1	Full title				
2	Advanced Glycation End Product 3 (AGE3) Suppresses the Mineralization of Mouse Stromal ST2 Cells				
3	and Human Mesenchymal Stem Cells by Increasing TGF-β Expression and Secretion				
4					
5	Authors' names and institutions				
6	Masakazu Notsu, Toru Yamaguchi, Kyoko Okazaki, Ken-ichiro Tanaka, Noriko Ogawa, Ippei Kanazawa, and				
7	Toshitsugu Sugimoto				
8	Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan				
9					
10	Running title				
11	Effects of AGE-TGF-β signal on osteoblasts				
12					
13	Key words				
14	Advanced Glycation End Products (AGEs), Bone quality deterioration, Osteoblast differentiation, TGF- β				
15					
16	Word Count				
17	3996				
18					
19	Corresponding author's address, telephone and fax number, and email address				
20	Address all correspondence and requests for reprints to: Toru Yamaguchi, Shimane University, 89-1, Enya-cho,				
21	Izumo, Shimane, 693-8501, Japan. Tel +81 853-20-2183, Fax +81 853-23-8650. E-mail:				
22	yamaguch@med.shimane-u.ac.jp				
23					
24	Disclosure Summary				
25	M.N., T.Y., K.O., K.T., N.O., I.K., and T.S. have no potential conflicts of interest to declare.				

27 Abstract

28 In diabetic patients, advanced glycation end products (AGEs) cause bone fragility because of 29 deterioration of bone quality. We previously showed that AGEs suppressed the mineralization of mouse stromal 30 ST2 cells. Transforming growth factor (TGF)- β is abundant in bone, and enhancement of its signal causes bone 31 quality deterioration. However, whether TGF- β signaling is involved in the AGE-induced suppression of 32 mineralization during the osteoblast lineage remains unknown. We therefore examined the roles of TGF- β in the 33 AGE-induced suppression of mineralization of ST2 cells and human mesenchymal stem cells (hMSCs). AGE3 34 significantly (P < 0.001) inhibited mineralization in both cell types, whereas transfection with siRNA for the 35 receptor for AGEs (RAGE) significantly (P<0.05) recovered this process in ST2 cells. AGE3 increased 36 (P < 0.001) the expression of TGF- β mRNA and protein, which was partially antagonized by transfection with 37 RAGE siRNA. Treatment with a TGF-B type I receptor kinase inhibitor, SD208, recovered AGE3-induced 38 decreases in osterix (P<0.001) and osteocalcin (P<0.05) and antagonized the AGE3-induced increase in Runx2 39 mRNA expression in ST2 cells (P<0.001). Moreover, SD208 completely and dose-dependently rescued 40 AGE3-induced suppression of mineralization in both cell types. In contrast, SD208 intensified AGE3-induced 41 suppression of cell proliferation as well as AGE3-induced apoptosis in proliferating ST2 cells. These findings 42 indicate that, after cells become confluent, AGE3 partially inhibits the differentiation and mineralization of 43 osteoblastic cells by binding to RAGE and increasing TGF- β expression and secretion. They also suggest that 44 TGF- β adversely affects bone quality not only in primary osteoporosis but also in diabetes-related bone disorder.

45

46

47 Introduction

48 Both diabetes mellitus (DM) and osteoporotic fractures are important healthcare problems, because 49 they affect quality of life and increase morbidity and mortality (1). Several community-based studies and some 50 national databases indicate that the incidence of type 2 DM (T2DM) has increased over the past three decades 51 (2). In Japan, as many as 13 million patients are thought to have osteoporosis, and this number is increasing 52 (3-5). Previous studies have shown that, compared with nondiabetic subjects, patients with T2DM have a 1.4- to 53 4.7-fold increased risk of fracture, although they have normal or slightly increased bone mineral density (BMD) 54 (6-8). These findings suggest that fracture risk in T2DM is not reflected by BMD but is related to bone fragility 55 independent of BMD. Several studies have suggested that the pathogenesis of diabetic osteoporosis is related to 56 decreased osteoblastic bone formation rather than increased osteoclastic bone resorption (9,10).

57 Hyperglycemia in DM accelerates the formation of advanced glycation end products (AGEs), which 58 result from a chain of chemical reactions in plasma or tissue that follow nonenzymatic Browning reactions 59 between reducing sugars and free reactive amino groups of proteins(11,12). The cellular interactions of AGEs 60 are mediated by the receptor for AGE (RAGE), which is a multiligand receptor belonging to the 61 immunoglobulin superfamily and exerts biologic effects through binding to its ligands, including AGEs. 62 Pentosidine is an AGE, and an increase in pentosidine cross-links in bone matrix is reported to impair bone 63 mechanical properties in the absence of decreased BMD (13). Other studies have also shown a positive 64 association between serum or urinary pentosidine levels and fracture risk in T2DM patients (14,15). Therefore, 65 AGEs may act as causative factors for poor bone quality. In contrast, low serum levels of endogenous soluble 66 RAGE, which has extensive neutralizing effects against various AGEs, are a risk factor for the vertebral 67 fractures prevalent in T2DM patients (16). In an in vitro study, we found that AGE2 and AGE3 suppressed the 68 mineralization of mouse stromal ST2 cells (17,18) by inhibiting the expression of osteoblastogenetic mRNAs 69 such as those for osteocalcin (OCN) and osterix (OSX) (19,20). Moreover, these AGEs significantly suppressed 70 cell growth and increased apoptotic cell death (19). However, the biologic substances that mediate these 71 detrimental effects of AGEs on the osteoblast lineage remain unknown.

Transforming growth factor (TGF)- β is a multifunctional polypeptide that regulates a variety of cellular functions, including cell proliferation, differentiation, migration, and apoptosis under physiologic and pathologic conditions (21). TGF- β is sequestered at high levels in bone matrix and is a critical regulator of osteogenesis (22). TGF- β activates intracellular Smad3, which, in turn, binds Runx2 at the *runx2* and *OCN* promoters to repress the transcription of genes required for osteoblast differentiation (23,24). Previous animal studies have shown that reducing TGF- β signaling leads to increases in functional parameters of bone quality such as bone stiffness, as evaluated by the three-point bending test (25-27). Moreover, another animal study has shown that inhibition of TGF- β type 1 receptor kinase has anabolic and anti-catabolic effects on bone by increasing both BMD and bone stiffness (28). These findings suggest that TGF- β signaling has detrimental effects on bone quality.

There is a documented association between AGE–TGF- β signaling and diabetic complications. In 82 83 humans and in animal models, TGF-B mRNA and protein levels are significantly increased in the glomeruli and 84 tubulointerstitium in diabetes (29-31), and administration of neutralizing anti-TGF- β antibodies to STZ-induced 85 diabetic mice prevents glomerular hypertrophy (32). Moreover, AGEs stimulate TGF-B expression by 86 mesangial cells (33,34). In addition, TGF- β levels are significantly higher in patients with diabetic neuropathy 87 than in those without it (35). In an experiment using human peripheral nerve microvascular endothelial cells, 88 AGEs induced basement membrane hypertrophy and disrupted the blood-nerve barrier by the action of 89 autocrine TGF- β released by pericytes (36). In the retina, TGF- β is important in controlling the formation of 90 new vessels, and TGF-\beta1 is upregulated in proliferative diabetic retinopathy (37). Matsumoto et al. (38) 91 reported a relationship between glycoxidation and cytokine levels in the vitreous of eves with diabetic 92 retinopathy, and they suggested that elevated levels of pentosidine and TGF-β may play an important role in the 93 development of diabetic retinopathy. Together, these findings suggest that AGEs can cause diabetic 94 complications in the kidneys, nerves, and retina by increasing TGF- β levels. However, whether AGEs adversely 95 affect osteoblastic mineralization and differentiation during diabetic bone disorder by enhancing TGF-β 96 signals—as is seen in other complications of diabetes—is unknown.

97 Here, we addressed this issue by evaluating the role of TGF- β in the AGE3-induced suppression of 98 osteoblastic differentiation and mineralization of ST2 cells and human mesenchymal stem cells (hMSCs). We 99 found that AGE3 inhibited the differentiation and mineralization of these cells in part by binding to RAGE and 100 increasing TGF- β expression and secretion.

101

102 Materials and methods

103 Materials

104

Cell culture medium and supplements were purchased from GIBCO-BRL (Rockville, MD).

Human recombinant BMP-2 was kindly provided by Astellas Pharmaceutical (Tokyo, Japan). All otherchemicals were of the highest grade available commercially.

107

108 Cell culture

109 Mouse ST2 cells were purchased from the RIKEN Cell Bank (Tsukuba, Japan). They were cultured under 5% CO₂ at 37 °C in α-minimum essential medium (α-MEM; containing 5.5 mmol/L glucose) 110 111 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (GIBCO-BRL); the culture 112 medium was changed twice weekly. To induce osteoblastic differentiation, ST2 cells were cultured in α -MEM 113 supplemented with 10% FBS, 1% penicillin–streptomycin, 5 mM β-glycerophosphate, 100 µg/mL ascorbic 114 acid, and 100 ng/mL BMP-2 after reaching confluence. hMSCs were purchased from Lonza (Walkersville, 115 MD) and cultured in MSC basal medium (Lonza). To induce osteoblastic differentiation, hMSCs were cultured 116 in MSC basal medium supplemented with 1% penicillin-streptomycin, β -glycerophosphate, 100 μ g/mL 117 ascorbic acid, and dexamethasone (Lonza) after reaching confluence.

118

119 Preparation of AGEs

AGE–BSA was prepared as described previously (20). AGE3 was prepared by incubating 50 mg/mL BSA (Sigma, St. Louis, MO) with 0.1 M glycolaldehyde (Sigma) at 37 °C for 7 days under sterile conditions in 0.2 M sodium phosphate buffer (pH 7.4) containing 5 mM diethylenetriamine–pentaacetic acid. As a negative control, nonglycated BSA was incubated under the same conditions, except for the absence of glycolaldehyde. After the incubation period, low-molecular–weight reactants and aldehydes were removed by using a PD-10 column (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and dialyzing against phosphate-buffered saline (PBS).

- 127
- 128 Mineralization assay

The mineralization of ST2 cells and hMSCs was assessed in 6-well or 12-well plates by using von Kossa staining and Alizarin Red staining. Cells were stained with AgNO₃ and fixed with 2.5% NaS₂O₃ according to the von Kossa method to detect phosphate deposits in bone nodules (20,39). At the same time, duplicate plates were fixed with ice-cold 70% ethanol and stained with Alizarin Red to detect calcification. For quantification, cells stained with Alizarin Red were destained with ethylpyridinium chloride, the extracted stain 134 was transferred to a 96-well plate, and the absorbance at a wavelength of 550 nm was measured with a135 microplate reader, as previously described (20,39).

136

137 Quantification of secreted TGF-β1

138 The concentration of TGF- β 1 in whole-cell lysates or culture medium was determined by using 139 commercially available diagnostic kits (R&D Systems, Minneapolis, MN). In brief, samples were activated 140 with 1 N HCl for 10 min at room temperature, followed by neutralization with 1.2 N NaOH in HEPES. 141 Samples were added to the wells of microtiter plates, which were coated with a monoclonal anti-TGF-B1 142 antibody. After incubation of the sample for 2 h at room temperature, a horseradish-peroxidase-conjugated 143 polyclonal antibody against TGF-β1 was added and the plates were incubated for another 2 h. The assay was 144 developed with peroxidase substrate for 30 min at room temperature in the dark. Absorbance was measured at 145 450 nm, and a reference wavelength of 540 nm was used. Standard curves for TGF-β1 were prepared by using 146 serial dilutions of exogenous TGF- β 1.

147

148 Real-time PCR quantification of gene expression

149 SYBR Green chemistry was used to quantify the amounts of mRNAs for TGF-B and a 150 housekeeping gene, 36B4, according to an optimized protocol (20,39,40). Total RNA was isolated by using 151 Trizol reagent (Invitrogen, San Diego, CA) and further cleaned by two successive phenol-chloroform 152 extractions. First-strand cDNA was synthesized by using an oligo-dT primer and a SuperScript-III cDNA 153 synthesis kit (Invitrogen). Sense and antisense oligonucleotide primers were designed according to published 154 cDNA sequences by using Primer Express (version 2.0.0, Applied Biosystems, Carlsbad, CA). The cDNA was 155 amplified by using an ABI PRISM 7000 sequence detection system (Applied Biosystems Inc.). The 156 cDNA-specific SYBR Green Mix was incorporated into the PCR buffer provided in the QuantiTect SYBR 157 PCR kit to allow for quantitative detection of the PCR product in a 25-µL reaction volume. The temperature 158 profile of the reaction was 60 °C for 2 min, followed by 95 °C for 15 min and 40 cycles of denaturation at 94 °C 159 for 15 s and annealing and extension at 60 °C for 1 min. Primer sequences were as follows: TGF-β, 160 5'-TGAACCAAGGAGACGGAATACAGG-3' and 5'-GCCATGAGGAGCAGGAAGGG-3'; OCN, 161 5'-TGCTTGTGAC-GAGCTATCAG-3' 5'-GAGGACAGGGAGGATCAAGT-3'; and OSX, 162 5'-CCCTTCTCAAGCACCAATGG-3' and 5'-AGGGTGGGTAGTCATTTGCATAG-3'; Runx2,

163	5'-AAGTGCGGTGCAAACTTTCT-3'	and	5'-TCTCGGTGGCTGGTAGTG A-3'; and 36B4,
164	5'-AAGCGCGTCCTGGCATTGTCT-3'	and	5'-CCGCAGGGGGCAGCAGTGGT-3'.

165

166 RNA interference for RAGE

167 RNA interference was used to downregulate the expression of RAGE in ST2 cells. RAGE small 168 interfering RNA (siRNA) and negative-control siRNA duplexes were designed and synthesized by Ambion 169 (Austin, TX). For gene knockdown experiments, ST2 cells were seeded in 6-well plates and cultured at 37 °C 170 for 48 h in α -MEM containing 10% FBS and antibiotics, followed by 24 h incubation in medium without 171 antibiotics. Cells then were transfected with siRNAs (50 nM) by using Lipofectamine (Invitrogen, San Diego, 172 CA) according to the manufacturer's instructions. After another 48 h of culture, cells were transferred to another 173 plate containing fresh α -MEM supplemented with 10% FBS and antibiotics.

174

175 Evaluation of cell proliferation

176 ST2 cells ware seeded on 96-well plates at a density of 3000 cells/well and were incubated overnight 177 in α -MEM containing 10% FBS and antibiotics. The next day, the cells were treated with either BSA (negative 178 control) or AGE3. At the end of the experimental protocol, ST2 cells were labeled with bromodeoxyuridine 179 (BrdU) for 2 h at 37 °C. The ST2 cells then were fixed and denatured for 30 min at room temperature, followed 180 by exposure to a peroxidase-conjugated anti-BrdU antibody (Roche Diagnotics, Indianapolis, IN) for 90 min at 181 room temperature. The ST2 cells then were washed three times with PBS and incubated with a peroxidase 182 substrate solution (Roche Diagnotics, Indianapolis, IN) at room temperature until the development of a 183 noticeable color. The color change was quantified by using the absorption spectrometer to determine the amount 184 of cell proliferation. An absorbance wavelength of 370 nm and reference wavelength of 492 nm were used.

185

186 Assessment of apoptotic cell death

187 ST2 cells ware seeded on 96-well plates at a density of 3000 cells/well and incubated overnight at 188 37 °C in α -MEM with 10% FBS and antibiotics. The next day, the cells were treated with either BSA (negative 189 control) or AGE3. The cells then were lysed, and the DNA fragments in the supernatant were quantified in an 190 ELISA (Cell Death Detection ELISA Plus, Roche Molecular Biochemicals, Indianapolis, IN) on day 3 after 191 treatment. 192 Apoptosis was evaluated in differentiated ST2 cells and hMSCs. Cells were treated with either BSA

or AGE3, as described earlier, on day 11 after reaching confluence. On day 14, the cells were lysed, and DNA
 fragments in the supernatant were analyzed by using an ELISA (Roche Molecular Biochemicals).

195

196 Statistical analysis

- 197 Results are expressed as means \pm SEM. Differences between groups were evaluated by using 198 one-way analysis of variance (ANOVA), followed by Fisher's protected least significant difference test. For all 199 statistical tests, a value of *P* < 0.05 was considered to indicate a statistically significant difference.
- 200
- 201 Results
- 202 Effect of AGE3 on mineralization of ST2 cells and hMSCs

Treatment of ST2 cells with 200 µg/mL AGE3 for 14 and 21 days or of hMSCs with 200 µg/mL AGE3 for 14 days inhibited mineralization according to both von Kossa and Alizarin Red staining (Figures 1A and C). Alizarin red quantification analysis of ST2 cells and hMSCs showed that AGE3 significantly (P <0.001) inhibited mineralization by 71% on experimental day 21 and 83% on day 14, respectively, relative to control values (Figure 1B and D).

208

209 Effect of RAGE siRNA on AGE-suppressed mineralization in ST2 cells

AGEs are known ligands of RAGE, and we previously showed that AGE3 significantly increased RAGE mRNA expression in ST2 cells on days 2 and 3 after treatment (19,20). We therefore investigated whether transfection with RAGE siRNA recovered the mineralization suppressed by AGE3 in ST2 cells. RAGE siRNA transfection partially but significantly (P < 0.05) decreased the amount of RAGE mRNA (Figure 2A), and the mineralization of the transfected cells recovered by 17% (P < 0.01), as determined by Alizarin Red staining and quantification (Figure 2B). This result suggests that AGE3 suppresses the mineralization of ST2 cells in part by binding to RAGE.

217

218 Effects of AGE3 on expression of TGF-β mRNA and protein in ST2 cells and hMSCs

219 Next, we examined the effects of AGE3 on the expression of TGF- β mRNA and protein in ST2 cells 220 and hMSCs. According to real-time PCR assays, AGE3 significantly (P < 0.001 all comparisons) increased the expression of TGF-β mRNA in ST2 cells on days 3, 5, and 7 after treatment (Figure 3A). AGE3 also significantly increased TGF-β protein levels of ST2 supernatants on days 5 and 7 (P < 0.01) and whole-cell lysates on days 1 through 7 (P < 0.001), as measured with ELISAs (Figure 3B). In hMSCs, AGE3 significantly (P < 0.001) increased the levels of TGF-β protein in whole-cell lysates on days 1 through 7 (Figure 3B). Transfection of RAGE siRNA into ST2 cells decreased (P < 0.05) the AGE3-induced increase in TGF-β protein secretion by 24%, as determined by ELISA (Figure 4).

227

Effects of a TGF-β type I receptor kinase inhibitor on expression of OSX and OCN mRNAs in ST2 cells and
 on AGE-suppressed mineralization in ST2 cells and hMSCs

230 We previously showed that OSX and OCN mRNA levels in ST2 cells were suppressed by AGE3 (19). 231 Here, we used real-time PCR assays to examine the effects of a TGF- β type I receptor kinase inhibitor, SD208, 232 on these processes. Treatment with SD208 (2.5 μ M) significantly (P < 0.05) recovered the expression of OSX 233 and OCN mRNAs in ST2 cells on day 14 (Figure 5A and B, respectively). In contrast, treatment with SD208 234 significantly (P < 0.001) antagonized the AGE3-induced increase in Runx2 mRNA expression in ST2 cells on 235 day 14 (Figure 5C). Moreover, Alizarin Red staining showed that treatment with SD208 (1 to 2.5 µM) significantly (P < 0.001) and dose-dependently recovered the AGE3-induced suppression of mineralization in 236 237 ST2 cells and hMSCs (Figure 6A and B).

238

Effects of AGE3 and SD208 on proliferation and apoptosis of proliferating ST2 cells and on apoptosis of
 differentiating ST2 cells and hMSCs

We previously reported that AGE3 decreased cell growth and increased apoptosis in subconfluent ST2 241 242 cells (19). We therefore examined the effects of SD208 on the number and apoptosis of AGE3-treated ST2 cells 243 to clarify the role of TGF- β signaling in proliferation of ST2 cells. Treatment with SD208 (2.5 μ M) significantly 244 (P < 0.001 both comparisons) intensified the AGE3-induced suppression of ST2 cell growth (Figure 7A), as 245 well as their AGE3-induced apoptosis (Figure 7B). We also examined the effects of AGE3 or SD208 on the 246 apoptosis of ST2 and hMSCs in the mature stages. The results showed that these agents did not affect the 247 apoptosis of either cell type after they had reached confluence and began differentiation (that is, on days 11 248 through 14; data not shown).

249

250 Discussion

251 Here, we found that AGE3 suppresses mineralization of mouse stromal ST2 cells as well as hMSCs by 252 increasing TGF-β expression and secretion (Figures 3, 5, 6). Treatment with a TGF-β type I receptor kinase 253 inhibitor, SD208, recovered the AGE3-induced decreases in OSX and OCN and antagonized the 254 AGE3-induced increase in Runx2 mRNA expression in ST2 cells (Figure 5). Moreover, SD208 completely and dose-dependently recovered the AGE3-induced suppression of mineralization in both cell types (Figure 6). 255 256 These findings suggest that AGE3–TGF-B signaling has negative effects on, and impairs osteoblastic 257 differentiation in, both cell types at the maturation stage. Accumulating evidence indicates that the TGF- β signal 258 suppresses osteoblast differentiation in vitro (23,24,41,42). Alliston et al. (23) showed that the TGF-B-Smad3 259 signal repressed the expression of Runx2 and OCN mRNAs at 48 h and 6 days, respectively, and decreased 260 mineralization at 10 days in osteoblastic cells treated with TGF-B. Kang et al. (24) showed that a controlled 261 balance of histone acetylation and deacetylation at the OSE2 sequence of the OCN promoter regulates 262 osteoblastic differentiation and that TGF-β induces and stabilizes HDAC4 and HDAC5, which modulate the 263 repression of Runx2-mediated transcription of the OCN gene. Their results indicated that the interaction of 264 TGF-β/Smad3 signaling with HDACs represses Runx2 and OCN function in differentiating osteoblasts (22). 265 Maeda et al. (41) showed that the TGF- β type I receptor kinase inhibitor, SB431542, greatly enhanced the 266 osteoblastic differentiation of mouse C2C12 cells. Takeuchi et al. (42) reported that treatment with SB431542 267 inhibited endogenous TGF- β and increased the formation of mineralized nodules. These authors demonstrated that inhibition of TGF-B released stromal cells from differentiation arrest due to multiple myeloma and 268 269 facilitated the formation of terminally differentiated osteoblasts (40). Our findings that SD208-induced 270 inhibition of TGF-β signaling increased the mineralization of ST2 cells and hMSCs agree with these previous 271 results and suggest that AGEs augment these inhibitory effects of TGF- β on osteoblastic differentiation.

We found that the AGE3–TGF-β signal increased Runx2 mRNA expression in ST2 cells on day 14 after treatment with AGE3. Our preliminary experiments showed that AGE3 treatment did not affect Runx2 mRNA expression in the cells on day 7, indicating that Runx2 mRNA expression increased during the late stage of cell differentiation. Runx2 is known to have contradictory effects during the early, compared with late, stages of osteoblastic differentiation. During early differentiation, Runx2 directs multipotent mesenchymal cells to the osteoblast lineage and inhibits them from differentiating along the adipocyte and chondrocyte lineages. In contrast, after multipotent mesenchymal cells differentiate to preosteoblasts, Runx2 directs them toward becoming immature osteoblasts but inhibits their further maturation and transition into osteocytes, keeping osteoblasts in an immature stage (43). Therefore, the suppression of OCN and OSX expression and the AGE3-associated enhancement of Runx2 expression at the late osteoblastic differentiation stage likely would act in concert to inhibit the differentiation of preosteoblasts to mineralizing mature osteoblasts and seems to be in accord with the AGE3-induced suppression of mineralization of ST2 cells and hMSCs.

In our study and previous ones, our AGE3 preparation inhibited the mineralization of osteoblastic MC3T3-E1 and ST2 cells as well as hMSCs (19,20). These effects were not toxic, because we previously showed that AGE3 prepared by the same method enhanced the calcification of rat vascular smooth muscle cells, in contrast to its effect on these osteoblastic cells (44). These findings suggest that the biologic activities of our AGE3 preparation are similar to those of endogenous AGEs in patients with DM, namely bone fragility and vascular calcification.

290 We found that siRNA-induced inhibition of RAGE recovered AGE3-induced suppression of 291 mineralization (Figure 2) and antagonized AGE3-induced increases in TGF-β protein in ST2 cells (Figure 4). 292 These results demonstrate that, by binding to RAGE, AGE3 at least contributed to the increased expression of 293 TGF-β protein and suppressed mineralization of ST2 cells. AGEs have multiple receptors, including RAGE, 294 CD36, lectin-like oxidized low-density lipoprotein receptor 1, macrophage scavenger receptors, and AGER1, 2, 295 and 3 (45-50). The presence of multiple AGE receptors may explain why RAGE siRNA had only a partial 296 effect on the cells in our study. We performed another experiments using a neutralizing antibody against human 297 RAGE (R & D systems, Minneapolis, MN), which has approximately 10% cross-reactivity with recombinant 298 mouse RAGE, and found that the antibody failed to recover mineralization suppressed by AGE3 in ST2 cells or 299 hMSCs at the concentration range from 5 to 15µg/ml (data not shown). It might be because these antibody 300 concentrations were not high enough to block the RAGE activities in the cells.

301 TGF- β exerts contradictory effects on bone cells depending on their maturation stage. In proliferating 302 osteoblasts, TGF- β stimulates osteoblastic proliferation and the formation of periosteal woven bone when it is 303 injected directly onto the periostea of the parietal bones of rats (51,52). Treatment of human osteoblast cells with 304 TGF- β downregulates the expression of the Wnt antagonist sFRP-1 and prolongs the life of these cells (53). 305 Other researchers have shown that TGF- β decreases TNF- α -induced apoptosis in murine osteoblasts (54). In 306 addition, TGF- β prevents the osteoblastic apoptosis induced by skeletal unloading via PI3K–Akt signaling (55). 307 In contrast, several studies in mature osteoblasts have shown that the TGF- β signal suppresses osteoblastic 308 differentiation in vitro, as mentioned earlier (23,24,41,42,56). Another study has shown that TGF- β added to 309 confluent cultures inhibits the formation of bone nodules by reducing their number and total area (57). In our 310 study, when ST2 cells were proliferating and subconfluent, SD208-induced inhibition of TGF-β signaling 311 intensified AGE3-induced suppression of cell growth and AGE3-induced cell apoptosis (Figure 7). These 312 results suggest that the TGF- β signal antagonizes the detrimental effects of AGE3 by increasing cell number and 313 reducing apoptosis in proliferating ST2 cells. These findings contrast with those we obtained by using confluent 314 cells, in which the TGF-B signal augmented the detrimental effects of AGE3 on osteoblast differentiation. Therefore, our results also indicate that TGF-B has biphasic and contradictory effects in ST2 cells, depending on 315 316 their maturation stage. These findings suggest that we should consider the extent of cell maturation when we 317 target TGF-β signals to treat diabetic osteoporosis. Animal studies using diabetic and nondiabetic wild-type and 318 RAGE knockout mice are needed to demonstrate the role of TGF- β in diabetic bone loss and to ascertain the 319 relevance of our findings in the clinical context.

320 A recent meta-analysis (7) showed that, compared with non-DM controls, T2DM patients had higher 321 spine and hip BMD than did non-DM controls (z-scores = 0.41 and 0.27, respectively) but T1DM patients had 322 lower spine and hip BMD (z-scores = -0.22 and -0.37, respectively). This discrepancy is partly because T2DM 323 patients typically are obese and insulin resistant, whereas T1DM patients lack these features. Several studies 324 have shown that body weight is positively correlated with BMD, probably because of mechanical stress, and 325 that loss of body weight lowers BMD values (58-60). The increased levels of circulating insulin due to insulin 326 resistance may exert anabolic actions on bone (61), and high BMD is a very consistent finding across a wide 327 range of hyperinsulinemic states (62,63). However, clinical studies (64,65) have shown that serum OCN levels are lower in T2DM patients than in non-DM subjects and that serum OCN increases after glycemic control is 328 329 achieved in diabetic patients. These findings indicate that T2DM patients still have diminished bone formation 330 despite slightly increased BMD. Because here we examined the effects of AGEs on osteoblastic differentiation 331 in the absence of mechanical stress or high insulin levels, our study design likely reflects the conditions of 332 typical T1DM and of T2DM without obesity or insulin resistance.

333 Our study had several limitations. We did not examine whether AGE receptors other than RAGE or 334 other components of TGF- β and the RAGE signaling pathway were involved in the inhibition of osteoblastic 335 differentiation of ST2 cells and hMSCs. In addition, we did not examine the signals that mediated

336	AGE	3-induced suppression of osteoblast proliferation and stimulation of apoptosis, nor the crosstalk between			
337	AGE	signals and TGF- β signals.			
338	In conclusion, we found that AGE3 inhibited the differentiation and mineralization of osteoblastic ST2				
339	cells and hMSCs by binding to RAGE and increasing TGF- β expression and secretion after the cells reached				
340	confluence. These findings suggest that TGF- β causes a deterioration in bone quality, not only during primary				
341	osteoporosis but also during diabetes-related bone disorder, and that TGF-B adversely affects not only kidney,				
342	retina, and nerves, but also the bone, as part of diabetic complications.				
343					
344	Ackn	owledgement			
345	This work was supported in part by Grant-in-Aid No. 25460898 (to T.Y.) from the Ministry of Science,				
346	Education and Culture of Japan.				
347					
348	Reference				
349	1.	Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jonsson B			
350		2004 Mortality after osteoporotic fractures. Osteoporos Int 15(1):38-42.			
351	2.	Fox CS, Pencina MJ, Meigs JB, Vasan RS, Levitzky YS, D'Agostino RB, Sr. 2006 Trends in the			
352		incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham Heart Study.			
353		Circulation 113(25):2914-2918.			
354	3.	Yoshimura N, Muraki S, Oka H, Kawaguchi H, Nakamura K, Akune T 2010 Cohort profile:			
355		research on Osteoarthritis/Osteoporosis Against Disability study. Int J Epidemiol 39(4):988-995.			
356	4.	Orimo H, Yaegashi Y, Onoda T, Fukushima Y, Hosoi T, Sakata K 2009 Hip fracture incidence in			
357		Japan: estimates of new patients in 2007 and 20-year trends. Arch Osteoporos 4(1-2):71-77.			
358	5.	Yoshimura N, Muraki S, Oka H, Mabuchi A, En-Yo Y, Yoshida M, Saika A, Yoshida H, Suzuki T,			
359		Yamamoto S, Ishibashi H, Kawaguchi H, Nakamura K, Akune T 2009 Prevalence of knee			
360		osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: the research on			
361		osteoarthritis/osteoporosis against disability study. J Bone Miner Metab 27(5):620-628.			
362	6.	Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black			
363		DM, Cummings SR 2001 Older women with diabetes have an increased risk of fracture: a prospective			
364		study. J Clin Endocrinol Metab 86(1):32-38.			

- 365 7. Vestergaard P 2007 Discrepancies in bone mineral density and fracture risk in patients with type 1 and
 366 type 2 diabetes--a meta-analysis. Osteoporos Int 18(4):427-444.
- 367 8. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T 2009 Diabetic patients have an
 368 increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res
 369 24(4):702-709.
- Bouillon R, Bex M, Van Herck E, Laureys J, Dooms L, Lesaffre E, Ravussin E 1995 Influence of
 age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J Clin
 Endocrinol Metab 80(4):1194-1202.
- **10.** Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T 2009 Serum
 osteocalcin/bone-specific alkaline phosphatase ratio is a predictor for the presence of vertebral fractures
 in men with type 2 diabetes. Calcif Tissue Int 85(3):228-234.
- 376 11. Singh R, Barden A, Mori T, Beilin L 2001 Advanced glycation end-products: a review. Diabetologia
 377 44(2):129-146.
- Pongor S, Ulrich PC, Bencsath FA, Cerami A 1984 Aging of proteins: isolation and identification of
 a fluorescent chromophore from the reaction of polypeptides with glucose. Proceedings of the National
 Academy of Sciences of the United States of America 81(9):2684-2688.
- 381 13. Saito M, Fujii K, Mori Y, Marumo K 2006 Role of collagen enzymatic and glycation induced
 382 cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int
 383 17(10):1514-1523.
- Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T 2008 Serum pentosidine levels are
 positively associated with the presence of vertebral fractures in postmenopausal women with type 2
 diabetes. J Clin Endocrinol Metab 93(3):1013-1019.

Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE,
 Tylavsky FA, Black DM 2009 Cummings SR, Harris TB, Bauer DC. Pentosidine and increased
 fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94(7):2380-2386.

Yamamoto M, Yamaguchi T, Yamauchi M, Sugimoto T 2009 Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone mineral density in patients with type 2 diabetes. Diabetes Care 32(12):2263-2268.

- Otsuka E, Yamaguchi A, Hirose S, Hagiwara H 1999 Characterization of osteoblastic differentiation
 of stromal cell line ST2 that is induced by ascorbic acid. Am J Physiol 277(1 Pt 1):C132-138.
- Yamaguchi A, Ishizuya T, Kintou N, Wada Y, Katagiri T, Wozney JM, Rosen V, Yoshiki S 1996
 Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal
 cell lines, ST2 and MC3T3-G2/PA6. Biochem Biophys Res Commun 220(2):366-371.
- 399 19. Okazaki K, Yamaguchi T, Tanaka K, Notsu M, Ogawa N, Yano S, Sugimoto T 2012 Advanced
 400 glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse
 401 stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing
 402 cell apoptosis. Calcif Tissue Int 91(4):286-296.
- 403 20. Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T 2007 The combination
 404 of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic
 405 MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res
 406 39(12):871-875.
- 407 21. Massague J, Blain SW, Lo RS 2000 TGFbeta signaling in growth control, cancer, and heritable
 408 disorders. Cell 103(2):295-309.
- 409 22. Janssens K, ten Dijke P, Janssens S, Van Hul W 2005 Transforming growth factor-beta1 to the bone.
 410 Endocr Rev 26(6):743-774.
- 411 23. Alliston T, Choy L, Ducy P, Karsenty G, Derynck R 2001 TGF-beta-induced repression of CBFA1
 412 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J
 413 20(9):2254-2272.
- 414 24. Kang JS, Alliston T, Delston R, Derynck R 2005 Repression of Runx2 function by TGF-beta
 415 through recruitment of class II histone deacetylases by Smad3. EMBO J 24(14):2543-2555.

416 25. Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, Marshall SJ, Ritchie

- 417 **RO, Derynck R, Alliston T** 2005 TGF-beta regulates the mechanical properties and composition of
 418 bone matrix. Proceedings of the National Academy of Sciences of the United States of America
 419 102(52):18813-18818.
- Chang JL, Brauer DS, Johnson J, Chen CG, Akil O, Balooch G, Humphrey MB, Chin EN,
 Porter AE, Butcher K, Ritchie RO, Schneider RA, Lalwani A, Derynck R, Marshall GW,
 Marshall SJ, Lustig L, Alliston T 2010 Tissue-specific calibration of extracellular matrix material

- 423 properties by transforming growth factor-beta and Runx2 in bone is required for hearing. EMBO Rep424 11(10):765-771.
- Edwards JR, Nyman JS, Lwin ST, Moore MM, Esparza J, O'Quinn EC, Hart AJ, Biswas S,
 Patil CA, Lonning S, Mahadevan-Jansen A, Mundy GR 2010 Inhibition of TGF-beta signaling by
 1D11 antibody treatment increases bone mass and quality in vivo. J Bone Miner Res
 25(11):2419-2426.
- 42928.Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, Niewolna M, Peng430XH, Nguyen DH, Ionova-Martin SS, Bracey JW, Hogue WR, Wong DH, Ritchie RO, Suva LJ,
- 431 Derynck R, Guise TA, Alliston T 2009 Pharmacologic inhibition of the TGF-beta type I receptor
 432 kinase has anabolic and anti-catabolic effects on bone. PLoS One 4(4):e5275.
- 433 29. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA 1993 Expression of transforming
 434 growth factor beta is elevated in human and experimental diabetic nephropathy. Proceedings of the
 435 National Academy of Sciences of the United States of America 90(5):1814-1818.
- 436 30. Iwano M, Kubo A, Nishino T, Sato H, Nishioka H, Akai Y, Kurioka H, Fujii Y, Kanauchi M,
 437 Shiiki H, Dohi K 1996 Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes
 438 mellitus. Kidney Int 49(4):1120-1126.
- 439 31. Pankewycz OG, Guan JX, Bolton WK, Gomez A, Benedict JF 1994 Renal TGF-beta regulation in
 440 spontaneously diabetic NOD mice with correlations in mesangial cells. Kidney Int 46(3):748-758.
- 32. Sharma K, Jin Y, Guo J, Ziyadeh FN 1996 Neutralization of TGF-beta by anti-TGF-beta antibody
 attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced
 diabetic mice. Diabetes 45(4):522-530.
- 33. Throckmorton DC, Brogden AP, Min B, Rasmussen H, Kashgarian M 1995 PDGF and TGF-beta
 mediate collagen production by mesangial cells exposed to advanced glycosylation end products.
 Kidney Int 48(1):111-117.
- 34. Ziyadeh FN, Han DC, Cohen JA, Guo J, Cohen MP 1998 Glycated albumin stimulates fibronectin
 gene expression in glomerular mesangial cells: involvement of the transforming growth factor-beta
 system. Kidney Int 53(3):631-638.
- 450 35. Ybarra J, Pou JM, Romeo JH, Merce J, Jurado J 2010 Transforming growth factor beta 1 as a
 451 biomarker of diabetic peripheral neuropathy: cross-sectional study. J Diabetes Complications

452

24(5):306-312.

- 453 36. Shimizu F, Sano Y, Haruki H, Kanda T 2011 Advanced glycation end-products induce basement
 454 membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating
 455 the release of TGF-beta and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia
 456 54(6):1517-1526.
- 457 37. Pfeiffer A, Spranger J, Meyer-Schwickerath R, Schatz H 1997 Growth factor alterations in
 458 advanced diabetic retinopathy: a possible role of blood retina barrier breakdown. Diabetes 46 Suppl
 459 2:S26-30.
- 460 38. Matsumoto Y, Takahashi M, Ogata M 2002 Relationship between glycoxidation and cytokines in
 461 the vitreous of eyes with diabetic retinopathy. Jpn J Ophthalmol 46(4):406-412.
- 462 39. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T 2010 Fasudil hydrochloride induces
 463 osteoblastic differentiation of stromal cell lines, C3H10T1/2 and ST2, via bone morphogenetic
 464 protein-2 expression. Endocr J 57(5):415-421.
- 465 40. Livak KJ, Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative
 466 PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-408.
- 467 41. Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K 2004 Endogenous TGF-beta signaling
 468 suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23(3):552-563.
- 469 42. Takeuchi K, Abe M, Hiasa M, Oda A, Amou H, Kido S, Harada T, Tanaka O, Miki H,
 470 Nakamura S, Nakano A, Kagawa K, Yata K, Ozaki S, Matsumoto T 2010 Tgf-Beta inhibition
 471 restores terminal osteoblast differentiation to suppress myeloma growth. PLoS One 5(3):e9870.
- 472 43. Komori T 2006 Regulation of osteoblast differentiation by transcription factors. J Cell Biochem
 473 99(5):1233-1239.
- 474 44. Tada Y, Yano S, Yamaguchi T, Okazaki K, Ogawa N, Morita M, Sugimoto T 2013 Advanced
 475 glycation end products-induced vascular calcification is mediated by oxidative stress: functional roles of
 476 NAD(P)H-oxidase. Horm Metab Res 45(4):267-272.
- 477 45. Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H,
- 478 Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H,
- 479 Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T,
- 480 et al 1997 A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection.

481 Nature 386(6622):292-296.

- 482 46. Araki N, Higashi T, Mori T, Shibayama R, Kawabe Y, Kodama T, Takahashi K, Shichiri M,
 483 Horiuchi S 1995 Macrophage scavenger receptor mediates the endocytic uptake and degradation of
 484 advanced glycation end products of the Maillard reaction. Eur J Biochem 230(2):408-415.
- 485 47. Ramasamy R, Yan SF, Schmidt AM 2011 Receptor for AGE (RAGE): signaling mechanisms in the
 486 pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243:88-102.
- 487 48. Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H 2001 Cd36, a
 488 member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J
 489 Biol Chem 276(5):3195-3202.
- 490 49. Rudijanto A 2007 The expression and down stream effect of lectin like-oxidized low density
 491 lipoprotein 1 (LOX-1) in hyperglycemic state. Acta Med Indones 39(1):36-43.
- 492 50. Lai KN, Leung JC, Chan LY, Li FF, Tang SC, Lam MF, Tse KC, Yip TP, Chan TM, Wieslander
 493 A, Vlassara H 2004 Differential expression of receptors for advanced glycation end-products in
 494 peritoneal mesothelial cells exposed to glucose degradation products. Clin Exp Immunol
 495 138(3):466-475.
- 496 51. Noda M, Camilliere JJ 1989 In vivo stimulation of bone formation by transforming growth
 497 factor-beta. Endocrinology 124(6):2991-2994.
- 498 52. Fujimoto R, Tanizawa T, Nishida S, Yamamoto N, Soshi S, Endo N, Takahashi HE 1999 Local
 499 effects of transforming growth factor-beta1 on rat calvaria: changes depending on the dose and the
 500 injection site. J Bone Miner Metab 17(1):11-17.
- 501 53. Bodine PV, Billiard J, Moran RA, Ponce-de-Leon H, McLarney S, Mangine A, Scrimo MJ, Bhat
 502 RA, Stauffer B, Green J, Stein GS, Lian JB, Komm BS 2005 The Wnt antagonist secreted
 503 frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem 96(6):1212-1230.
- 50454.Chua CC, Chua BH, Chen Z, Landy C, Hamdy RC 2002 TGF-beta1 inhibits multiple caspases505induced by TNF-alpha in murine osteoblastic MC3T3-E1 cells. Biochim Biophys Acta 1593(1):1-8.
- 506 **55. Dufour C, Holy X, Marie PJ** 2008 Transforming growth factor-beta prevents osteoblast apoptosis 507 induced by skeletal unloading via PI3K/Akt, Bcl-2, and phospho-Bad signaling. Am J Physiol 508 Endocrinol Metab 294(4):E794-801.
- 509 56. Borton AJ, Frederick JP, Datto MB, Wang XF, Weinstein RS 2001 The loss of Smad3 results in a

- 510 lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and 511 apoptosis. J Bone Miner Res 16(10):1754-1764.
- 512 57. Harris SE, Bonewald LF, Harris MA, Sabatini M, Dallas S, Feng JQ, Ghosh-Choudhury N,
- 513 Wozney J, Mundy GR 1994 Effects of transforming growth factor beta on bone nodule formation and 514 expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I 515 collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res 9(6):855-863.
- 516 **58.** Edelstein SL, Barrett-Connor E 1993 Relation between body size and bone mineral density in 517 elderly men and women. Am J Epidemiol 138(3):160-169.
- 518 59. Hannan MT, Felson DT, Anderson JJ 1992 Bone mineral density in elderly men and women: results
 519 from the Framingham osteoporosis study. J Bone Miner Res 7(5):547-553.
- 520 60. Nguyen TV, Sambrook PN, Eisman JA 1998 Bone loss, physical activity, and weight change in
 521 elderly women: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res 13(9):1458-1467.
- 522 61. Reid IR 2002 Relationships among body mass, its components, and bone. Bone 31:547-555.
- 62. Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H 2000 Correlations between insulin
 sensitivity and bone mineral density in non-diabetic men. Diabet Med 17:124-129.
- 63. Reid IR, Evans MC, Cooper GJ, Ames RW, Stapleton J 1993 Circulating insulin levels are related
 to bone density in normal postmenopausal women. Am J Physiol 265:E655-E659.
- Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T 2009
 Adiponectin is associated with changes in bone markers during glycemic control in type 2 diabetes
 mellitus. J Clin Endocrinol Metab 94(8):3031-3037.
- 65. Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y, Hata K, Fukumoto S,
 Matsumoto T 1997 Metabolic improvement of poorly controlled noninsulin-dependent diabetes
 mellitus decreases bone turnover. J Clin Endocrinol Metab 82(9):2915-2920.
- 533

534 Figure legends

535 Fig. 1 Effects of AGE3 on mineralization of ST2 cells and hMSCs.

Bovine serum albumin (BSA; control; 200 μg/mL) or AGE3 (200 μg/mL) was added after the cells
reached confluence. (A) Alizarin Red and von Kossa staining of cultured ST2 cells on days 7, 14, and 21 after

treatment with BSA or AGE3. (B) Quantification of Alizarin Red staining of the ST2 cells in each treatment

- group. (C) Alizarin Red and von Kossa staining of cultured hMSCs on day 14 after treatment with BSA or
 AGE3. (D) Quantification of Alizarin Red staining of hMSCs in each treatment group.
- ***P < 0.001 compared with control. The results shown are representative of 3 independent experiments and
- 542 are expressed as means \pm SEM of fold increase relative to control (BSA) values (n = 6).
- 543

Fig. 2 Efficiency of knockdown of RAGE and effects of RAGE siRNA transfection in mineralization of ST2
cells suppressed by AGE3.

(A) Effect of siRNA on RAGE mRNA expression in ST2 cells. ST cells were transfected with siRNAs (50nM) by using Lipofectamine. Total RNA was collected on day 3 and RAGE mRNA was measured by real-time PCR. (B) Alizarin red staining was performed on day 7 after Negative control or RAGE siRNA transfection. Control BSA and AGE3 were added after the cells reached confluence. Plate view of Alizarin red staining in cultured ST2 cells with 200µg/mL of either control BSA or AGE3 for 14 days. (C) Quantification of Alizarin red staining of the cells with each treatment. *p < 0.05, **p < 0.01 and ***p < 0.001 compared to control.

553

554 Fig. 3 Effects of AGE3 on TGF- β mRNA (A) and protein expressions (B) in ST2 cells and hMSCs.

555 (A) Effects of AGE3 on TGF-β mRNA expressions in ST2 cells. Two hundred μg/mL of either 556 control BSA or AGE3 were added after the cells reached confluence. Total RNA was collected on days 1, 3, 5 557 and 7, and TGF- β mRNA was measured by real-time PCR. Results are expressed as the mean \pm SEM fold increase over control values (N = 10). *p < 0.05 and ***p < 0.001 compared to control on the same day. 558 559 (B) Effects of AGE3 on TGF-β protein expressions in ST2 cells and hMSCs. Two hundred μg/mL of either 560 control BSA or AGE3 were added after the cells reached confluence. Supernatants or whole cell lysates were collected on days 1, 3, 5 and 7. Quantification of TGF- β protein on days 1, 3, 5 and 7 was performed by ELISA. 561 562 Results are expressed as the mean \pm SEM (n = 6). **p < 0.01 and ***p < 0.001 compared to control on the 563 same day.

564

565 Fig. 4 Effects of RAGE siRNA transfection on TGF- β protein expressions increased by AGE3 in ST2 cells.

566 Two hundred μ g/mL of either control BSA or AGE3 were added after the cells reached confluence.

567 Total RNA was collected on day 7 after RAGE siRNA transfection. Real-time PCR was performed as described

- 568 in Materials and Methods. *p < 0.05 and ***p < 0.001 compared to negative control siRNA.
- 569
- 570 Fig. 5 Effects of a TGF-β type I receptor kinase inhibitor on OSX (A) , OCN (B) and Runx2 (C) mRNA
 571 expressions affected by AGE3 in ST2 cells.
- 572 Two hundred μ g/mL of either control BSA or AGE3 with or without SD208 (2.5 mM), a TGF- β 573 receptor kinase inhibitor, were added after the cells reached confluence. Total RNA was collected on day 14, 574 and OSX, OCN and Runx2 mRNA expressions were measured by real-time PCR. Results are expressed as the 575 mean \pm SEM fold increase over control values (n = 6). *p < 0.05, **p < 0.01, and ***p < 0.001 576 compared to levels of mRNA expressions treated with AGE3 alone.
- 577

578 Fig. 6 Effect of a TGF-β receptor type I kinase inhibitor in mineralization of ST2 cells (A) and hMSCs (B)
579 suppressed by AGE3.

580 Two hundred μ g/mL of either control BSA or AGE3 were added after the cells reached confluence. 581 SD208 (1.0 or 2.5 mM) was added with AGE3 on the same time. Plate view of Alizarin red staining in cultured 582 ST2 cells and hMSCs for 14 days. Quantification of Alizarin red staining of the cells was performed with each 583 treatment. Results are expressed as the mean \pm SEM fold increase over control values (n = 6). ***p < 0.001 584 compared to Alizarin red quantity treated with AGE3 alone.

585

Fig. 7 Effects of a TGF-β receptor type I kinase inhibitor on the cell proliferation (A) and apoptosis (B) of ST2
cells.

588 (A) Effects of AGE3 with or without SD208 on the cell proliferation of ST2 cells. The cells were 589 seeded on 96-well plates at a density of 3000 cells/well, and were incubated overnight. On the next day, the cells 590 were treated with 200µg/mL of either control BSA or AGE3 in the presence or absence of 2.5 mM SD208 for 3 591 days. Cell proliferation was evaluated by BrdU on day 3. ***p < 0.001 compared to AGE3 alone. (B) 592 Effects of AGE3 with or without SD208 on the apoptotic cell death of ST2 cells. The cells were seeded on 593 96-well plates at a density of 3000 cells/well and were incubated overnight. On the next day, the cells were 594 treated with 200µg/mL of either control BSA or AGE3 in the presence or absence of 2.5 mM SD208 for 3 days. 595 The apoptotic cell death was analyzed in an ELISA for DNA fragments by an absorbance at 405 nm. *p <596 0.05 and ***p < 0.001 compared to control BSA.

Fig.3B

