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Abstract. Dual characterizations of the containment of a convex set, de-
fined by infinite quasiconvex constraints, in an evenly convex set, and in a
reverse convex set, defined by infinite quasiconvex constraints, are provided.
Notions of quasiconjugate for quasiconvex functions, λ-quasiconjugate and λ-
semiconjugate, play important roles to derive the characterizations of the set
containments.

1. Introduction

The set containment problem consists of characterizing the inclusion A ⊂ B,
where A = {x ∈ Rn | ∀i ∈ I, fi(x) ≤ 0} and B = {x ∈ Rn | ∀j ∈ J, hj(x) ≤ 0}.
Motivated by general non-polyhedral knowledge-based data classification, the set
containment characterization have been studied by many researchers, see [1, 2,
4, 5, 9]. The first characterizations were given by Mangasarian [5] for linear
systems and for systems involving differentiable convex functions, with I and J
finite. These dual characterizations are provided in terms of Farkas’ Lemma and
the duality theorems of convex programming problems. Jeyakumar [4] established
the set containment characterization with I an arbitrary set and J a finite set,
assuming the convexity of fi for each i ∈ I, and the linearity (or the concavity)
of hj for each j ∈ J , so that A is a closed convex set and B is a closed convex set
(or a reverse convex set, respectively). These dual characterizations are provided
in terms of the epigraph of the Fenchel conjugate of a convex function. Also,
Goberna and Rodŕıguez [2] provided characterizations of the set containment
for linear systems containing strict inequalities and weak inequalities as well as
equalities. Furthermore, Goberna, Jeyakumar and Dinh [1] characterized set
containments with convex inequalities which can be either weak or strict. These
dual characterizations are also provided by the Fenchel conjugate.
It is well known that the Fenchel conjugate plays very important roles to

consider dual problems of convex minimization problems. Similar researches of
conjugates of quasiconvex functions have been studied. But the epigraph of a
quasiconvex function is no longer convex. This causes a fundamental difference
between convex and quasiconvex duality. For general quasiconvex functions, we
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have to use extra-parameters to obtain dual representations. For example, the λ-
quasiconjugate (λ ∈ R), by Greenberg and Pierskalla [3], has an extra-parameter,
and plays an important role in quasiconvex optimization and in the theory of sur-
rogate duality corresponding to that of the Fenchel conjugate in convex optimiza-
tion and Lagrangian duality. Singer [7, 8] introduced the λ-semiconjugate which
also has an extra-parameter, and studied the level set of the λ-semiconjugate
and quasiconvex optimization. If we want to avoid the extra-parameter, then we
often need to restrict the class of quasiconvex functions. Thach [10, 11] estab-
lished two dualities without the extra-parameter for a general quasiconvex min-
imization (maximization) problem by using concepts of H-quasiconjugate and
R-quasiconjugate.
More recently, Suzuki and Kuroiwa [9] established the set containment charac-

terization with I a finite set and J an arbitrary set, assuming the quasiconvexity
of fi for each i ∈ I, the linearity (or the quasiconcavity) of hj for each j ∈ J ,
and inequalities in A are strict and in B are strict (or weak, respectively). These
dual characterizations are provided in terms of level sets of H-quasiconjugate
and R-quasiconjugate functions. Furthermore, we studied some properties of
H-quasiconjugate.
In this paper, we show set containment characterizations, assuming that all fi

are quasiconvex, all hj are linear, I and J are possibly infinite, and the inequality
in A and B can be either weak or strict. Furthermore, we consider a reverse
convex system (i.e., all fi are quasiconvex and all hj are quasiconcave), containing
both weak and strict inequalities. These dual characterizations are provided in
terms of level sets of λ-quasiconjugate and λ-semiconjugate, especially 1, −1-
quasiconjugate, 1-semiconjugate.

2. Notation and Preliminaries

Throughout this paper, let f be a function from Rn to R, where R = [−∞,∞].
Remember that f is said to be quasiconvex if for all x1, x2 ∈ Rn and α ∈ (0, 1),

f((1− α)x1 + αx2) ≤ max{f(x1), f(x2)}.

Define

L(f, ⋄, α) = {x ∈ Rn | f(x) ⋄ α}
for any α ∈ R. Symbol ⋄ means any binary relation on R. Then f is quasiconvex
if and only if for any α ∈ R,

L(f,≤, α) = {x ∈ Rn | f(x) ≤ α}

is a convex set, or equivalently, for any α ∈ R,

L(f,<, α) = {x ∈ Rn | f(x) < α}

is a convex set. We know that any convex function is quasiconvex. The converse
is not true.
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Given a set S ⊂ Rn, we shall denote by intS, clS and coS the interior, the
closure and the convex hull generated by S respectively.
The following Proposition, which concerns the closure of the intersection of a

family of convex sets, plays an important role in this paper.

Proposition 1. Let I be an arbitrary set, and Si be a convex subset of Rn for
each i ∈ I. If int ∩i∈I Si is nonempty, then cl ∩i∈I Si = ∩i∈IclSi.

Proof. We may assume that x ∈ ∩i∈IclSi. Since int ∩i∈I Si ̸= ∅, there exists
z ∈ int∩i∈I Si. Then for each i ∈ I, {(1−α)x+αz | α ∈ (0, 1]} ⊂ intSi, because
Si is convex and z ∈ intSi. Therefore {(1− α)x+ αz | α ∈ (0, 1]} ⊂ ∩i∈ISi, i.e.,
x ∈ cl

∩
i∈I Si. The converse is clear. □

A subset S of Rn is said to be evenly convex if it is the intersection of some
family of open halfspaces. Clearly, any open convex set and any closed convex
set are evenly convex, and every evenly convex set is convex. A subset S of Rn

is said to be H-evenly convex if it is the intersection of some family of open
halfspaces, and each open halfspace contains 0. It is clear that a nonempty set S
is H-evenly convex if and only if S is evenly convex and contains 0. Clearly, the
whole space is evenly convex and H-evenly convex. Also, we define the empty
set is evenly convex and H-evenly convex by convention. The evenly convex hull
of S, denoted by ecoS, is the smallest evenly convex set which contains S. The
H-evenly convex hull of S, denoted by HecoS, is the smallest H-evenly convex set
which contains S. Note that coS ⊂ ecoS ⊂ cl coS and these differences are slight
because cl coS = cl ecoS. Moreover if S is nonempty, then HecoS = eco(S∪{0}).
Next, we introduce some notions that are used in the latter half of this paper.

Definition 1. Let S be a nonempty subset of Rn and α ∈ R. We define polar
sets as follows.

S∗(<,α) = {v ∈ Rn | ∀x ∈ S, ⟨v, x⟩ < α},
S∗(≤,α) = {v ∈ Rn | ∀x ∈ S, ⟨v, x⟩ ≤ α}.

Clearly, if α > 0 then S∗(<,α) is H-evenly convex, (S∗(<,α))∗(<,α) is HecoS,
S∗(≤,α) is closed H-evenly convex, and (S∗(≤,α))∗(≤,α) is clHecoS. Moreover, for
all α ∈ R,(∪

i∈I

Si

)∗(≤,α)

=
∩
i∈I

(
S
∗(≤,α)
i

)
and

(∪
i∈I

Si

)∗(<,α)

=
∩
i∈I

(
S
∗(<,α)
i

)
.

Also, we introduce following two Propositions without proof.

Proposition 2. Let I be an arbitrary set, Si be a nonempty H-evenly convex
subset of Rn for each i ∈ I, and α > 0.
Then, (∩

i∈I

Si

)∗(<,α)

= Heco
∪
i∈I

(
S
∗(<,α)
i

)
,
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furthermore, if Si is closed for each i ∈ I, then(∩
i∈I

Si

)∗(≤,α)

= clHeco
∪
i∈I

(
S
∗(≤,α)
i

)
.

Proposition 3. Let S be a nonempty subset of Rn and α ∈ R. Then, following
statements hold.
(i) (cl coS)∗(≤,α) = S∗(≤,α) and (ecoS)∗(<,α) = S∗(<,α),
(ii) if α > 0 then (clHecoS)∗(≤,α) = S∗(≤,α) and (HecoS)∗(<,α) = S∗(<,α).

Next, we define some notions of a function. A function f is said to be evenly
quasiconvex if L(f,≤, α) is evenly convex for all α ∈ R. A function f is said to be
strictly evenly quasiconvex if L(f,<, α) is evenly convex for all α ∈ R. Clearly,
every evenly quasiconvex function is quasiconvex, every lower semicontinuous
(lsc) quasiconvex function is evenly quasiconvex and every upper semicontinuous
(usc) quasiconvex function is strictly evenly quasiconvex. It is easy to show that
every strictly evenly quasiconvex function is evenly quasiconvex, but the converse
is not generally true, see [9]. A function f is said to be H-evenly quasiconvex if
L(f,≤, α) is H-evenly convex for all α ∈ R. A function f is said to be strictly
H-evenly quasiconvex if L(f,<, α) is H-evenly convex for all α ∈ R. In [9], we
showed that f is H-evenly quasiconvex if and only if f is evenly quasiconvex and
f(0) = min

x∈Rn
f(x).

Next, we introduce two notions of quasiconjugate. In this paper, we charac-
terize set containments by using these quasiconjugates.

Definition 2 ([3]). The λ-quasiconjugate of f is the function f ν
λ : Rn → R such

that

f ν
λ (u) = λ− inf{f(x) | ⟨u, x⟩ ≥ λ}, ∀u ∈ Rn.

Definition 3 ([7]). The λ-semiconjugate of f is the function f θ
λ : Rn → R such

that

f θ
λ(u) = λ− inf{f(x) | ⟨u, x⟩ > λ}, ∀u ∈ Rn.

Singer [7] defined the λ-semiconjugate in the following form,

f θ
λ(u) = λ− 1− inf{f(x) | ⟨u, x⟩ > λ− 1}, ∀u ∈ Rn.

But we redefine the λ-semiconjugate in this paper.
We can check easily that f ν

λ is H-evenly quasiconvex and f θ
λ is lsc H-evenly

quasiconvex if λ > 0 in the similar way of [7, 11].

3. Containment of a convex set in an evenly convex set

In this section, we present characterizations of the containment of a convex set,
defined by infinite quasiconvex constraints, in an evenly convex set, i.e., let I, J ,
S, W be arbitrary sets, fi and gj be quasiconvex functions from Rn to R for each
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i ∈ I and j ∈ J , vs ∈ Rn and αs ∈ R for each s ∈ S, uw ∈ Rn and γw ∈ R for
each w ∈ W , and β ∈ R. Then, we show the characterization of A ⊂ B, where

A = {x ∈ Rn | ∀i ∈ I, fi(x) ≤ β,∀j ∈ J, gj(x) < β},
B = {x ∈ Rn | ∀s ∈ S, ⟨vs, x⟩ < αs,∀w ∈ W, ⟨uw, x⟩ ≤ γw}.

In the beginning, we show a result of the containment when |J | = |S| = 1 and
I = W = ∅.

Theorem 1. Let g be a function from Rn to R, v ∈ Rn \ {0}, α ∈ R and β ∈ R.
Then, following conditions (i), (ii) and (iii) are equivalent.

(i) L(g,<, β) ⊂ {x | ⟨v, x⟩ < α},
(ii) v ∈ (L(g,<, β))∗(<,α),
(iii) v ∈ L(gνα,≤, α− β).

Proof. It is clear that (i) and (ii) are equivalent. Assume that L(g,<, β) ⊂ {x |
⟨v, x⟩ < α}, then the implication g(x) < β implies ⟨v, x⟩ < α, or equivalently,
⟨v, x⟩ ≥ α implies g(x) ≥ β holds. This shows

gνα(v) = α− inf{g(x) | ⟨v, x⟩ ≥ α} ≤ α− β.

Conversely, if gνα(v) ≤ α − β, then inf{g(x) | ⟨v, x⟩ ≥ α} ≥ β. Therefore the
implication ⟨v, x⟩ ≥ α implies g(x) ≥ β, or g(x) < β implies ⟨v, x⟩ < α holds.
This derives L(g,<, β) ⊂ {x | ⟨v, x⟩ < α}. □

Next, we show the set containment characterization, assuming that all gj (j ∈
J) are strictly evenly quasiconvex, J and S are possibly infinite, and I and W
are empty.

Theorem 2. Let J , S be arbitrary sets, β ∈ R, gj be a strictly evenly quasiconvex
function from Rn to R for each j ∈ J , and vs ∈ Rn and αs ∈ (0,∞) for each
s ∈ S. Assume that gj(0) < β for each j ∈ J . Then, following conditions (i) and
(ii) are equivalent.

(i) {x ∈ Rn | ∀j ∈ J, gj(x) < β} ⊂ {x ∈ Rn | ∀s ∈ S, ⟨vs, x⟩ < αs},
(ii) ∀s ∈ S,

vs
αs

∈ Heco
∪
j∈J

L((gj)
ν
1,≤, 1− β).

Proof. It is clear that (i) and

∀s ∈ S,
vs
αs

∈
(∩

j∈J

L(gj, <, β)

)∗(<,1)

are equivalent. By using the assumption, L(gj, <, β) is a H-evenly convex set for
each j ∈ J . Therefore, by using Proposition 2, for all s ∈ S, vs

αs
∈ Heco

∪
j∈J(L(gj, <

, β))∗(<,1). Furthermore, by using Theorem 1, for all s ∈ S, vs
αs

∈ Heco
∪

j∈J L((gj)
ν
1,≤

, 1− β). □
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In the following theorem, we show the set containment characterization, as-
suming that all fi (i ∈ I) are evenly quasiconvex, I and S are possibly infinite,
and J and W are empty.

Theorem 3. Let I and S be arbitrary sets, β ∈ R, fi be a evenly quasiconvex
function from Rn to R for each i ∈ I, and vs ∈ Rn and αs ∈ (0,∞) for each
s ∈ S. Assume that fi(0) ≤ β for each i ∈ I. Then, following conditions (i) and
(ii) are equivalent.

(i) {x ∈ Rn | ∀i ∈ I, fi(x) ≤ β} ⊂ {x ∈ Rn | ∀s ∈ S, ⟨vs, x⟩ < αs},
(ii) ∀s ∈ S,

vs
αs

∈ Heco
∪
i∈I

L((fi)
ν
1, <, 1− β).

Proof. It is clear that (i) and

∀s ∈ S,
vs
αs

∈
(∩

i∈I

L(fi,≤, β)

)∗(<,1)

are equivalent. By using the assumption, L(fi,≤, β) is a H-evenly convex set for
each i ∈ I. Therefore, by using Proposition 2, for all s ∈ S, vs

αs
∈ Heco

∪
i∈I(L(fi,≤

, β))∗(<,1). Because L(fi,≤, β) =
∩

ε>0 L(fi,≤, β + ε), by using Proposition 2

again, for all s ∈ S, vs
αs

∈ Heco
∪

i∈I Heco
∪

ε>0(L(fi,≤, β + ε))∗(<,1). Further-

more,
∪

ε>0(L(fi,≤, β + ε))∗(<,1) =
∪

ε>0(L(fi, <, β + ε))∗(<,1), so we can prove
that vs

αs
∈ Heco

∪
i∈I
∪

ε>0 L((fi)
ν
1,≤, 1 − β − ε) for all s ∈ S by using Theo-

rem 1. Therefore, for all s ∈ S, vs
αs

∈ Heco
∪

i∈I L((fi)
ν
1, <, 1 − β). The converse

is similar. □

Next, we show the set containment characterization, assuming that all fi (i ∈ I)
are evenly quasiconvex, all gj (j ∈ J) are strictly evenly quasiconvex, I, J and S
are arbitrary sets and W is empty.

Theorem 4. Let I, J and S be arbitrary sets, β ∈ R, fi be a evenly quasiconvex
function from Rn to R for each i ∈ I, gj be a strictly evenly quasiconvex function

from Rn to R for each j ∈ J , and vs ∈ Rn and αs ∈ (0,∞) for each s ∈ S.
Assume that fi(0) ≤ β and gj(0) < β for each i ∈ I and j ∈ J . Then, following
conditions (i) and (ii) are equivalent.

(i) {x | ∀i ∈ I, fi(x) ≤ β, ∀j ∈ J, gj(x) < β} ⊂ {x | ∀s ∈ S, ⟨vs, x⟩ < αs},
(ii) ∀s ∈ S,

vs
αs

∈ Heco

[(∪
i∈I

L((fi)
ν
1, <, 1− β)

)∪(∪
j∈J

L((gj)
ν
1,≤, 1− β)

)]
.

Proof. The proof is similar to Theorem 2 and 3. □

In the following theorem, we show the result of the characterizing set contain-
ment when |J | = |W | = 1 and I = S = ∅, by using λ-semiconjugate.
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Theorem 5. Let g be a function from Rn to R, u ∈ Rn, γ ∈ R and β ∈ R. Then,
following conditions (i), (ii) and (iii) are equivalent.

(i) L(g,<, β) ⊂ {x ∈ Rn | ⟨u, x⟩ ≤ γ},
(ii) u ∈ (L(g,<, β))∗(≤,γ),
(iii) u ∈ L(gθγ,≤, γ − β).

Proof. It is clear that (i) and (ii) are equivalent. We may assume that L(g,<
, β) ⊂ {x ∈ Rn | ⟨u, x⟩ ≤ γ}, then the implication g(x) < β implies ⟨u, x⟩ ≤ γ,
or equivalently, ⟨u, x⟩ > γ implies g(x) ≥ β holds. This shows

gθγ(u) = γ − inf{g(x) | ⟨u, x⟩ > γ} ≤ γ − β.

Conversely, if gθγ(u) ≤ γ − β, then inf{g(x) | ⟨u, x⟩ > γ} ≥ β. Therefore the
implication ⟨u, x⟩ > γ implies g(x) ≥ β, or g(x) < β implies ⟨u, x⟩ ≤ γ holds.
This derives L(g,<, β) ⊂ {x | ⟨u, x⟩ ≤ γ}. □

Next, we show the set containment characterization, assuming that gj (j ∈ J)
are quasiconvex, J and W are arbitrary sets, and I and S are empty.

Theorem 6. Let J and W be arbitrary sets, β ∈ R, gj be a quasiconvex function

from Rn to R for each j ∈ J , and uw ∈ Rn and γw ∈ (0,∞) for each w ∈ W .
Assume that gj(0) < β for each j ∈ J and int{x ∈ Rn | ∀j ∈ J, gj(x) < β} is
nonempty. Then, following conditions (i) and (ii) are equivalent.

(i) {x ∈ Rn | ∀j ∈ J, gj(x) < β} ⊂ {x ∈ Rn | ∀w ∈ W, ⟨uw, x⟩ ≤ γw},
(ii) ∀w ∈ W ,

uw

γw
∈ clHeco

∪
j∈J

L((gj)
θ
1,≤, 1− β).

Proof. It is easy to show that (i) is equivalent to

∀w ∈ W,
uw

γw
∈
(∩

j∈J

L(gj, <, β)

)∗(≤,1)

.

Since int{x ∈ Rn | ∀j ∈ J, gj(x) < β} is nonempty, we can prove that

(
∩
j∈J

L(gj, <, β))∗(≤,1) = (cl
∩
j∈J

L(gj, <, β))∗(≤,1) = (
∩
j∈J

clL(gj, <, β))∗(≤,1)

by using Proposition 1. From the assumption, clL(gj, <, β) is closed H-evenly
convex for each j ∈ J . Therefore, by using Proposition 2, uw

γw
∈ clHeco

∪
j∈J(clL(gj, <

, β))∗(≤,1) for all w ∈ W . Furthermore, by using Theorem 5, uw

γw
∈ clHeco

∪
j∈J L((gj)

θ
1,≤

, 1− β) for all w ∈ W . The converse is similar. □

In the following theorem, we show the set containment characterization, as-
suming that all fi (i ∈ I) are quasiconvex, I and W are arbitrary sets, and J and
S are empty.
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Theorem 7. Let I and W be arbitrary sets, β ∈ R, fi be a quasiconvex function
from Rn to R for each i ∈ I, and uw ∈ Rn and γw ∈ (0,∞) for each w ∈ W .
Assume that fi(0) ≤ β for each i ∈ I and int{x ∈ Rn | ∀i ∈ I, fi(x) ≤ β} is
nonempty. Then, following conditions (i) and (ii) are equivalent.

(i) {x ∈ Rn | ∀i ∈ I, fi(x) ≤ β} ⊂ {x ∈ Rn | ∀w ∈ W, ⟨uw, x⟩ ≤ γw},
(ii) ∀w ∈ W ,

uw

γw
∈ clHeco

∪
i∈I

L((fi)
θ
1, <, 1− β).

Proof. It is clear that (i) is equivalent to for all w ∈ W , uw

γw
∈ (
∩

i∈I L(fi,≤
, β))∗(≤,1). By the similar way in Theorem 6, we can prove that uw

γw
∈ (
∩

i∈I clL(fi,≤
, β))∗(≤,1) for all w ∈ W . From the assumption, clL(fi,≤, β) is a closed H-
evenly convex set for each j ∈ J . Therefore, by using Proposition 2, uw

γw
∈

clHeco
∪

i∈I(clL(fi,≤, β))∗(≤,1) for all w ∈ W . Also, by using Proposition 1 again,

clHeco
∪
i∈I

(
cl
∩
ε>0

L(fi, <, β + ε)

)∗(≤,1)

= clHeco
∪
i∈I

(∩
ε>0

clL(fi, <, β + ε)

)∗(≤,1)

.

By using the assumption, for each ε > 0, clL(fi, <, β + ε) is a closed H-evenly
convex set. Therefore, by using Proposition 2, for all w ∈ W ,

uw

γw
∈ clHeco

∪
i∈I

∪
ε>0

(clL(fi, <, β + ε))∗(≤,1).

Furthermore,

clHeco
∪
i∈I

∪
ε>0

(clL(fi, <, β + ε))∗(≤,1) = clHeco
∪
i∈I

∪
ε>0

(L(fi, <, β + ε))∗(≤,1),

and by using Theorem 5, we can prove that for all w ∈ W ,

uw

γw
∈ clHeco

∪
i∈I

∪
ε>0

L((fi)
θ
1,≤, 1− ε− β),

i.e., uw

γw
∈ clHeco

∪
i∈I L((fi)

θ
1, <, 1− β). □

Next, we show the set containment characterization, assuming that fi and gj
are quasiconvex for each i ∈ I and j ∈ J , I, J and W are arbitrary sets, and S
is empty.

Theorem 8. Let I, J and W be arbitrary sets, β ∈ R, fi and gj be quasiconvex

functions from Rn to R for each i ∈ I and j ∈ J , and uw ∈ Rn and γw ∈ (0,∞)
for each w ∈ W . Assume that fi(0) ≤ β for each i ∈ I, gj(0) < β for each
j ∈ J , and int{x ∈ Rn | ∀i ∈ I, fi(x) ≤ β,∀j ∈ J, gj(x) < β} is nonempty. Then,
following conditions (i) and (ii) are equivalent.

(i) {x | ∀i ∈ I, fi(x) ≤ β, ∀j ∈ J, gj(x) < β} ⊂ {x | ∀w ∈ W, ⟨uw, x⟩ ≤ γw},
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(ii) ∀w ∈ W ,

uw

γw
∈ clHeco

[(∪
i∈I

L((fi)
θ
1, <, 1− β)

)∪(∪
j∈J

L((gj)
θ
1,≤, 1− β)

)]
.

Proof. The proof is similar to Theorem 6 and 7. □
In the following theorem, we show the set containment characterization, as-

suming that all fi (i ∈ I) are evenly quasiconvex, all gj (j ∈ J) are strictly
evenly quasiconvex, and I, J , S and W are arbitrary sets.

Theorem 9. Let I, J , S and W be arbitrary sets, β ∈ R, fi be a evenly quasi-
convex function from Rn to R for each i ∈ I, gj be a strictly evenly quasiconvex

function from Rn to R for each j ∈ J , vs ∈ Rn and αs ∈ (0,∞) for each s ∈ S, and
uw ∈ Rn and γw ∈ (0,∞) for each w ∈ W . Assume that fi(0) ≤ β for each i ∈ I,
gj(0) < β for each j ∈ J and int{x ∈ Rn | fi(x) ≤ β, i ∈ I, gj(x) < β, j ∈ J} is
nonempty. Then, following conditions (i) and (ii) are equivalent.

(i) A ⊂ B,
(ii) ∀s ∈ S,

vs
αs

∈ Heco

[(∪
i∈I

L((fi)
ν
1, <, 1− β)

)∪(∪
j∈J

L((gj)
ν
1,≤, 1− β)

)]
,

∀w ∈ W ,

uw

γw
∈ clHeco

[(∪
i∈I

L((fi)
θ
1, <, 1− β)

)∪(∪
j∈J

L((gj)
θ
1,≤, 1− β)

)]
where

A = {x ∈ Rn | ∀i ∈ I, fi(x) ≤ β,∀j ∈ J, gj(x) < β},
B = {x ∈ Rn | ∀s ∈ S, ⟨vs, x⟩ < αs,∀w ∈ W, ⟨uw, x⟩ ≤ γw}.

Proof. The proof is similar to Theorem 2, 3, 6 and 7. □

4. Containment of a convex set in a reverse convex set

In this section, we present characterizations of the containment of a convex
set, defined by infinite quasiconvex constraints, in a reverse convex set, defined
by infinite quasiconvex constraints, i.e., let I, J , W be arbitrary sets, fi and gj
be quasiconvex functions from Rn to R for each i ∈ I and for each j ∈ J , kw be
a quasiconvex function from Rn to R and γw ∈ R for each w ∈ W , and β ∈ R.
Then, we show the characterization of A ⊂ B, where

A = {x ∈ Rn | ∀i ∈ I, fi(x) ≤ β,∀j ∈ J, gj(x) < β},
B = {x ∈ Rn | ∀w ∈ W,kw(x) ≥ γw}.

In the beginning, we show the result of the containment when |J | = |W | = 1
and I is empty.
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Theorem 10. Let g be a quasiconvex function from Rn to R, k be a usc qua-
siconvex function from Rn to R, γ ∈ R and β ∈ R. Assume that L(g,<, β)
and L(k,<, γ) are nonempty. Then, following conditions (i), (ii) and (iii) are
equivalent.

(i) L(g,<, β) ⊂ L(k,≥, γ),
(ii) L(g,<, β)

∩
L(k,<, γ) = ∅,

(iii) there exists α ∈ R such that
0 ∈ L(gθα,≤, α− β) \ {0}+ L(kν

−α,≤,−α− γ) \ {0}.

Proof. It is clear that (i) and (ii) are equivalent. We may assume that the con-
dition (ii) holds. Then, there exists v ∈ Rn \ {0} and α ∈ R such that for all
x ∈ L(k,<, γ) and y ∈ L(g,<, β),

⟨v, x⟩ > α ≥ ⟨v, y⟩ ,

since g is quasiconvex and k is usc quasiconvex. Clearly, v ∈ (L(g,<, β))∗(≤,α)

and −v ∈ (L(k,<, γ))∗(<,−α). By using Theorem 1 and Theorem 5, v ∈ (L(gθα,≤
, α−β) and−v ∈ L(kν

−α,≤,−α−γ). Therefore 0 ∈ L(gθα,≤, α−β)\{0}+L(kν
−α,≤

,−α− γ) \ {0}. The converse is similar. □

Next, we show the set containment characterization, assuming that all gj (j ∈
J) are quasiconvex, all kw (w ∈ W ) are usc quasiconvex, J and W are arbitrary
sets, and I is empty.

Theorem 11. Let J and W be arbitrary sets, gj be a quasiconvex function from

Rn to R for each j ∈ J , kw be a usc quasiconvex function from Rn to R and
γw ∈ R for each w ∈ W , and β ∈ R. Assume that 0 ∈ int ∩j∈J L(gj, <, β)
and ∩w∈WL(kw, <, γw) is nonempty. Then, following conditions (i) and (ii) are
equivalent.

(i) ∩j∈JL(gj, <, β) ⊂ ∩w∈WL(kw,≥, γw),
(ii) ∀w ∈ W ,

0 ∈
(
clHeco∪j∈J L((gj)

θ
1,≤, 1−β)\{0}

)
+L((kw)

ν
−1,≤,−1−γw)\{0}.

Proof. We may assume that the condition (i) is hold. Then, for all w ∈ W ,
∩j∈JL(gj, <, β)

∩
L(kw, <, γw) = ∅. Since all gj are quasiconvex, kw are usc

quasiconvex and 0 ∈ int ∩j∈J L(gj, <, β), there exists v ∈ Rn \ {0} such that
for all x ∈ L(kw, <, γw) and y ∈ ∩j∈JL(gj, <, β), ⟨v, x⟩ > 1 ≥ ⟨v, y⟩. By using
Theorem 1 and Theorem 6, we can prove that v ∈ clHeco ∪j∈J L((gj)

θ
1,≤, 1− β)

and −v ∈ L((kw)
ν
−1,≤,−1− γw), i.e., 0 ∈ (clHeco∪j∈J L((gj)

θ
1,≤, 1− β) \ {0}) +

L((kw)
ν
−1,≤,−1− γw) \ {0}. The converse implication is similar. □

In the following theorem, we show the set containment characterization, as-
suming that fi (i ∈ I) are quasiconvex, kw (w ∈ W ) are usc quasiconvex, I and
W are arbitrary sets, and J is empty.
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Theorem 12. Let I and W be arbitrary sets, fi be a quasiconvex function from
Rn to R for each i ∈ I, kw be a usc quasiconvex function from Rn to R and
γw ∈ R for each w ∈ W , and β ∈ R. Assume that 0 ∈ int ∩i∈I L(fi,≤, β)
and ∩w∈WL(kw, <, γw) is nonempty. Then, following conditions (i) and (ii) are
equivalent.

(i) ∩i∈IL(fi,≤, β) ⊂ ∩w∈WL(kw,≥, γw),
(ii) ∀w ∈ W ,

0 ∈
(
clHeco∪i∈I L((fi)

θ
1, <, 1−β)\{0}

)
+L((kw)

ν
−1,≤,−1−γw)\{0}.

Proof. Wemay assume that the condition (i) is hold. Then, ∩i∈IL(fi,≤, β)
∩

L(kw, <
, γw) = ∅ for all w ∈ W . Since all fi are quasiconvex, kw are usc quasicon-
vex and 0 ∈ int ∩i∈I L(fi,≤, β), there exists v ∈ Rn \ {0} such that for all
x ∈ L(kw, <, γw) and y ∈ ∩i∈IL(fi,≤, β), ⟨v, x⟩ > 1 ≥ ⟨v, y⟩. By using Theo-
rem 1 and Theorem 7, we can prove that v ∈ clHeco ∪j∈J L((fi)

θ
1, <, 1 − β) and

−v ∈ L((kw)
ν
−1,≤,−1− γw). The converse is similar. □

In the last theorem of this paper, we show the set containment characterization,
assuming that fi and gj are quasiconvex for each i ∈ I and j ∈ J , kw are usc
quasiconvex for each w ∈ W , and I, J and W are arbitrary sets.

Theorem 13. Let I, J and W be arbitrary sets, fi and gj be quasiconvex func-

tions from Rn to R for each i ∈ I and j ∈ J , kw be a usc quasiconvex func-
tion from Rn to R and γw ∈ R for each w ∈ W , and β ∈ R. Assume that
0 ∈ int[(∩i∈IL(fi,≤, β))

∩
(∩j∈JL(gj, <, β))] and ∩w∈WL(kw, <, γw) is nonempty.

Then, following conditions (i) and (ii) are equivalent.

(i) (∩i∈IL(fi,≤, β))
∩
(∩j∈JL(gj, <, β)) ⊂ ∩w∈WL(kw,≥, γw),

(ii) ∀w ∈ W ,

0 ∈
(
clHeco

{
(∪i∈IL((fi)

θ
1, <, 1− β))

∪
(∪j∈JL((gj)

θ
1,≤, 1− β))

}
\{0}

)
+L((kw)

ν
−1,≤,−1− γw) \ {0}.

Proof. The proof is similar to Theorem 11 and 12.
□

Finally, we discuss results in Section 3 and 4. In Section 3, we show set contain-
ment characterizations in an evenly convex set, assuming that the inequalities in
A and B can be either weak or strict. But, in Section 4, we show set containment
characterizations in a reverse convex set, assuming that inequalities in A can be
either weak or strict and in B are only weak. Hereinafter, we show that it is
difficult to characterize the set containment characterization in a reverse convex
set, assuming that the inequalities in B are strict.
We consider the characterization of A ⊂ B, where I, J and S are arbitrary

sets, fi and gj are quasiconvex functions from Rn to R for each i ∈ I and j ∈ J ,
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hs is a quasiconvex function from Rn to R and αs ∈ R for each s ∈ S, β ∈ R, and
A = {x ∈ Rn | fi(x) ≤ β, i ∈ I, gj(x) < β, j ∈ J},
B = {x ∈ Rn | hs(x) > αs, s ∈ S}.

Assume that J is empty, fi is lsc quasiconvex for all i ∈ I, hs is lsc quasiconvex
and L(hs,≤, αs) is bounded for all s ∈ S, and 0 ∈ int ∩i∈I L(fi,≤, β), then,
following conditions (i) and (ii) are equivalent.

(i) ∩i∈IL(fi,≤, β) ⊂ ∩s∈SL(hs, >, αs),

(ii) ∀s ∈ S, ∃v ∈ Rn \ {0} s.t.

∀x ∈ L(hs,≤, αs), ∀y ∈ ∩i∈IL(fi,≤, β), ⟨v, x⟩ > 1 ≥ ⟨v, y⟩ .
Of course, we can rewrite the condition (ii) by using level sets of quasiconjugate
functions. Assume that I is empty, |J | < ∞, gj is usc quasiconvex for all j ∈ J ,
hs is quasiconvex for all s ∈ S, and 0 ∈ int ∩j∈J L(gj, <, β), then, following
conditions (i) and (ii) are equivalent.

(i) ∩j∈JL(gj, <, β) ⊂ ∩s∈SL(hs, >, αs),

(ii) ∀s ∈ S,∃v ∈ Rn \ {0} s.t.

∀x ∈ L(hs,≤, αs),∀y ∈ ∩j∈JL(gj, <, β), ⟨v, x⟩ ≥ 1 > ⟨v, y⟩ .
Hence, we can show the set containment characterization by using 1-quasiconjugate
and −1-semiconjugate.
However, if J is an arbitrary set, then ∩j∈JL(gj, <, β) is not always open

even if gj is usc quasiconvex for all j ∈ J . Therefore, if gj is usc quasiconvex
for all j ∈ J , hs is lsc quasiconvex and L(hs,≤, αs) is bounded for all s ∈ S,
0 ∈ int ∩j∈J L(gj, <, β) and ∩j∈JL(gj, <, β) ⊂ ∩s∈SL(hs, >, αs), then, for all
s ∈ S, there exists v ∈ Rn \ {0} such that for all x ∈ ∩j∈JL(gj, <, β) and
y ∈ L(hs,≤, αs),

⟨v, x⟩ ≥ 1 ≥ ⟨v, y⟩ .
Also, the above inequality does not imply that ∩j∈JL(gj, <, β) ⊂ ∩s∈SL(hs, >
, αs), and these assumptions of functions are the strongest one in this problem.
Therefore, it is hard to characterize set containments by using quasiconjugate
function.

5. Application to quasiconvex minimization problem

In this section, we show that set containment characterizations in this paper is
useful to consider quasiconvex minimization problem. Let I be an arbitrary set,
fi be a lsc quasiconvex function from X to R for each i ∈ I, A = {x ∈ X | ∀i ∈
I, fi(x) ≤ 0}, and k be a usc quasiconvex function. Assume that 0 ∈ intA, and
consider the following problem (P ),

(P )

{
minimize k(x),
subject to x ∈ A.
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In [6], it was shown that all lsc quasiconvex functions are the supremum of some
family of lsc quasi-affine functions, where a function is said to be quasi-affine if
it is quasiconvex and quasiconcave. Furthermore, f is lsc quasi-affine if and only
if there exists l ∈ Q and v ∈ Rn such that f = l ◦ v, where Q = {l : R → R |
l is lsc and non-decreasing}. So, without loss of generality, we can assume that
fi is a lsc quasi-affine function for each i ∈ I, i.e., there exist {(li, vi) | i ∈ I} ⊂
Q×Rn such that fi = li◦vi for each i ∈ I. Also, in [6], Penot and Volle studied the
hypo-epi-inverse which is a generalized concept of the inverse of non-decreasing
functions. The hypo-epi-inverse of g ∈ Q is equal to sup{s ∈ R | g(s) ≤ r} for
any r, and if g has an inverse function, then the inverse and the hypo-epi-inverse
of g are the same. Hence, we denote the hypo-epi-inverse of g by g−1.
By using Theorem 12, for each γ ∈ R, following conditions (i), (ii) and (iii) are

equivalent.

(i) ∩i∈IL(fi,≤, 0) ⊂ L(k,≥, γ),
(ii) 0 ∈ clHeco ∪i∈I L((fi)

θ
1, <, 1) + L(kν

−1,≤,−1− γ) \ {0}, and
(iii) 0 ∈ clco({ 1

(li)−1(0)
vi | i ∈ I} ∪ {0}) + L(kν

−1,≤,−1− γ) \ {0}.
Actually, for each i ∈ I,

L((li ◦ vi)θ1, <, 1) = {z ∈ Rn | (li ◦ vi)θ1(z) < 1}
= {z ∈ Rn | 1− inf{li ◦ vi(x) | ⟨z, x⟩ > 1} < 1}
= {z ∈ Rn | inf{li ◦ vi(x) | ⟨z, x⟩ > 1} > 0}.

If z /∈ R+{vi}, it is clear that inf{li ◦ vi(x) | ⟨z, x⟩ > 1} = inft∈R li(t) ≤ 0 because
S is nonempty. And if z ∈ R+{vi} \ {0}, there exists λ > 0 such that z = λvi,
so inf{li ◦ vi(x) | ⟨z, x⟩ > 1} = li(

1
λ
) because li is nondecreasing. Also, it is clear

that inf{li ◦ vi(x) | ⟨0, x⟩ > 1} = ∞, hence we can prove that L((li ◦ vi)
θ
1, <

, 1) = [0, 1
(li)−1(0)

){vi}. Furthermore, clHeco ∪i∈I L((li ◦ vi)
θ
1, <, 1) = clHeco ∪i∈I

[0, 1
(li)−1(0)

){vi} = cleco{∪i∈I [0,
1

(li)−1(0)
){vi} ∪ {0}} because ∪i∈I [0,

1
(li)−1(0)

){vi} is

nonempty. Also cleco{∪i∈I [0,
1

(li)−1(0)
){vi} ∪ {0}} = clco{∪i∈I [0,

1
(li)−1(0)

){vi} ∪
{0}} = clco({ 1

(li)−1(0)
vi | i ∈ I} ∪ {0}), so the above conditions (i), (ii) and (iii)

are equivalent.
Clearly, infx∈A k(x) = sup{γ ∈ R | ∩i∈IL(fi,≤, 0) ⊂ L(k,≥, γ)}. So, we can

prove that

inf
x∈A

k(x) = sup{γ | 0 ∈ clco({ 1

(li)−1(0)
vi | i ∈ I}∪{0})+L(kν

−1,≤,−1−γ)\{0}},

that is, we get this new duality problem of (P ),

(D)

{
maximize γ,
subject to 0 ∈ clco({ 1

(li)−1(0)
vi | i ∈ I} ∪ {0}) + L(kν

−1,≤,−1− γ) \ {0}.

The value of the dual problem (D) is equal to − infz∈T (k
ν
−1(z) + 1), where T =

−clco({ 1
(li)−1(0)

vi | i ∈ I} ∪ {0}). Furthermore, A∗(≤,1) = clco({ 1
(li)−1(0)

vi | i ∈
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I} ∪ {0}) = −T and kν
−1 + 1 = kR, which is defined in [11]. Since, infx∈A k(x) =

− infz∈−A∗(≤,1) kR(z), we can get another duality problem of (P ),

(D′)

{
minimize kR(z),
subject to z ∈ −A∗(≤,1),

This duality problem (D′) is similar to a duality problem of (P ) in [11].
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