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Abstract

In convex programming, sandwich theorem is very important because it is
equivalent to Fenchel duality theorem. In this paper, we investigate a sand-
wich theorem for quasiconvex functions. Also, we consider some applications
for quasiconvex programming.
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1. Introduction

In convex programming, the following sandwich theorem was investigated,
let f and g be proper lsc convex functions satisfying f ≥ −g, and certain
assumptions hold, then there exists an affine function K such that f ≥ K ≥
−g. Since sandwich theorem is equivalent to Fenchel duality theorem, ([2])
sandwich theorem plays an important role in convex programming.

In this paper, we consider a sandwich theorem for quasiconvex functions.
However, it is clear that even if f and g are quasiconvex functions satisfying
f ≥ −g, there does not always exist an affine function K such that f ≥
K ≥ −g. Hence, we consider a sufficient condition for the existence of a
quasiaffine function K such that f ≥ K ≥ −g. Also, we investigate some
applications of this sandwich theorem for quasiconvex programming.

The remainder of the present paper is organized as follows. In Section
2, we introduce some preliminaries. In Section 3, we investigate sandwich
theorem for quasiconvex functions. In Section 4, we show some applicaitons
of sandwich theorem in this paper. Finally, in Section 5, we compare our
result with the sandwich theorem for convex functions.
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2. Preliminaries

Let X be a locally convex Hausdorff topological vector space. In addition,
let X∗ be the continuous dual space of X, and let ⟨x∗, x⟩ denote the value
of a functional x∗ ∈ X∗ at x ∈ X. Given a set S ⊂ X∗, we denote the w∗-
closure, the convex hull, and the conical hull of S, by clS, coS, and coneS,
respectively. The indicator function δA of A is defined by

δA(x) :=

{
0 x ∈ A,
∞ otherwise.

Throughout the present paper, let f be a function from X to R, where
R = [−∞,∞]. Here, f is said to be proper if for all x ∈ X, f(x) > −∞
and there exists x0 ∈ X such that f(x0) ∈ R. We denote the domain of f
by domf , that is, domf = {x ∈ X | f(x) < ∞}. The epigraph of f , epif , is
defined as epif = {(x, r) ∈ X × R | f(x) ≤ r}, and f is said to be convex
if epif is convex. In addition, the Fenchel conjugate of f , f∗ : X∗ → R, is
defined as f ∗(u) = supx∈domf{⟨u, x⟩ − f(x)}. Remember that f is said to be
quasiconvex if for all x1, x2 ∈ X and λ ∈ (0, 1),

f((1 − λ)x1 + λx2) ≤ max{f(x1), f(x2)}.

Also, f is said to be quasiconcave if −f is quasiconvex. Define level sets of
f with respect to a binary relation ⋄ on R as

L(f, ⋄, β) = {x ∈ X | f(x) ⋄ β}

for any β ∈ R. Then, f is quasiconvex if and only if for any β ∈ R, L(f,≤, β)
is a convex set, or equivalently, for any β ∈ R, L(f, <, β) is a convex set.
Any convex function is quasiconvex, but the opposite is not true.

It is well known that a proper lsc convex function consists of a supremum
of some family of affine functions. In the case of quasiconvex functions, a
similar result was also proved. First, we introduce the notion of a quasiaffine
function which is a generalized notion of an affine function. A function f
is said to be quasiaffine if quasiconvex and quasiconcave. It is worth noting
that f is lsc quasiaffine if and only if there exists k ∈ Q and w ∈ X∗ such
that f = k ◦w, where Q = {h : R → R | h is lsc and non-decreasing}. In [8],
Penot and Volle proved that f is lsc quasiconvex if and only if there exists
{(ki, wi) | i ∈ I} ⊂ Q×X∗ such that f = supi∈I ki ◦wi. This result indicates
that a lsc quasiconvex function f consists of a supremum of some family of lsc
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quasiaffine functions. In [9], we define a notion of generator for quasiconvex
functions, that is, {(ki, wi) | i ∈ I} ⊂ Q × X∗ is said to be a generator of f
if f = supi∈I ki ◦ wi. Because of the above Penot and Volle’s result, all lsc
quasiconvex functions have at least one generator.

Moreover, we introduce a generalized notion of inverse function of h ∈ Q.
The following function h−1 is said to be the hypo-epi-inverse of h:

h−1(a) = inf{b ∈ R | a < h(b)} = sup{b ∈ R | h(b) ≤ a}.

If h has an inverse function, then the inverse and the hypo-epi-inverse of h
are the same, in detail, see [8]. In the present paper, we denote the hypo-
epi-inverse of h by h−1.

Recently, many researchers investigated constraint qualifications for La-
grange type duality theorems, see [5, 6, 7, 9, 10]. In [9], we investigated
the closed cone constraint qualification for quasiconvex programming (the
Q-CCCQ). In this paper, we redefine the Q-CCCQ for infinitely constraints
quasiconvex programming.

Definition 1. [9] Let {gi | i ∈ I} be a family of lsc quasiconvex functions
from X to R, {(h(i,j), u(i,j)) | j ∈ Ji} ⊂ Q × X∗ be a generator of gi for
each i ∈ I, and T = {t = (i, j) | i ∈ I, j ∈ Ji}. Assume that A = {x ∈
X | ∀i ∈ I, gi(x) ≤ 0} is non-empty set. Then, the quasiconvex system
{gi(x) ≤ 0 | i ∈ I} satisfies the closed cone constraint qualification for
quasiconvex programming (the Q-CCCQ) w.r.t. {(ht, ut) | i ∈ T} if

cone co
∪
t∈T

{(ut, δ) ∈ X∗ × R | h−1
t (0) ≤ δ} + {0} × [0,∞)

is w∗-closed.

Also, {gi(x) ≤ 0 | i ∈ I} satisfies the Q-CCCQ if and only if the alternative
form of the Q-CCCQ,

epiδ∗A ⊂ cone co
∪
t∈T

{(ut, δ) ∈ X∗ × R | h−1
t (0) ≤ δ} + {0} × [0,∞)

holds.
A subset B of X is said to be evenly convex if B is equal to the intersection

of some family of open halfspaces, in detail, see [3, 4]. A function f is said
to be evenly quasiconvex if for each β ∈ R, L(f,≤, β) is evenly quasiconvex,
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and f is said to be evenly quasiaffine if evenly quasiconvex and quasiconcave.
In [8], Penot and Volle investigated that f is evenly quasiaffine if and only
if there exists k ∈ G and w ∈ X∗ such that f = k ◦ w, where G = {h :
R → R | h is non-decreasing}. Also, GR denote the set of all real-valued
nondecreasing functions, that is, GR = {h : R → R | h is non-decreasing}.
The following proposition is important.

Proposition 1. [8] The following (i) and (ii) are equivalent:

(i) f is evenly quasiaffine,

(ii) for each β ∈ R, L(f,≤, β) is an open or closed halfspace, or X, or ∅.

3. Sandwich theorem

In this section, we show a sandwich theorem for quasiconvex functions.
In convex case, if f and g are convex, f ≥ −g, and certain assumptions hold,
then there exists an affine function K such that f ≥ K ≥ −g. In this paper,
we consider a sufficient condition for the existence of a real-valued evenly
quasiaffine function K such that f ≥ K ≥ −g. Now we show some lemmas.

Lemma 1. Let f be a quasiconvex function with a generator {(ki, wi) | i ∈
I} ⊂ GR × X∗. If 0 ∈ co{wi | i ∈ I}, then f is bounded from below.

proof. If 0 ∈ co{wi | i ∈ I}, then there exist m ∈ N, i1, . . . , im ∈ I and
β1, . . . , βm ≥ 0 such that 0 =

∑m
n=1 βnwin and 1 =

∑m
n=1 βn. Then, for

all x ∈ X, there exists n0 ∈ {1, . . . , m} such that
⟨
win0

, x
⟩
≥ 0. Hence,

f(x) ≥ kin0
(
⟨
win0

, x
⟩
) ≥ kin0

(0) ≥ minn=1,...,m kin(0). This completes the
proof.

Lemma 2. Let f be a proper quasiconvex function with a generator {(ki, wi) |
i ∈ I} ⊂ GR × X∗. If v ∈ cone co{wi | i ∈ I}, then the function K(f,v) on X
defined by

K(f,v)(x) = inf{f(z) | ⟨v, z⟩ ≥ ⟨v, x⟩}

is proper.

proof. If v ∈ cone co{wi | i ∈ I}, then there exist m ∈ N, i1, . . . , im ∈ I,
λ1, . . . , λm ≥ 0 such that v =

∑m
n=1 λnwin . For all z ∈ X with ⟨v, z⟩ ≥ ⟨v, x⟩,
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⟨
∑m

n=1 λnwin , z⟩ ≥ ⟨
∑m

n=1 λnwin , x⟩, that is, there exists n0 ∈ {1, . . . , m}
such that

⟨
win0

, z
⟩
≥
⟨
win0

, x
⟩
. Then,

max
n=1,...,m

kin ◦ win(z) ≥ kin0
◦ win0

(z) ≥ kin0
◦ win0

(x) ≥ min
n∈{1,...,m}

kin ◦ win(x),

that is, K(f,v)(x) ≥ minn∈{1,...,m} kin ◦ win(x) > −∞. Since f ≥ K(f,v) and
domf is non-empty, K(f,v) is proper.

Lemma 3. K(f,v)(x) = inf{f(z) | ⟨v, z⟩ ≥ ⟨v, x⟩} is a evenly quasiaffine
function.

proof. We show that L(K(f,v),≤, β) is an open or closed halfspace, or X,
or ∅ for each β ∈ R. If L(K(f,v),≤, β) is a nonempty and proper subset of X,
then it is clear that L(K(f,v),≤, β) ⊂ {x | ⟨v, x⟩ ≤ supy∈L(K(f,v),≤,β) ⟨v, y⟩},
and we can check that δ∗L(K(f,v),≤,β)(v) ∈ R. If there exists y0 ∈ L(K(f,v),≤
, β) such that ⟨v, y0⟩ = supy∈L(K(f,v),≤,β) ⟨v, y⟩, we can check that L(K(f,v),≤
, β) = {x ∈ X | ⟨v, x⟩ ≤ ⟨v, y0⟩} by the definition of K(f,v). Also, if for
all x ∈ L(K(f,v),≤, β), ⟨v, x⟩ < supy∈L(K(f,v),≤,β) ⟨v, y⟩, we can check that

L(K(f,v),≤, β) = {x | ⟨v, x⟩ < supy∈L(K(f,v),≤,β) ⟨v, y⟩}. Since Proposition 1,
K(f,v) is evenly quasiaffine.

Lemma 4. Let f be a quasiconvex function with a generator {(ki, wi) | i ∈
I} ⊂ G × X∗, and g be a quasiconvex function with a generator {(hj, uj) |
j ∈ J} ⊂ G×X∗, Assume that f ≥ −g and B = co{x− y | f(x)+ g(y) < 0}
is nonempty. Then B∗ ⊂ cl cone co{wi | i ∈ I} ∩ cl cone co{−uj | j ∈ J},
where B∗ is the negative polar cone of B.

proof. Since B ̸= ∅, there exist x0 and y0 ∈ X such that f(x0)+ g(y0) < 0.
Assume that v /∈ cl cone co{wi | i ∈ I}. By using separation theorem, there
exists x ∈ X such that for all i ∈ I, ⟨v, x⟩ > 0 ≥ ⟨wi, x⟩. Hence, for all n ∈ N
and i ∈ I, ki ◦ wi(x0 + nx) ≤ ki ◦ wi(x0) ≤ f(x0), that is, x0 + nx − y0 ∈ B.
However, ⟨v, x0 + nx − y0⟩ diverge to infinity, this shows that v /∈ B∗. We
can prove similarly that B∗ ⊂ cl cone co{−uj | j ∈ J}.

Consider the following set of functions:

Ξ(X) =

{
sup
i∈I

ki ◦ wi

∣∣∣∣ {(ki, wi) | i ∈ I} ⊂ GR × X∗,
co{wi | i ∈ I} : w∗-compact.

}
.

For example, if I is finite, or I is a compact topological space, {wi | i ∈ I} is
convex, and wi is w∗-continuous on I, then f = supi∈I ki ◦ wi ∈ Ξ(X).

Now we prove the following sandwich theorem for quasiconvex functions.
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Theorem 1. Let f, g ∈ Ξ(X) be proper, f = supi∈I ki◦wi, g = supj∈J hj◦uj,
at least one of f and g is usc, and f ≥ −g. Assume that 0 /∈ B = co{x− y |
f(x)+g(y) < 0}. Then, there exists a real-valued evenly quasiaffine function
K such that f ≥ K ≥ −g.

proof. At first, we can check that B is open convex since at least one of f
and g is usc. If B is empty set, then it is clear that there exists β ∈ R such
that f ≥ β ≥ −g. If B is nonempty, then by using separation theorem, there
exists v ∈ X∗ \ {0} such that for all y ∈ B,

⟨v, 0⟩ = 0 > ⟨v, y⟩ ,

that is, v ∈ B∗. Then, K(f,v) is proper. Actually, if 0 ∈ co{wi | i ∈ I},
by using Lemma 1, f is bounded from below, that is K(f,v) is proper. If
0 /∈ co{wi | i ∈ I}, cone co{wi | i ∈ I} is w∗-closed since co{wi | i ∈
I} is w∗-compact. By using Lemma 2 and 4, K(f,v) is proper. We can
prove similarly that K(g,−v) is proper evenly quasiaffine. Next, we show that
K(f,v) ≥ −K(g,−v). If there exists x ∈ X such that K(f,v)(x) < −K(g,−v)(x),
then there exist x0, z0 ∈ X and λ ∈ R such that f(x0) < λ < −g(z0) and
⟨v, x0⟩ ≥ ⟨v, x⟩ ≥ ⟨v, z0⟩. Hence, x0 − z0 ∈ B and ⟨v, x0 − z0⟩ ≥ 0, this is
a contradiction. Therefore, f ≥ K(f,v) ≥ −K(g,−v) ≥ −g. Since K(f,v) is
proper, there exists x0 ∈ X such that K(f,v)(x0) ∈ R. Put K as follows:

K(x) :=

{
K(f,v)(x) ⟨v, x⟩ ≤ ⟨v, x0⟩ ,
max{K(f,v)(x0),−K(g,−v)(x)} otherwise,

then we can check that K is real-valued evenly quasiaffine, and K(f,v) ≥ K ≥
−K(g,−v). This completes the proof.

4. Applications

In this section we show some applications of Theorem 1, and we investi-
gate the relation between sandwich theorem and the Q-CCCQ in [9].

Theorem 2. Let A be a nonempty closed convex subset of X, f ∈ Ξ(X)
be usc, and α = infx∈A f(x) ∈ R. Then, there exists a real-valued evenly
quasiaffine function K such that

(i) f ≥ K ≥ α − δA,
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(ii) inf
x∈A

f(x) = inf
x∈A

K(x), and

(ii) inf
x∈X

{f(x) − K(x)} = 0.

proof. At first, we apply Theorem 1 with g = δA − α. Let B = co{x − y |
f(x) + δA(y)−α < 0}. Put an open line segment L = ( inf

x∈X
f(x), α), then we

can check that B = co
∪

λ∈L{L(f,<, λ) − A}. When L = ∅, it is clear that
0 /∈ B since B = ∅. Assume that L ̸= ∅ and 0 ∈ B. Then, there exist m ∈ N,
λ1, . . . , λm ∈ L, x1, . . . , xm, y1, . . . , ym ∈ X and β1, . . . , βm ≥ 0 such that
0 =

∑m
n=1 βn(xn − yn), xn ∈ L(f, <, λn) and yn ∈ A for each n ∈ {1, . . . , m},

and 1 =
∑m

n=1 βn. Since A is convex and λn ∈ L, for each n,

α ≤ f(
∑

βnxn) + δA(
∑

βnyn)

≤ max
n=1,...,m

f(xn) + 0

≤ max
n=1,...,m

λn

< α.

This is a contradiction. Since f ≥ α − δA and 0 /∈ B, by using Theo-
rem 1, there exists a real-valued evenly quasiaffine function K such that
f ≥ K ≥ α−δA. Hence, infx∈A f(x) ≥ infx∈X{f(x)−K(x)}+infx∈A K(x) ≥
infx∈A K(x) ≥ infx∈A{α − δA(x)} = α = infx∈A f(x). This completes the
proof.

Next, we consider an optimization problem with quasiconvex inequality
constraints. For the sake of simplicity, we consider the problem with singular
constraint function.

Theorem 3. Let g be a lsc quasiconvex function from X to R, and {(ht, ut) |
t ∈ T} ⊂ Q × X∗ be a generator of g. Assume that A = L(g,≤, 0) is
nonempty. Then the following conditions (i) and (ii) are equivalent.

(i) {g(x) ≤ 0} satisfies the Q-CCCQ w.r.t. {(ht, ut) | t ∈ T},

(ii) for all usc function f ∈ Ξ(X) with α = infx∈A f(x) ∈ R, there exist
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k0 ∈ GR and λ ∈ R(T )
+ such that

inf
x∈A

f(x) = inf
x∈X

{
f(x) − k0

(⟨
−
∑
t∈T

λtut, x

⟩)}
,

infx∈A k0

(⟨
−
∑

t∈T λtut, x
⟩)

= 0,

δ∗A

(∑
t∈T

λtut

)
=
∑
t∈T

λth
−1
t (0).

proof. We prove that (i) implies (ii). Let f ∈ Ξ(X) and α = infx∈A f(x) ∈
R. Then there exist k0 ∈ GR and w0 ∈ X∗ such that

α = inf
x∈X

{f(x) − k0 ◦ w0(x)} + inf
y∈A

k0 ◦ w0(y) and δ∗A(−w0) ∈ R. (1)

Actually, by using Theorem 2, there exists a real-valued evenly quasiaffine
function K such that f ≥ K ≥ α − δA, infx∈X{f(x) − K(x)} = 0, and
α = infy∈A K(y). Since K is evenly quasiaffine, there exist k0 ∈ GR and
w0 ∈ X∗ such that K = k0 ◦ w0. If δ∗A(−w0) ∈ R, then (1) holds. Assume
that δ∗A(−w0) /∈ R, we show f ≥ α ≥ α − δA. It is clear that δ∗A(−w0) = ∞
and α ≥ α − δA. Since infx∈A ⟨w0, x⟩ = −δ∗A(−w0) = −∞ and k0 ∈ G, we
can check that inft∈R k0(t) = infx∈A k0 ◦ w0(x) = α. Hence, for all x ∈ X,

f(x) ≥ k0 ◦ w0(x) ≥ inf
t∈R

k0(t) = α,

that is, f ≥ α. Now we replace k0 ≡ α and w0 = 0, then (1) is satisfied.
Since (−w0, δ

∗
A(−w0)) ∈ epiδ∗A and the Q-CCCQ is satisfied, there exists

λ ∈ R(T )
+ , δ ∈ RT and r ≥ 0 such that −w0 =

∑
t∈T λtut, δt ≥ h−1

t (0), and
δ∗A(−w0) =

∑
t∈T λtδt + r. By the similar way in [9]. we can check that

δt = h−1
t (0) and r = 0, that is, δ∗A(−w0) =

∑
t∈T λth

−1
t (0). Also, we replace

k0 as k0 − infx∈A k0(
⟨
−
∑

t∈T λtut, x
⟩
), then condition (ii) holds.

Next, we prove that (ii) implies (i). We may show that for all v ∈ domδ∗A\
{0},

(v, δ∗A(v)) ∈ cone co
∪
t∈T

{(ut, δ) ∈ X∗ × R | h−1
t (0) ≤ δ}.

Let v ∈ domδ∗A \ {0}, then infx∈A ⟨−v, x⟩ = δ∗A(v) ∈ R. By using (ii), there

exist k0 ∈ GR and λ ∈ R(T )
+ such that infx∈A ⟨−v, x⟩ = infx∈X{⟨−v, x⟩ −

k0(
⟨
−
∑

t∈T λtut, x
⟩
)}, infy∈A k0(

⟨
−
∑

t∈T λtut, y
⟩
) = 0 and δ∗A(

∑
t∈T λtut) =
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∑
t∈T λth

−1
t (0). Then, we can prove that v ∈ R+{

∑
t∈T λtut}. At first,

we assume that v /∈ R{
∑

t∈T λtut}, then there exists x0 ∈ X such that
for all a ∈ R, ⟨v, x0⟩ >

⟨
a
∑

t∈T λtut, x0

⟩
by separation theorem. This

implies that ⟨v, x0⟩ > 0 =
⟨∑

t∈T λtut, x0

⟩
. However, infx∈X{⟨−v, x⟩ −

k0(
⟨
−
∑

t∈T λtut, x
⟩
)} ≤ infa∈R{⟨−v, ax0⟩ − k0(

⟨
−
∑

t∈T λtut, ax0

⟩
)} = −∞,

this is a contradition. Hence, there exist γ ̸= 0 such that v = γ
∑

t∈T λtut

and we can choose y0 ∈ X such that ⟨v, y0⟩ > 0 since v ̸= 0. If γ < 0,

inf
x∈X

{
⟨−v, x⟩ − k0

(⟨
−
∑
t∈T

λtut, x

⟩)}

= inf
x∈X

{
⟨−v, x⟩ − k0

(⟨
−v

γ
, x

⟩)}
≤ inf

a≥0

{
⟨−v, ay0⟩ − k0

(⟨
−v

γ
, ay0

⟩)}
≤ inf

a≥0
{⟨−v, ay0⟩} − k0(0)

= −∞.

Therefore, γ > 0. Now we put λ̄ = γλ, then it is clear that λ̄ ∈ R(T )
+ ,

v =
∑

t∈T λ̄tut, and δ∗A(v) =
∑

t∈T λ̄th
−1
t (0). This completes the proof.

5. Discussion

In this section, we compare Theorem 1 with the sandwich theorem for con-
vex functions. It is known that ‘0 ∈ core(domf − domg)’ and ‘epif∗ + epig∗

is w∗-closed’ are sufficient conditions for sandwich theorem for convex func-
tions, in detail, see [1, 2]. In Theorem 1, we propose the following sufficient
condition for sandwich theorem:

(1) 0 /∈ B = co{x − y | f(x) + g(y) < 0}.

Also, in Theorem 2, we show that a usc function f ∈ Ξ(X) and δA − α
satisfy the condition (1) where A is a nonempty closed convex subset of X
and α = infx∈A f(x) ∈ R.

The following theorem indicates that two convex functions satisfy the
condition (1).

Theorem 4. Let f and g be convex functions from X to R and f ≥ −g.
Then, f and g satisfy the condition (1).
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proof. Assume that 0 ∈ B, there exist m ∈ N, β1, · · · , βm ≥ 0, x1, · · · , xm ∈
X, y1, · · · , ym ∈ X such that

m∑
i=1

βi = 1,

0 =
m∑

i=1

βi(xi − yi),

f(xi) + g(yi) < 0, ∀i ∈ {1, · · · ,m}.

Put x0 =
∑m

i=1 βixi, then

0 ≤ f(x0) + g(x0)

= f

(
m∑

i=1

βixi

)
+ g

(
m∑

i=1

βiyi

)

≤
m∑

i=1

βif(xi) +
m∑

i=1

βig(yi)

=
m∑

i=1

βi(f(xi) + g(yi))

< 0.

This is a contradiction.

Hence, we can prove the following corollary.

Corollary 1. Let f , g ∈ Ξ(X) be proper convex, at least one of f and g is
usc, and f ≥ −g. Then, there exists a real-valued evenly quasiaffine function
K such that f ≥ K ≥ −g.

Although Corollary 1 does not guarantee the existence of an affine function,
Corollary 1 indicates that if f and g ∈ Ξ(X) are proper usc convex with
f ≥ −g, then there exists a quasiaffine function K such that f ≥ K ≥ −g
without any other sufficient condition of the sandwich theorem for convex
functions.

Finally, we show the following example.

Example 1. Let f and g be convex functions from R to R as follows.

f(x) :=

{
−
√
|x2 + 2x| x ∈ [−2, 0),

∞ otherwise,
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g(x) :=

{
−
√

|x2 − 2x| x ∈ [0, 2],
∞ otherwise.

Then, f ≥ −g, f , g ∈ Ξ(X) and f is usc. Also, we can check that there
does not exist an affine function K such that f ≥ K ≥ −g. However, by
Corollary 1, there exists a real-valued evenly quasiaffine function K such that
f ≥ K ≥ −g. Actually, the following K satisfies f ≥ K ≥ −g.

K(x) :=


−1 x ≤ 1,

−
√
|x2 + 2x| x ∈ [−1, 0],√

|x2 − 2x| x ∈ [0, 1],
1 x ≥ 1.
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