′λj(B(x, r)). In the sum-

mation
∑

′′, we may consider only j such that λj(B(x, r)) > 0. Since λj is concen-
trated on C(x∗

j , rj/2), it follows that |x − x∗
j | ≤ r + rj/2. On the other hand, the

definition of
∑

′′ implies |x − xj | > 2η(rj). Since x∗
j ∈ B(xj , η(rj)), it follows that

r + η(rj)/2 ≥ r + rj/2 ≥ |x − x∗
j | ≥ |x − xj | − |xj − x∗

j | > 2η(rj) − η(rj),
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whence r > η(rj)/2 ≥ rj/2, |x − x∗
j | < 2r, |xj − x∗

j | < 2r and |x − xj | < 4r. Hence
max{|x − xj | + 2η(rj), |x − x∗

j | + rj/2} < 8r. Therefore (6.9) implies

λ′′(B(x, r)) =
∑

′′λj(B(x, r)) ≤
∑

′′λj(B(x, 8r))

=
∑

′′µj(B(x, 8r)) ≤
∑

µj(B(x, 8r)) ≤ Nµ(B(x, 8r)) ≤ Ah(r),

where we have used (6.6) and the doubling property of h. Since (1.6) follows from
(1.7), we have

Wλ′′

K,q(x) ≤ A

∫ ∞

0

h(r)q−1K(r)qrn dr

r
< ∞.

This, together with (6.13), yields (6.11). The proof is complete.

Remark. In view of Lemma 8 and the above proof, (1.7) can be replaced by

∫ min{1,1/r}

0

h(η(r)t)q−1K(rt)q(rt)n dt

t
≤ A for r > 0,

if
∫∞

0
K(t)tn−1dt < ∞. This is the case when K(t) = gα(t), the Bessel kernel.

Proof of Corollaries 1 and 2. We may assume that u ≥ 0. Let E = {x : u(x, y) > λ}
and E = E∗ =

⋃
(x,y)∈E B(x, y). In view of Lemma 4 and the proof of Theorem 3

E = {Nu > λ} and {Nηu > λ} =
⋃

(x,y)∈E B(x, η(y)). By definition δE(x) ≥ y

for (x, y) ∈ E and hence {Nηu > λ} ⊂ Ẽη =
⋃

x∈E B(x, η(δE(x)). This inclusion
and Theorems 5 and 6 readily yield the first assertions of Corollaries 1 and 2. The
second assertions follow from Theorem 3. The corollaries are proved.

7. Proof of Theorem 7

Proof of Theorem 7. We may assume that E is a compact set. By the Frostman
lemma we find a measure µ on E such that Λh(E) ≈ ‖µ‖ and µ(B(x, r)) ≤ h(r) for
all x ∈ R

n and r > 0. We have from Lemma 8

‖K ∗ µ‖q
q ≤ A

∫
Wµ

K,qdµ = A

∫
dµ(x)

∫ ∞

0

µ(B(x, t))q−1K(t)qtn
dt

t

≤ A ‖µ‖

∫ ∞

0

min{h(t), ‖µ‖}q−1K(t)qtn
dt

t
.

Using the duality theorem of Meyers [16, Theorem 14], we obtain

CK,p(E) ≥ A ‖µ‖

(∫ ∞

0

min{h(t), ‖µ‖}q−1K(t)qtn
dt

t

)1−p

.
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We observe from (1.5) that the right hand side is greater than

A

(∫ h−1(Λh(E))

0

(
h(t)

Λh(E)

)q−1

K(t)qtn
dt

t
+

∫ ∞

h−1(Λh(E))

K(t)qtn
dt

t

)1−p

≥ A

(∫ ∞

h−1(Λh(E))

K(t)qtn
dt

t

)1−p

= AΦ(h−1(Λh(E)).

Thus the theorem is proved.

Example. Let K(t) be the Bessel kernel gα(t). The capacity CK,p is called the
Bessel capacity of index (α, p) and denoted by Bα,p. If 0 < αp < n, then Bα,p

and Rα,p are locally comparable, i.e., Bα,p(E) ≈ Rα,p(E) for E ⊂ B(0, R0). By

Theorem 7 Λβ(E)1/β ≤ ABα,p(E)1/n−αp for E ⊂ B(0, R0) if n − αp < β ≤ n.

If αp = n, then Φ(r) ≈ (log
1

r
)1−p for 0 < r < 1/2. Condition (1.8) reads as

∫ r

0

h(t)q−1 dt

t
≤ Ah(r)q−1 log

1

r

for 0 < r < 1/2. Letting h(t) = tβ with 0 < β ≤ n, we obtain Bα,p(E) ≥

A(log
A

Λβ(E)
)1−p for E ⊂ B(0, R0). Letting h(t) = (log

1

t
)−` for 0 < t < 1/2 with

` > p − 1, we obtain Bα,p(E) ≥ AΛh(E)(p−1)/` for E ⊂ B(0, R0).

Remark. Maz’ya [15, §8.5] gave some similar results.

8. Proof of Propositions 1 and 2

Proof of Proposition 1. In view of the proof of Theorem 1, we see that (ii) =⇒ (i).
Hence we assume (i). Let r > 0 and let u = PχB(0,r). Then we see that u > A0 on
T (B(0, r)) (see the proof of Theorem 2 (i)). Hence, Lemmas 2 and 3 yield

⋃

(x,y)∈T (B(0,r))

(x − Ω(y)) ⊂ {x : MΩu(x) > A0}.

In particular, −Ω(r) ⊂ {x : MΩu(x) > A0}. On the other hand, {x : Nu(x) >
A0} ⊂ B(0, A2r) by inspection. Hence (i) implies

Λh(Ω(r)) = Λh(−Ω(r)) ≤ Λh({MΩu > A0})

≤ AΛh({Nu > A0}) ≤ AΛh(B(0, A2r)) ≤ Ah(r),
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so that there are (xj, rj) such that Ω(r) ⊂
⋃

B(xj, rj) and
∑

h(rj) ≤ Ah(r). We
may assume that rj ≤ r. Then by (1.4) and (1.3)

A ≥
∑ h(rj)

h(r)
≥ A

∑
h
(rj

r

)
≥ A

∑(rj

r

)n

.

Hence |Ω(r)| ≤ A
∑

rn
j ≤ Arn. Thus Ω satisfies the cross section condition.

Proof of Proposition 2. In the same way as in the above proof we may assume (i).
Let r > 0 and let u = PχB(0,r). We have

Rα,p(Ω(r)) = Rα,p(−Ω(r)) ≤ Rα,p({MΩu > A0})

≤ ARα,p({Nu > A0}) ≤ ARα,p(B(0, A2r)) ≤ Arn−αp.

By Theorem 7 with β = n, we have |Ω(r)| ≤ Arn. Thus Ω satisfies the cross section
condition.

Remark. Proposition 2 cannot be generalized to the Bessel capacity Bα,p with αp =
n. Since Bα,p(B(0, r)) ≈ (log 1/r)1−p as r → 0, it follows that Bα,p(B(0, rε)) ≈
Bα,p(B(0, r)) as r → 0 for any ε > 0. Hence Bα,p(B(0, rε)) ≤ Bα,p(B(0, A2r)). On
the other hand if 0 < ε < 1, then |B(0, rε)|/rn → ∞ as r → 0.
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