
Journal of Optimization Theory and Applications manuscript No.
(will be inserted by the editor)

Necessary and Sufficient Constraint Qualification for
Surrogate Duality

Satoshi Suzuki · Daishi Kuroiwa

Abstract In mathematical programming, constraint qualifications are essen-
tial elements for duality theory. Recently, necessary and sufficient constraint
qualifications for Lagrange duality results have been investigated. Also, surro-
gate duality enables one to replace the problem by a simpler one in which the
constraint function is a scalar one. However, as far as we know, a necessary and
sufficient constraint qualification for surrogate duality has not been proposed
yet. In this paper, we propose necessary and sufficient constraint qualifications
for surrogate duality and surrogate min-max duality, which are closely related
with ones for Lagrange duality.
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1 Introduction

In mathematical programming, constraint qualifications are essential elements
for duality theory. In convex programming, it is well known that the Slater
condition assures the existence of Lagrange multipliers, and Lagrange duality
theorems and various constraint qualifications were investigated by many au-
thors. Recently, necessary and sufficient constraint qualifications for Lagrange
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(strong) duality results have been investigated; see [1–5]. To find a necessary
and sufficient constraint qualification is one of the destinations of the study of
a mathematical programming problem.

Also, surrogate (strong) duality was widely studied by many authors; for
example, see [6–11]. These studies showed that surrogate duality is important
to consider zero-one integer programming problem, quasiconvex programming
problem, and so on. Surrogate duality enables one to replace the problem by a
simpler problem, in which the constraint function is a scalar one. In [11], it is
shown that the generalized Slater condition assures the existence of surrogate
multipliers. However, as far as we know, a necessary and sufficient constraint
qualification for surrogate duality has not been proposed yet.

In this paper, we investigate necessary and sufficient constraint qualifica-
tions for surrogate duality and surrogate min-max duality. We propose nec-
essary and sufficient constraint qualifications for surrogate duality, which are
closely related with ones for Lagrange duality, and prove the main theorems
by using Jeyakumar’s set containment characterization in [12].

The remainder of the present paper is organized as follows. In Section 2,
we introduce some preliminaries and notations. In Section 3, we investigate a
necessary and sufficient constraint qualification for the surrogate duality. In
Section 4, we investigate a necessary and sufficient constraint qualification for
the surrogate min-max duality. In Section 5, we compare constraint qualifica-
tions in this paper with previous ones.

2 Preliminaries

Let X be a locally convex Hausdorff topological vector space, let X∗ be the
continuous dual space of X, and let ⟨x∗, x⟩ denote the value of a functional
x∗ ∈ X∗ at x ∈ X. Given a set A∗ ⊂ X∗, we denote the w∗-closure, and the
conical hull generated by A∗, by clA∗, and coneA∗, respectively. The indicator
function δA of A ⊂ X is defined by

δA(x) :=

{
0, x ∈ A,
∞, otherwise.

Let f be a function from X to R. Here, f is said to be proper iff for all
x ∈ X, f(x) > −∞ and there exists x0 ∈ X such that f(x0) ∈ R. We
denote the domain of f by domf := {x ∈ X | f(x) < ∞}. The epigraph
of f is epif := {(x, r) ∈ X × R | f(x) ≤ r}, and f is said to be convex iff
epif is convex. When f(x) ∈ R, the subdifferential of f at x is defined as
∂f(x) := {x∗ ∈ X∗ | ∀y ∈ X, f(y) ≥ f(x) + ⟨x∗, y − x⟩}. Also, the normal
cone of A at x ∈ A is NA(x) := {x∗ ∈ X∗ | ∀y ∈ A, ⟨x∗, y − x⟩ ≤ 0}. Clearly,
NA(x) = ∂δA(x). In addition, the Fenchel conjugate of f , f∗ : X∗ → R, is
defined as f∗(u) := supx∈domf{⟨u, x⟩ − f(x)}. f is said to be quasiconvex iff
for all x1, x2 ∈ X and α ∈ [0, 1], f((1 − α)x1 + αx2) ≤ max{f(x1), f(x2)}.
Define level sets of f with respect to a binary relation ⋄ on R as

L(f, ⋄, β) := {x ∈ X | f(x) ⋄ β}
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for any β ∈ R. Then, f is quasiconvex if and only if for any β ∈ R, L(f,≤, β)
is a convex set or, equivalently, for any β ∈ R, L(f,<, β) is a convex set. Any
convex function is quasiconvex, but the opposite is not true.

Let Y be a locally convex Hausdorff topological vector space, partially
ordered by a nonempty, closed and convex cone K ⊂ Y ; that is, for y, z ∈ Y ,
the notation y ≤K z will mean z−y ∈ K; let Y ∗ be the continuous dual space
of Y , and let g be a function from X to Y . Also, the positive polar cone of K
is K+ := {λ ∈ Y ∗ | ∀y ∈ K, ⟨λ, y⟩ ≥ 0}. A function g is said to be K-convex iff
for all x1, x2 ∈ X, and α ∈ [0, 1], (1−α)g(x1)+αg(x2) ∈ g((1−α)x1+αx2)+K.
It is well known that g is K-convex if and only if λ◦g is convex for all λ ∈ K+.

In [1–5], the following condition was investigated as a necessary and suffi-
cient constraint qualification for the Lagrange duality: {g(x) ∈ −K | x ∈ C}
satisfies the closed cone constraint qualification (CCCQ) iff∪

λ∈K+

epi (λ ◦ g)∗ + epi δ∗C

is w∗-closed. Also, {g(x) ∈ −K | x ∈ C} satisfies CCCQ if and only if the
alternative form of CCCQ,

epi δ∗A ⊂
∪

λ∈K+

epi (λ ◦ g)∗ + epi δ∗C .

In [1], Boţ investigated another constraint qualification, which is weaker than
CCCQ. Also, Boţ proved that the constraint qualification is equivalent to
CCCQ when g is continuous K-convex. In this paper, we assume that g is
continuous K-convex and investigate CCCQ.

In [5], the following constraint qualification was investigated as necessary
and sufficient constraint qualification for the Lagrangian min-max duality;
{g(x) ∈ −K | x ∈ C} satisfies [CQ2] iff

NA(x0) = NC(x0) +

{
x∗ ∈ X∗

∣∣∣∣ (x∗, ⟨x∗, x0⟩) ∈
∪

λ∈K+

epi (λ ◦ g)∗
}

for all x0 ∈ A.
In the research of surrogate duality, many results were investigated with

the Slater condition and generalized Slater conditions. Recently, Penot and
Volle investigated the following result.

Theorem 2.1 [11] Let C be a convex subset of a Banach space X, K be a
closed and convex cone of a Banach space Y , g be a K-convex function from X
to Y , A = C ∩g−1(−K), f be a directionally usc quasiconvex function from C
to R, and epig := {(x, y) ∈ X × Y | y ∈ g(x)+K} be closed. If R+(g(C)+K)
is a closed subspace of Y , then there exists a surrogate multiplier λ̄ ∈ K+.

In Theorem 2.1, the condition “R+(g(C) + K) is a closed subspace of Y ” is
a constraint qualification for surrogate duality. When X and Y are Banach
spaces (or Fréchet spaces), this constraint qualification is weaker than the
Slater condition; for details see Section 5.
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3 Necessary and Sufficient Constraint Qualification for Surrogate
Duality

In the rest of this paper, let X and Y be locally convex Hausdorff topological
vector spaces, K ⊂ Y be a nonempty, closed and convex cone, Y be partially
ordered by K, g be a continuous and K-convex function from X to Y , and
A := C ∩ g−1(−K) be nonempty.

In this section, we show a necessary and sufficient constraint qualification
for surrogate duality. At first, we introduce the following constraint qualifica-
tion.

Definition 3.1 {g(x) ∈ −K | x ∈ C} is said to satisfy the closed cone con-
straint qualification for surrogate duality (S-CCCQ) iff∪

λ∈K+

cl
[
cone epi (λ ◦ g)∗ + epi δ∗C

]
is w∗-closed.

S-CCCQ is truly weaker than CCCQ; for details, see Section 5. The fol-
lowing proposition is very important.

Proposition 3.1 The following conditions hold:

(i) for all λ ∈ K+, epi δ∗Bλ
= cl[cone epi (λ ◦ g)∗ + epi δ∗C ],

(ii) epi δ∗A = cl
∪

λ∈K+ cl[cone epi (λ ◦ g)∗ + epi δ∗C ],

where Bλ := C ∩ L(λ ◦ g,≤, 0).

Proof For all λ ∈ K+, clearly epi δ∗Bλ
= epi (δL(λ◦g,≤,0) + δC)

∗. Also, we can
show that epi (δL(λ◦g,≤,0) + δC)

∗ = cl[epi δ∗L(λ◦g,≤,0) + epi δ∗C ], see [13,14]. By

using Jeyakumar’s set containment characterization in [12],

cl[epi δ∗L(λ◦g,≤,0) + epi δ∗C ] = cl[cl cone epi (λ ◦ g)∗ + epi δ∗C ].

We can check easily that

epi (λ ◦ g)∗ + epi δ∗C ⊂ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]

⊂ cl[cl cone epi (λ ◦ g)∗ + epi δ∗C ]

= epi δ∗Bλ
⊂ epi δ∗A.

Hence,∪
λ∈K+

epi (λ ◦ g)∗ + epi δ∗C ⊂
∪

λ∈K+

cl[cone epi (λ ◦ g)∗ + epi δ∗C ] ⊂ epi δ∗A.

Because of Lemma 3.1 in [4],

cl

[ ∪
λ∈K+

epi (λ ◦ g)∗ + epi δ∗C

]
= cl

∪
λ∈K+

cl [cone epi (λ ◦ g)∗ + epi δ∗C ] = epi δ∗A.

This completes the proof. ⊓⊔
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By using Proposition 3.1, we can prove that {g(x) ∈ −K | x ∈ C} satisfies
S-CCCQ, if and only if the alternative form of S-CCCQ,

epi δ∗A ⊂
∪

λ∈K+

cl[cone epi (λ ◦ g)∗ + epi δ∗C ].

The following theorem shows that S-CCCQ is a necessary and sufficient
constraint qualification for surrogate duality.

Theorem 3.1 The following conditions are equivalent:

(i) {g(x) ∈ −K | x ∈ C} satisfies S-CCCQ,
(ii) for all usc quasiconvex function f from X to R, there exists λ̄ ∈ K+ such

that
inf{f(x) | x ∈ A} = inf{f(x) | x ∈ C, λ̄ ◦ g(x) ≤ 0}.

(iii) for all v ∈ X∗, there exists λ̄ ∈ K+ such that

inf{v(x) | x ∈ A} = inf{v(x) | x ∈ C, λ̄ ◦ g(x) ≤ 0}.

Proof At first, we show that (i) implies (ii). Let f be a usc quasiconvex func-
tion, and m = infx∈A f(x). If L(f,<,m) ∩ C = ∅, then put λ̄ = 0 and this
completes the proof. If L(f,<,m)∩C ̸= ∅, there exists (x∗, α) ∈ X∗ ×R such
that for all x ∈ A and y ∈ L(f,<,m),

⟨x∗, x⟩ ≤ α < ⟨x∗, y⟩ ,

since L(f,<,m) ∩ A = ∅ and L(f,<,m) is a nonempty, open and convex set.
Because of the condition (i) and Proposition 3.1,

(x∗, α) ∈ epi δ∗A ⊂
∪

λ∈K+

cl [cone epi (λ ◦ g)∗ + epi δ∗C ] =
∪

λ∈K+

epi δ∗Bλ
.

Therefore, there exists λ̄ ∈ K+ such that (x∗, α) ∈ epi δ∗Bλ̄
. By using the above

separation inequality, we can prove that for all x ∈ C,

λ̄ ◦ g(x) ≤ 0 ⇐⇒ x ∈ Bλ̄

=⇒ ⟨x∗, x⟩ ≤ α

=⇒ x /∈ L(f,<,m)

⇐⇒ f(x) ≥ m,

that is, inf{f(x) | x ∈ C, λ̄ ◦ g(x) ≤ 0} ≥ m, this shows (ii) holds.
Clearly, (ii) implies (iii).
Next, we show that (iii) implies (i). Because of the alternative form of

S-CCCQ, we show that epi δ∗A ⊂
∪

λ∈K+ cl [cone epi (λ ◦ g)∗ + epi δ∗C ]. Let
(x∗, α) ∈ epi δ∗A, then δ∗A(x

∗) ∈ R and δ∗A(x
∗) = − infx∈A ⟨−x∗, x⟩. By the

condition (iii), there exists λ̄ ∈ K+ such that

inf
x∈A

⟨−x∗, x⟩ = inf{⟨−x∗, x⟩ | x ∈ C, λ̄ ◦ g(x) ≤ 0}.
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Hence, for all x ∈ C,

λ̄ ◦ g(x) ≤ 0 =⇒ ⟨−x∗, x⟩ ≥ −δ∗A(x
∗) ⇐⇒ ⟨x∗, x⟩ ≤ δ∗A(x

∗).

This implies δ∗Bλ̄
(x∗) ≤ δ∗A(x

∗) ≤ α, that is,

(x∗, α) ∈ epi δ∗Bλ̄
= cl

[
cone epi (λ̄ ◦ g)∗ + epi δ∗C

]
because of Proposition 3.1. This completes the proof. ⊓⊔

Remark 3.1 Because of the weak duality, we show that {g(x) ∈ −K | x ∈ C}
satisfies S-CCCQ, if and only if for all usc quasiconvex function f ,

inf{f(x) | x ∈ A} = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0}.

4 Necessary and Sufficient Constraint Qualification for Surrogate
Min-Max Duality

In this section, we show a necessary and sufficient constraint qualification
for surrogate min-max duality. At first, we introduce the following constraint
qualification.

Definition 4.1 {g(x) ∈ −K | x ∈ C} is said to satisfy the basic constraint
qualification for surrogate duality (S-BCQ) at x0 ∈ A iff

NA(x0) =
∪

λ∈K+

{
x∗ ∈ X∗

∣∣∣∣ (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]

}
.

Furthermore, {g(x) ∈ −K | x ∈ C} is said to satisfy S-BCQ iff for all y ∈ A,
{g(x) ∈ −K | x ∈ C} satisfies S-BCQ at y.

S-BCQ is closely related to S-CCCQ and [CQ2]. For details, see Section 5.
The following proposition is very important.

Proposition 4.1 Let x0 ∈ A. The following conditions hold:

(i) for all λ ∈ K+,

NBλ
(x0) = {x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]} ,

(ii) NA(x0) ⊃
∪

λ∈K+

{
x∗ ∈ X∗

∣∣∣∣ (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]

}
.

Proof By using Proposition 3.1 (i), we can prove that for all λ ∈ K+,

x∗ ∈ NBλ
(x0) ⇐⇒ δ∗Bλ

(x∗) ≤ ⟨x∗, x0⟩
⇐⇒ (x∗, ⟨x∗, x0⟩) ∈ epi δ∗Bλ

⇐⇒ (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ],
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and then {x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]} = NBλ
(x0).

Since A ⊂ Bλ, NBλ
(x0) ⊂ NA(x0), hence,∪

λ∈K+

{
x∗ ∈ X∗

∣∣∣∣ (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]

}
⊂ NA(x0),

this completes the proof. ⊓⊔

By using Proposition 4.1, we can prove that {g(x) ∈ −K | x ∈ C} satisfies
S-BCQ, if and only if

NA(x0) ⊂
∪

λ∈K+

{
x∗ ∈ X∗

∣∣∣∣ (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]

}
.

The following theorem shows that S-BCQ is a necessary and sufficient
constraint qualification for the surrogate min-max duality. Recall that Γ0(X)
is the set of all proper lsc convex function from X to R.

Theorem 4.1 Let x0 ∈ A. The following conditions are equivalent:

(i) {g(x) ∈ −K | x ∈ C} satisfies S-BCQ at x0,
(ii) for all f ∈ Γ0(X) with domf ∩ A ̸= ∅ and epi f∗ + epi δ∗A is w∗-closed, x0

is a global minimizer of f in A if and only if there exists λ̄ ∈ K+ such that

f(x0) = min{f(x) | x ∈ C, λ̄ ◦ g(x) ≤ 0}.

(iii) for all v ∈ X∗ x0 is a global minimizer of v in A if and only if there exists
λ̄ ∈ K+ such that

v(x0) = min{v(x) | x ∈ C, λ̄ ◦ g(x) ≤ 0}.

Proof At first, we show that (i) implies (ii). Because of assumptions of f , x0

is a global minimizer of f in A if and only if 0 ∈ ∂f(x0) +NA(x0). Because of
S-BCQ and Proposition 4.1 (i),

0 ∈ ∂f(x0) +NA(x0) ⇐⇒ 0 ∈ ∂f(x0) +
∪

λ∈K+

NBλ
(x0),

that is, there exists λ̄ ∈ K+ such that 0 ∈ ∂f(x0)+NBλ̄
(x0). This means that

x0 is a global minimizer of f in Bλ̄ = C ∩ L(λ̄ ◦ g,≤, 0), this completes the
first part of the proof.

It is clear that (ii) implies (iii).
Next, we show that (iii) implies (i). Because of Proposition 4.1, we only

show that

NA(x0) ⊂
∪

λ∈K+

{x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]}.

Let x∗ ∈ NA(x0), then x0 is a global minimizer of −x∗ in A. From (iii), there
exists λ̄ ∈ K+ such that

⟨−x∗, x0⟩ = min{⟨−x∗, x⟩ | x ∈ C, λ̄ ◦ g(x) ≤ 0}.
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For all x ∈ C,

λ̄ ◦ g(x) ≤ 0 =⇒ ⟨−x∗, x⟩ ≥ ⟨−x∗, x0⟩ ⇐⇒ ⟨x∗, x− x0⟩ ≤ 0,

that is x∗ ∈ NBλ̄
(x0). This completes the proof. ⊓⊔

Remark 4.1 Because of the weak duality, we show that {g(x) ∈ −K | x ∈ C}
satisfies S-BCQ, if and only if for all f ∈ Γ0(X) with dom f ∩ A ̸= ∅ and
epi f∗ + epi δ∗A is w∗-closed,

min
x∈A

f(x) = max
λ∈K+

inf{f(x) | x ∈ C, λ ◦ g(x) ≤ 0}.

Remark 4.2 By using Theorem 1 in [15], we can prove that the following
conditions are equivalent:

(i) {g(x) ∈ −K | x ∈ C} satisfies S-BCQ at x0,
(ii) for all quasiconvex functions f ∈ QF (X) with a generator G, if x0 is a

local minimizer of f in A, then there exists λ̄ ∈ K+ such that

0 ∈ ∂Gf(x0) +
{
x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ̄ ◦ g)∗ + epi δ∗C ]

}
.

For details, see [15].

5 Comparisons of Constraint Qualifications

In this section, we compare S-CCCQ, S-BCQ and known constraint qualifica-
tions in [1–5,11,16]. For a given set S ⊂ Y , we denote the interior, the affine
hull, and the core of S, by intS, affS, and coreS, respectively. The core of S
relative to affS is called intrinsic core of S and denoted by icrS. If S is convex,
the strong quasi-relative interior of S, sqriS, is the set of those y ∈ S, for
which cone(S − y) is a closed subspace.

Proposition 5.1 The following statements hold:

(i) if {g(x) ∈ −K | x ∈ C} satisfies CCCQ, then {g(x) ∈ −K | x ∈ C}
satisfies S-CCCQ,

(ii) if {g(x) ∈ −K | x ∈ C} satisfies [CQ2], then {g(x) ∈ −K | x ∈ C} satisfies
S-BCQ,

(iii) if {g(x) ∈ −K | x ∈ C} satisfies S-CCCQ, then {g(x) ∈ −K | x ∈ C}
satisfies S-BCQ.

Proof (i) In the proof of Proposition 3.1, we show the following inclusion,

epi (λ ◦ g)∗ + epi δ∗C ⊂ cl[cone epi (λ ◦ g)∗ + epi δ∗C ] = epi δ∗Bλ
⊂ epi δ∗A,

for all λ ∈ K+, that is,∪
λ∈K+

epi (λ ◦ g)∗ + epi δ∗C ⊂
∪

λ∈K+

cl[cone epi (λ ◦ g)∗ + epi δ∗C ] ⊂ epi δ∗A.
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If {g(x) ∈ −K | x ∈ C} satisfies CCCQ, then∪
λ∈K+

epi (λ ◦ g)∗ + epi δ∗C =
∪

λ∈K+

cl[cone epi (λ ◦ g)∗ + epi δ∗C ] = epi δ∗A,

this means that {g(x) ∈ −K | x ∈ C} satisfies S-CCCQ.
(ii) Let x0 ∈ A. In Proposition 4.1, we show the following inclusion,∪
λ∈K+

{x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]} ⊂ NA(x0).

Also, we can check that for all λ ∈ K+,

NC(x0) + {x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈ epi (λ ◦ g)∗}
⊂ {x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]},

that is,

NC(x0) + {x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈
∪

λ∈K+

epi (λ ◦ g)∗}

⊂
∪

λ∈K+

{x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]}

⊂ NA(x0).

Hence, if {g(x) ∈ −K | x ∈ C} satisfies [CQ2], then

NC(x0) + {x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈
∪

λ∈K+

epi (λ ◦ g)∗}

=
∪

λ∈K+

{x∗ ∈ X∗ | (x∗, ⟨x∗, x0⟩) ∈ cl[cone epi (λ ◦ g)∗ + epi δ∗C ]}

= NA(x0),

this means that {g(x) ∈ −K | x ∈ C} satisfies S-BCQ at x0.
(iii) We assume that {g(x) ∈ −K | x ∈ C} satisfies S-CCCQ. We show

the condition (iii) of Theorem 4.1. Let x0 ∈ A and v ∈ X∗. Since S-CCCQ
is satisfied, there exists λ ∈ K+ such that infx∈A ⟨v, x⟩ = infx∈Bλ

⟨v, x⟩. If
x0 is a minimizer of v in A, then it is clear that ⟨v, x0⟩ = minx∈Bλ

⟨v, x⟩.
Conversely, if ⟨v, x0⟩ = minx∈Bλ

⟨v, x⟩, then x0 is a minimizer of v in A since
x0 ∈ A ⊂ Bλ. Hence, “x0 is a minimizer of v in A” if and only if “there exists
λ ∈ K+ such that ⟨v, x0⟩ = minx∈Bλ

⟨v, x⟩”, that is, the condition (iii) holds.
Because of Theorem 4.1, this completes the proof. ⊓⊔

Based on [4,5,11], we assume thatX and Y are Banach spaces. By Proposi-
tion 5.1 and [4,5,11], we investigate the following relations among well-known
constraint qualifications.
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Slater condition

0 ∈ int(g(C) +K)

S-CCCQ

0 ∈ core(g(C) +K) Y = R+(g(C) +K)

0 ∈ sqri(g(C) +K)

CCCQ

0 ∈ icr(g(C) +K),
R+(g(C) +K) is

[CQ2]

S-BCQ

closed subspace
aff(g(C) +K) is

closed subspace

[5]

[5]

[5]

[5]

*

*

*

[5]

[4]

[11]

**

Fig. 1

The above asterisk (∗) indicates that these implications are proved in
Proposition 5.1. The double asterisk (∗∗), “0 ∈ icr(g(C)+K) and aff(g(C)+K)
is a closed subspace” if and only if “R+(g(C) + K) is a closed subspace”, is
proved easily. Also, according to [1], CCCQ holds when X and Y are Fréchet
spaces and 0 ∈ sqri(g(C) +K). However, in locally convex topological vector
space, such a result does not hold; for details, see [1].

In Proposition 3.1, we show if CCCQ is satisfied then S-CCCQ is satisfied.
However, the opposite is not generally true. Actually, if X = C = R, K = R+,
and g(x) = x2, then {g(x) ≤ 0} satisfies S-CCCQ but does not satisfy CCCQ.
Similarly, even if S-BCQ is satisfied, [CQ2] is not always satisfied.

Recently, regularity conditions are investigated by many researchers; for
example, see [1,17–19]. The papers by Moldovan and Pellegrini [18,19] aimed
at giving a reference scheme for walking in the jungle of regularity conditions
and constraint qualifications for various inequality constraints. In general, a



Necessary and Sufficient Constraint Qualification for Surrogate Duality 11

condition, which guarantees the strong duality, is called regularity condition or
constraint qualification, according to whether the condition does or does not
involve the objective function, respectively. In this paper, we study only neces-
sary and sufficient constraint qualifications for convex inequality constraints,
but do not consider regularity conditions. The application of regularity condi-
tions to quasiconvex programming problems may constitute a topic for future
research.

6 Conclusion

In this paper, we investigate necessary and sufficient constraint qualifications
for surrogate duality and surrogate min-max duality. Also, we compare these
constraint qualifications with previous ones in convex and quasiconvex pro-
gramming. The following table shows necessary and sufficient constraint qual-
ifications for Lagrange duality and surrogate duality.

strong min-max
real-valued Lagrange FM [3] BCQ [16]

vector-valued Lagrange CCCQ [2–5] [CQ2] [4]
surrogate S-CCCQ S-BCQ

Table 1

Also, in quasiconvex programming, we investigated Q-CCCQ and Q-BCQ
for necessary and sufficient constraint qualifications for Lagrange-type duali-
ties; for details, see [15,20].
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