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Abstract

Robust optimization problems, which have uncertain data, are considered.
We prove surrogate duality theorems for robust quasiconvex optimization
problems and surrogate min-max duality theorems for robust convex opti-
mization problems. We give necessary and sufficient constraint qualifications
for surrogate duality and surrogate min-max duality, and show some exam-
ples at which such duality results are used effectively. Moreover, we obtain
a surrogate duality theorem and a surrogate min-max duality theorem for
semi-definite optimization problems in the face of data uncertainty.
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optimization

1. Introduction

Mathematical programming problems with data uncertainty are becom-
ing important in optimization due to the reality of uncertainty in many real-
world optimization problems. Robust optimization, which has emerged as
a powerful deterministic approach for studying mathematical programming
with data uncertainty, associates an uncertain mathematical program with its
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robust counterpart. Many researchers ([1, 8, 9, 10, 11, 13]) have investigated
duality theory for linear or convex programming problems under uncertainty
with the worst-case approach(the robust approach). They used mainly the
duality theorem for linear programming, the Lagrange duality theorem, and
Sion’s min-max theorem. This research gives elegant, powerful, and com-
pletely characterized results for robust convex optimization.

On the other hand, recently, many authors ([4, 5, 6, 15, 16, 17, 20]) inves-
tigated surrogate duality for quasiconvex programming. Surrogate duality
is used in not only quasiconvex programming but also integer programming
and the knapsack problem ([3, 4, 5, 6, 15, 16, 17]). Surrogate duality is
also closely related to Lagrange duality. In [20], we investigated a necessary
and sufficient constraint qualification for surrogate duality. Also, we investi-
gated that the constraint qualification is weaker than the CCCQ, which is a
necessary and sufficient constraint qualification for Lagrange duality.

In the present paper, we investigate surrogate duality theorems for qua-
siconvex programming under data uncertainty via robust optimization. We
also propose new constraint qualifications and compare these with previous
ones. The remainder of the present paper is organized as follows. In Section
2, we introduce some preliminaries. In Section 3, we investigate surrogate
strong duality for robust optimization. In Section 4, we investigate surrogate
min-max duality for robust optimization, showing some examples. Finally,
in Section 5, we obtain a surrogate duality theorem and a surrogate min-max
duality theorem for semi-definite optimization problems in the face of data
uncertainty.

2. Preliminaries

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-
dimensional Euclidean space Rn. Given a set A ⊂ Rn, we denote the closure,
the convex hull, and the conical hull generated by A, by clA, coA, and coneA,
respectively. The indicator function δA is defined by

δA(x) :=

{
0 x ∈ A,
∞ otherwise.

Let f be a function from Rn to R, where R = [−∞,∞]. Here, f is said
to be proper if for all x ∈ Rn, f(x) > −∞ and there exists x0 ∈ Rn such
that f(x0) ∈ R. We denote the domain of f by domf , that is, domf =
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{x ∈ Rn | f(x) < ∞}. The epigraph of f , epif , is defined as epif =
{(x, r) ∈ Rn × R | f(x) ≤ r}, and f is said to be convex if epif is convex.
In addition, the Fenchel conjugate of f , f ∗ : Rn → R, is defined as f ∗(u) =
supx∈domf{⟨u, x⟩ − f(x)}. The subdifferential of f at x is defined as ∂f(x) =
{x∗ ∈ Rn | ∀y ∈ Rn, f(y) ≥ f(x) + ⟨x∗, y − x⟩}. Also, the normal cone of A
at x ∈ A is defined as NA(x) = {x∗ ∈ Rn | ∀y ∈ A, ⟨x∗, y − x⟩ ≤ 0}. It is
clear that NA(x) = ∂δA(x). Recall that f is said to be quasiconvex if for all
x1, x2 ∈ Rn and λ ∈ (0, 1), f((1− λ)x1 + λx2) ≤ max{f(x1), f(x2)}. Define
level sets of f with respect to a binary relation ⋄ on R as L(f, ⋄, β) = {x ∈
Rn | f(x) ⋄ β} for any β ∈ R. Then, f is quasiconvex if and only if for any
β ∈ R, L(f,≤, β) is a convex set, or equivalently, for any β ∈ R, L(f,<, β)
is a convex set. Any convex function is quasiconvex, but the converse is not
true.

In [7], Jeyakumar investigated the following set containment characteri-
zation. This result is very important and useful in the research of necessary
and sufficient constraint qualifications for the Lagrange duality theorem in
convex programming.

Theorem 1. [7] Let I be an arbitrary set, and for each i ∈ I, let gi be a
convex function from Rn to R. In addition, let {x ∈ Rn | ∀i ∈ I, gi(x) ≤ 0}
be nonempty, x∗ ∈ Rn, α ∈ R. Then, (i) and (ii) given below are equivalent:

(i) {x ∈ Rn | ∀i ∈ I, gi(x) ≤ 0} ⊂ {x ∈ Rn | ⟨x∗, x⟩ ≤ α},

(ii) (x∗, α) ∈ cl cone co
∪
i∈I

epig∗i .

In [8], the following result was investigated. This result is one of set con-
tainment characterization with data uncertainty and is similar to Theorem 1.

Theorem 2. [8] Let I = {1, · · · ,m} and let gi be continuous functions from
Rn × Rq to R such that for each vi ∈ Rq, gi(·, vi) is a convex function.
Let Vi, i = 1, · · · ,m, be subsets of Rq, V =

∏m
i=1 Vi, and F = {x | ∀vi ∈

Vi, gi(x, vi) ≤ 0,∀i = 1, · · · ,m} ≠ ∅. Then,

epiδ∗F = cl co
∪

v∈V,λ∈Rm
+

epi

(
m∑
i=1

λigi(·, vi)

)∗

.
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3. Surrogate duality

Throughout this paper, let I = {1, · · · ,m}, gi continuous functions from
Rn × Rq to R such that for each vi ∈ Rq, gi(·, vi) a convex function, Vi,
i = 1, · · · ,m, nonempty subsets of Rq, V =

∏m
i=1 Vi, F = {x ∈ Rn | ∀i ∈

{1, · · · ,m},∀vi ∈ Vi, gi(x, vi) ≤ 0} ̸= ∅, and F(v,λ) =
{
x ∈ Rn

∣∣∣ ∑m
i=1 λigi(x, vi) ≤ 0

}
.

In this section, we investigate surrogate duality for robust quasiconvex
optimization problem. First, we show a set containment characterization
with data uncertainty.

Theorem 3. The following condition hold:

epiδ∗F = cl co
∪

v∈V,λ∈Rm
+

cl cone epi

(
m∑
i=1

λigi(·, vi)

)∗

.

proof. For all v ∈ V =
m∏
i=1

Vi and λ ∈ Rm
+ , it is clear that F ⊂ F(v,λ) and it

is easy to verify that

epiδ∗F ⊃ epiδ∗F(v,λ)
= cl cone epi

(
m∑
i=1

λigi(·, vi)

)∗

⊃ epi

(
m∑
i=1

λigi(·, vi)

)∗

.

Then,

epiδ∗F ⊃
∪

v∈V,λ∈Rm
+

cl cone epi

(
m∑
i=1

λigi(·, vi)

)∗

⊃
∪

v∈V,λ∈Rm
+

epi

(
m∑
i=1

λigi(·, vi)

)∗

.

By Theorem 2,

epiδ∗F = cl co
∪

v∈V,λ∈Rm
+

cl cone epi

(
m∑
i=1

λigi(·, vi)

)∗

= cl co
∪

v∈V,λ∈Rm
+

epi

(
m∑
i=1

λigi(·, vi)

)∗

.

This completes the proof.

Remark 1. Assume that F ̸= ∅. From the proof of Theorem 3,

cl co
∪

v∈V,λ∈Rm
+

epi

(
m∑
i=1

λigi(·, vi)

)∗

= cl co
∪

v∈V,λ∈Rm
+

cl cone epi

(
m∑
i=1

λigi(·, vi)

)∗
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and if
∪

v∈V,λ∈Rm
+
epi (

∑m
i=1 λigi(·, vi))∗ is closed and convex, then

∪
v∈V,λ∈Rm

+

cl cone epi

(
m∑
i=1

λigi(·, vi)

)∗

is closed and convex. But the converse does not hold as shown in the following
example.

Example 1. Let V = [1, 2], for each v ∈ V,

g(x, v) =


v

2
(x− v)2 x ≥ v,

0 −v ≤ x ≤ v,
v

2
(x+ v)2 x ≤ −v.

We can calculate Fenchel conjugate of g(·, v) as follows:

(g(·, v))∗(w) =


w2

2v
− vw w ≥ 0,

w2

2v
+ vw w ≤ 0.

Then, ∪
v∈V,λ≥0

cl cone epi(λg(·, v))∗ = {(x, α) ∈ R2 | |x| ≤ α},

and hence the set is closed and convex. However,∪
v∈V,λ≥0

epi(λg(·, v))∗ = {(x, α) ∈ R2 | |x| < α} ∪ {(0, 0)},

and hence the set is not closed.

In the following theorem, we show a necessary and sufficient constraint
qualification of surrogate duality for robust quasiconvex optimization prob-
lem.

Theorem 4. The following conditions are equivalent:

5



(i)

∪
v∈V,λ∈Rm

+

cl cone epi

(
m∑
i=1

λigi(·, vi)

)∗

is closed and convex,

(ii) for all upper semicontinuous (usc) quasiconvex function f from Rn to
R with domf ∩ F ̸= ∅, there exist v̄ ∈ V and λ̄ ∈ Rm

+ such that

inf{f(x) | x ∈ F} = inf{f(x) |
m∑
i=1

λ̄igi(x, v̄i) ≤ 0}.

(iii) for all continuous linear function f from Rn to R, there exist v̄ ∈ V
and λ̄ ∈ Rm

+ such that

inf{f(x) | x ∈ F} = inf{f(x) |
m∑
i=1

λ̄igi(x, v̄i) ≤ 0}.

proof. First, we show that (i) implies (ii). Let f be a usc quasiconvex
function and m = infx∈F f(x). If m = −∞, then (ii) holds trivially. So,
assume that m is finite. If L(f,<,m) is empty, then putting λ = 0 and
taking any v ∈ V , the equality holds. If L(f,<,m) is not empty, then there
exists (x∗, α) ∈ Rn × R such that for all x ∈ F and y ∈ L(f,<,m),

⟨x∗, x⟩ ≤ α < ⟨x∗, y⟩ ,

since L(f,<,m) ∩ F = ∅ and L(f,<,m) is a nonempty open convex set. By
condition (i) and Theorem 3,

(x∗, α) ∈ epiδ∗F =
∪

v∈V,λ∈Rm
+

cl cone epi

(
m∑
i=1

λigi(·, vi)

)∗

.

Hence, there exist v̄ ∈ V and λ̄ ∈ Rm
+ such that

(x∗, α) ∈ cl cone epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗

.
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Also, by Theorem 1,

epiδ∗F(v̄,λ̄)
= epi

(
sup
α≥0

(
α

m∑
i=1

λ̄igi(·, v̄i)

))∗

= cl co
∪
α≥0

epi

(
α

m∑
i=1

λ̄igi(·, v̄i)

)∗

= cl cone epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗

,

in detail, see [2, 7, 14]. Hence, (x∗, α) ∈ epiδ∗F(v̄,λ̄)
. By using the above

separation inequality, we can prove that for all x ∈ Rn,
m∑
i=1

λ̄igi(x, v̄i) ≤ 0 ⇐⇒ x ∈ F(v̄,λ̄)

=⇒ ⟨x∗, x⟩ ≤ α

=⇒ x /∈ L(f,<,m)

⇐⇒ f(x) ≥ m,

that is, inf{f(x) |
∑m

i=1 λ̄igi(x, v̄i) ≤ 0} ≥ m, which shows that (ii) holds.
It is clear that (ii) implies (iii).
Finally, we show that (iii) implies (i). Because of Theorem 3, we only show

that epiδ∗F ⊂
∪

v∈V,λ∈Rm
+
cl cone epi (

∑m
i=1 λigi(·, vi))∗. Let (x∗, α) ∈ epiδ∗F .

Then, δ∗F (x
∗) ∈ R and δ∗F (x

∗) = − infx∈F ⟨−x∗, x⟩. Since −x∗ is a continuous
linear function, by condition (iii), there exist v̄ ∈ V and λ̄ ∈ Rm

+ such that

inf
x∈F

⟨−x∗, x⟩ = inf{⟨−x∗, x⟩ |
m∑
i=1

λ̄igi(x, v̄i) ≤ 0}.

Hence, for all x ∈ Rn,
m∑
i=1

λ̄igi(x, v̄i) ≤ 0 =⇒ ⟨−x∗, x⟩ ≥ −δ∗F (x
∗)

⇐⇒ ⟨x∗, x⟩ ≤ δ∗F (x
∗).

This implies δ∗F(v̄,λ̄)
(x∗) ≤ δ∗F (x

∗) ≤ α, and hence by Theorem 1,

(x∗, α) ∈ epiδ∗F(v̄,λ̄)
= cl cone epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗

.
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This completes the proof.

Now we give an example illustrating Theorem 4.

Example 2. Consider the following optimization problem (UP) with an un-
certainty parameter v:

(UP ) minimize f(x) := x3 subject to g(x, v) ≤ 0, v ∈ V := [0, 1],

where g is a function as follows:

g(x, v) =


v(x− 2 + v)2 x ≥ 2− v,
0 −1− v ≤ x ≤ 2− v,
(1− v)(x+ 1 + v)2 x ≤ −1− v.

Then, f is continuous quasiconvex and F = [−1, 1]. Also, we can check that

epiδ∗F = {(x, α) ∈ R2 | |x| ≤ α}
= {(x, α) ∈ R2 | 0 ≤ x ≤ α}

∪
{(x, α) ∈ R2 | 0 ≤ −x ≤ α}

= cl cone epi(g(·, 1))∗
∪

cl cone epi(g(·, 0))∗

⊂
∪

v∈V,λ≥0

cl cone epi(λg(·, v))∗.

Hence by Theorem 3,
∪

v∈V,λ≥0 cl cone epi(λg(·, v))∗ is closed and convex.

Moreover, let (v̄, λ̄) = (0, 1), then

inf{f(x) | ∀v ∈ V , g(x, v) ≤ 0} = −1 = inf{f(x) | λ̄g(x, v̄) ≤ 0}.

We give examples showing that without the closed cone constraint qual-
ification (in Theorem 4), Theorem 4 may not hold.

Example 3. Let g(x, v) :=
√
v|x| − v, for all x ∈ R and v ∈ V := [0, 1].

Then, g(·, v) is convex and for each v ∈ V and λ ≥ 0,

(λg(·, v))∗(x∗) =

{
λv, x∗ ∈ [−λ

√
v, λ

√
v],

∞, otherwise.

Then, for each λ ≥ 0,∪
v∈V

cl cone epi(λg(·, v))∗ = {(x, y) ∈ R2 | y > 0} ∪ {(0, 0)}.
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Hence,
∪

v∈V,λ≥0 cl cone epi(λg(·, v))∗ is not closed, that is, the closed cone
constraint qualification in Theorem 4 does not hold.

Let f be a function from R to R as follows:

f(x) =

{
0 x ≥ 0,
−1 x < 0.

Then, f is a usc quasiconvex function and inf{f(x) | ∀v ∈ V , g(x, v) ≤ 0} =
0. However, for all v ∈ V and λ ≥ 0, inf{f(x) | λg(x, v) ≤ 0} = −1, that is,
surrogate duality does not hold.

Furthermore, if f(x) = x3,

inf{f(x) | ∀v ∈ V , g(x, v) ≤ 0} = sup
λ≥0,v∈V

inf{f(x) | λg(x, v) ≤ 0}.

However, the maximum does not attained. Actually, we can check that inf{f(x) |
∀v ∈ V , g(x, v) ≤ 0} = 0. Let v ∈ V and λ ≥ 0. If v = 0 or λ = 0, then
inf{f(x) | λg(x, v) ≤ 0} = −∞. If v > 0 and λ > 0, then inf{f(x) |
λg(x, v) ≤ 0} = −v

√
v < 0.

Example 4. Let g(x, v) = v2|x1|+max{x2, 0}−2v for all x = (x1, x2) ∈ R2

and v ∈ V = [0, 1]. Then, F = {x ∈ R2 | ∀v ∈ V , g(x, v) ≤ 0} = {x ∈ R2 |
|x1| ≤ 2, x2 ≤ 0},

(λ1g1(·, v1))∗(x∗) =

{
2λ1v1, x∗

1 ∈ [−λ1v
2
1, λ1v

2
1], x

∗
2 ∈ [0, λ1],

∞, otherwise,

for each v ∈ V and λ ∈ R+, and
∪

v∈V,λ∈R+
epi(λg(·, v))∗ is not convex (see

Example 2.1 in [8]). Hence, we can not apply Theorem 3.1 in [8] to this func-
tion g. Furthermore,

∪
v∈V,λ∈R+

cl cone epi(λg(·, v))∗ is not convex. Actually,
we can check that (2g((0, 2), 0))∗ = 0 and (2g((2, 2), 1))∗ = 4, that is,

((0, 2), 0) ∈ epi(2g(·, 0))∗ ⊂
∪

v∈V,λ∈R+

cl cone epi(λg(·, v))∗,

((2, 2), 4) ∈ epi(2g(·, 1))∗ ⊂
∪

v∈V,λ∈R+

cl cone epi(λg(·, v))∗.

However,

1

2
((0, 2), 0) +

1

2
((2, 2), 4) = ((1, 2), 2) /∈

∪
v∈V,λ∈R+

cl cone epi(λg(·, v))∗.
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If ((1, 2), 2) ∈
∪

v∈V,λ∈R+
cl cone epi(λg(·, v))∗, then there exist v ∈ V and λ ∈

R+ such that ((1, 2), 2) ∈ cl cone epi(λg(·, v))∗. Since cl cone epi(λg(·, v))∗ is
closed, ((1, 2), 2) ∈ cone epi(λg(·, v))∗ and hence there exists γ > 0 such that
γ((1, 2), 2) ∈ epi(λg(·, v))∗. This implies that

−λv2 ≤ γ ≤ λv2, 0 ≤ 2γ ≤ λ, and 2λv ≤ 2γ.

Then, we can see that γ
λ
≤ 1

2
and γ

λ
≥ 1, which is a contradiction. Hence,∪

v∈V,λ∈R+
cl cone epi(λg(·, v))∗ is not convex. So we can not apply Theorem 4

to this function g.
Let f be a function from R to R as follows:

f(x1, x2) =

{
−1 x2 > 0,
0 x2 ≥ 0.

Then, we can check that surrogate duality does not hold by the similar way
of Example 3.

Next, we investigate uncertainty in the objective function. The following
theorem indicates that the constraint qualification also characterizes com-
pletely surrogate duality for uncertainty in the objective function.

Theorem 5. The following conditions are equivalent:

(i)

∪
v∈V,λ∈Rm

+

cl cone epi

(
m∑
i=1

λigi(·, vi)

)∗

is closed and convex,

(ii) for all continuous function f from Rn × Rp to R such that f(·, u) is
quasiconvex for each u ∈ Rp and f(x, ·) is quasiconcave for each x ∈
Rn, and any compact convex subset U of Rp,

inf
x∈F

max
u∈U

f(x, u) = max
u∈U ,v∈V,λ∈Rm

+

inf{f(x, u) |
m∑
i=1

λigi(x, vi) ≤ 0}.
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proof. We first prove that (i) implies (ii). Let f be a continuous function
Rn × Rq to R such that f(·, u) is quasiconvex for each u ∈ Rp and f(x, ·)
is quasiconcave for each x ∈ Rn, and let U be a compact convex subset of
Rp. Then, maxu∈U f(·, u) is continuous and quasiconvex. So, by Theorem 4,
there exist v̄ ∈ V and λ̄ ∈ Rm

+ such that

inf
x∈F

max
u∈U

f(x, u) = inf
x∈F(v̄,λ̄)

max
u∈U

f(x, u).

We know that F(v̄,λ̄) is convex since gi(·, vi) is convex for all i and vi. Hence,
by Sion’s min-max theorem ([12]),

inf
x∈F(v̄,λ̄)

max
u∈U

f(x, u) = max
u∈U

inf
x∈F(v̄,λ̄)

f(x, u).

Thus there exist ū ∈ U such that

inf
x∈F

max
u∈U

f(x, u) = inf
x∈F(v̄,λ̄)

f(x, ū).

And also, for all λ0 ∈ Rm
+ , v0 ∈ V and u0 ∈ U ,

inf
x∈F

max
u∈U

f(x, u) ≥ inf
x∈F(v0,λ0)

max
u∈U

f(x, u) ≥ max
u∈U

inf
x∈F(v0,λ0)

f(x, u) ≥ inf
x∈F(v0,λ0)

f(x, u0).

Hence (ii) holds.
The converse implication is obtained by choosing for f a continuous linear

form.

4. Surrogate min-max duality

In this section, we consider a surrogate min-max duality theorem for
robust convex optimization problem.

For all (v, λ) ∈ V × Rm
+ ,

NF(v,λ)
(x̄) =

{
x∗ ∈ Rn

∣∣∣ (x∗, ⟨x∗, x̄⟩) ∈ cl cone epi(
m∑
i=1

λigi(·, vi))∗
}
. (1)

Actually, by using Theorem 1, we can prove that for each (v, λ) ∈ V × Rm
+ ,

x∗ ∈ NF(v,λ)
(x̄) ⇐⇒ δ∗F(v,λ)

(x∗) ≤ ⟨x∗, x̄⟩
⇐⇒ (x∗, ⟨x∗, x̄⟩) ∈ epiδ∗F(v,λ)

⇐⇒ (x∗, ⟨x∗, x̄⟩) ∈ cl cone epi(
∑
i∈I(x̄)

λigi(·, vi))∗,
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and then we have {x∗ ∈ Rn | (x∗, ⟨x∗, x̄⟩) ∈ cl cone epi(
∑m

i=1 λigi(·, vi))∗} =
NF(v,λ)

(x̄). Also, since F ⊂ F(v,λ), we can check that NF(v,λ)
(x̄) ⊂ NF (x̄).

Now, we define the following constraint qualification:

NF (x̄) =
∪

(v,λ)∈J(x̄)

{
x∗ ∈ Rn

∣∣∣ (x∗, ⟨x∗, x̄⟩) ∈ cl cone epi(
m∑
i=1

λigi(·, vi))∗
}
,

where J(x̄) = {(v, λ) ∈ V × Rm
+ | ∀i ∈ I, λigi(x̄, vi) = 0}. We show that this

constraint qualification is a necessary and sufficient constraint qualification
for surrogate min-max duality for robust optimization.

Theorem 6. The following conditions are equivalent:

(i) NF (x̄) =
∪

(v,λ)∈J(x̄)

{
x∗ ∈ Rn

∣∣∣ (x∗, ⟨x∗, x̄⟩) ∈ cl cone epi(
m∑
i=1

λigi(·, vi))∗
}
,

(ii) for any real-valued convex function f on Rn, x̄ is a minimizer of f over
F if and only if there exist v ∈ V and λ ∈ Rm

+ such that λigi(x̄, vi) = 0
and

f(x̄) = min

{
f(x)

∣∣∣ m∑
i=1

λigi(x, vi) ≤ 0

}
.

proof. First, we show that (i) implies (ii). Let f be a convex function.
Then, x̄ is a minimizer of f over F if and only if 0 ∈ ∂f(x̄) + NF (x̄). By
condition (i), there exist (v, λ) ∈ J(x̄) such that

0 ∈ ∂f(x̄) +

{
x∗ ∈ Rn

∣∣∣ (x∗, ⟨x∗, x̄⟩) ∈ cl cone epi(
m∑
i=1

λigi(·, vi))∗
}
.

By the equation (1), we can prove that x̄ is a minimizer of f over F(v,λ), that
is, (ii) holds.

Conversely, let v ∈ NF (x̄); then x̄ is a global minimizer of −v in F . From
(ii), there exist (v, λ) ∈ J(x̄) such that

⟨−v, x̄⟩ = min

{
⟨−v, x⟩

∣∣∣ m∑
i=1

λigi(x, vi) ≤ 0

}
.
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For all x ∈ Rn,

m∑
i=1

λigi(x, vi) ≤ 0 =⇒ ⟨−v, x⟩ ≥ ⟨−v, x̄⟩

⇐⇒ ⟨v, x− x̄⟩ ≤ 0,

that is v ∈ NF(v,λ)
(x̄). So, by the equation (1), (i) holds.

Example 5. Let g(x, v) = v2|x1|+max{x2, 0}−2v for all x = (x1, x2) ∈ R2

and v ∈ V = [0, 1]. Then, by Example 4, F = {x ∈ R2 | ∀v ∈ V , g(x, v) ≤
0} = {x ∈ R2 | |x1| ≤ 2, x2 ≤ 0},

(λg(·, v))∗(x∗) =

{
2λv, x∗

1 ∈ [−λv2, λv2], x∗
2 ∈ [0, λ],

∞, otherwise,

for all v ∈ V and λ ∈ R+, and
∪

v∈V,λ∈R+
cl cone epi(λg(·, v))∗ is not convex.

So we can not apply Theorem 4 to this function g.
However, we can apply Theorem 6 to this function g. Let x = (x1, x2) =

(2,−1). Then x ∈ F and

NF (x) =
∪

(v,λ)∈J(x)

{
x∗ ∈ Rn

∣∣∣ (x∗, ⟨x∗, x⟩) ∈ cl cone epi(λg(·, v))∗
}
.

We can show that NF (x) =
∪

(v,λ)∈J(x) NF(v,λ)
(x). Let v = 1 and λ = 1.

Then, (v, λ) ∈ J(x) and NF (x) = NF(v,λ)
(x). This implies that the above

equation hold. So, we can apply Theorem 6 to this function g at x = (2,−1).
Unfortunately, we can not apply Theorem 6 to g at for all y ∈ F . Actually,
the above equation does not hold at (2, 0).

Theorem 7. The following conditions are equivalent:

(i) NF (x̄) =
∪

(v,λ)∈J(x̄)

x∗ ∈ Rn
∣∣∣ (x∗, ⟨x∗, x̄⟩) ∈ cl cone epi(

∑
i∈I(x̄)

λigi(·, vi))∗
,

(ii) for any continuous function f from Rn × Rp to R such that f(·, u) is
convex for each u ∈ Rp and f(x, ·) is quasiconcave for each x ∈ Rn,
and any compact convex subset U of Rp, x̄ is a minimizer of f over F
if and only if there exist v ∈ V and λ ∈ Rm

+ such that λigi(x, vi) = 0
and

f(x̄) = max
u∈U

min

{
f(x, u)

∣∣∣ m∑
i=1

λigi(x, vi) ≤ 0

}
.
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proof. We first prove that (i) implies (ii). Let f be a continuous function
such that f(·, u) is convex for each u ∈ Rp and f(x, ·) is quasiconcave for
each x ∈ Rn, and let U be a compact convex subset of Rp. By assumption,
maxu∈U f(·, u) is continuous and convex. So, by Theorem 6, x̄ is a minimizer
of maxu∈U f(·, u) over F if and only if there exist v ∈ V and λ ∈ Rm

+ such

that λigi(x, vi) = 0 and f(x̄) = min{max
u∈U

f(x, u)
∣∣∣ m∑

i=1

λigi(x, vi) ≤ 0}. By

Sion’s min-max theorem, we can show that

f(x̄) = max
u∈U

min

{
f(x, u)

∣∣∣ m∑
i=1

λigi(x, vi) ≤ 0

}
.

The converse implication can be proved as in the proof of Theorem 4.

5. Surrogate duality for robust semi-definite optimization problem

In this section, we obtain a surrogate duality theorem and a surrogate
min-max duality theorem for semi-definite optimization problem in the face
of data uncertainty.

Let Sn be the space of n × n symmetric matrices. For A ∈ Sn, A ⪰ 0
mean that A is positive semidefinite. Let T = {A ∈ Sn | A ⪰ 0} and
I = {0, 1, . . . ,m}. We denote the trace of the matrix A by Tr[A].

Following the proof of Theorem 4, we can prove the following surrogate
duality theorem for semi-definite optimization problems in the face of data
uncertainty.

Theorem 8. Let Vi, i = 0, 1, . . . ,m, be a closed and convex subset of Sn,
V =

∏m
i=0 Vi, and F = {x ∈ Rm | A0 +

∑m
i=1 xiAi ⪰ 0, ∀Ai ∈ Vi,∀i ∈ I} ̸= ∅.

Then the following conditions are equivalent:

(i) ∪
Z∈T,A∈V

{
(−Tr[ZA1], . . . ,−Tr[ZAm],Tr[ZA0] + δ)T | δ ≥ 0

}
is closed and convex,
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(ii) for all usc quasiconvex function f from Rn to R with domf ∩ F ̸= ∅,
there exist Z̄ ∈ T and Ā ∈ V such that

inf{f(x) | x ∈ F} = inf{f(x) | Tr[Z̄Ā0] +
m∑
i=1

xiTr[Z̄Āi)] ≥ 0}.

proof. Let K(Z,A) = {(−Tr[ZA1], . . . ,−Tr[ZAm],Tr[ZA0]+δ)T | δ ≥ 0} for
each Z ∈ T and A ∈ V . Then, we can prove that∪

Z∈T,A∈V

cl cone K(Z,A) =
∪

Z∈T,A∈V

K(Z,A).

Indeed, it is clear that
∪

Z∈T,A∈V cl coneK(Z,A) ⊃
∪

Z∈T,A∈V K(Z,A). Let Z̄ ∈ T

and Ā ∈ V . If (−Tr[Z̄Ā1], . . . ,−Tr[Z̄Ām]) = 0, then

cl cone K(Z̄,Ā) = {0} × cone{Tr[Z̄Ā0] + δ | δ ≥ 0}
= {0} × [0,∞)

= K(0,Ā)

⊂
∪

Z∈T,A∈V

K(Z,A)

since Z̄Ā0 is positively semi-definite. Assume that (−Tr[Z̄Ā1], . . . ,−Tr[Z̄Ām]) ̸=
0. Then (ā, ᾱ) ∈ cl cone K(Z̄,Ā). Then, there exist {(ak, αk)} ⊂ Rm ×R such
that (ak, αk) ∈ cone K(Z̄,Ā) and (ak, αk) converges to (ā, ᾱ). For each k ∈ N,
there exist λk ≥ 0 and δk ≥ 0 such that (ak, αk) = λk(−Tr[Z̄Ā1], . . . ,−Tr[Z̄Ām],Tr[Z̄Ā0]+
δk). Since λk(−Tr[Z̄Ā1], . . . ,−Tr[Z̄Ām]) converges to ā, λk converges to some
λ̄ ≥ 0 and ā = λ̄(−Tr[Z̄Ā1], . . . ,−Tr[Z̄Ām]). Also, λkδk converges some δ ≥ 0
and ᾱ = λ̄(Tr[Z̄Ā0]) + δ. Since T is a cone,

(ā, ᾱ) = λ̄(−Tr[Z̄Ā1], . . . ,−Tr[Z̄Ām],Tr[Z̄Ā0]) + (0, δ)

= (−Tr[λ̄Z̄Ā1], . . . ,−Tr[λ̄Z̄Ām],Tr[λ̄Z̄Ā0] + δ)

∈
∪

Z∈T,A∈V

K(Z,A).

Hence, by using Theorem 4, this completes the proof.

Following the proof of Theorem 6, we can prove the following surrogate
min-max duality theorem for semi-definite optimization problem in the face
of data uncertainty. We omit its proof.
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Theorem 9. Let Vi, i = 0, 1, . . . ,m, be a closed and convex subset of Sn,
V =

∏m
i=0 Vi, and F = {x ∈ Rm | A0 +

∑m
i=1 xiAi ⪰ 0, ∀Ai ∈ Vi,∀i ∈ I} ̸= ∅.

Let J(x̄) = {(Z,A) ∈ T × V | Tr[ZA0] +
∑m

i=1 xiTr[ZAi] = 0}. Then the
following conditions are equivalent:

(i)

NF (x̄) =
∪

(Z,A)∈J(x̄)

{(−Tr[ZA1], . . . ,−Tr[ZAm])
T},

(ii) for any real-valued convex function f on Rn, x̄ is a minimizer of f
over F if and only if there exist Z̄ ∈ T and Ā ∈ V such that Tr[Z̄Ā0] +∑m

i=1 xiTr[Z̄Āi] = 0 and

f(x̄) = min{f(x) | Tr[Z̄Ā0] +
m∑
i=1

xiTr[Z̄Āi)] ≥ 0}.

6. Conclusion

In this paper, we showed surrogate duality and surrogate min-max duality
theorems for optimization problems with data uncertainty via robust opti-
mization. We investigated necessary and sufficient constraint qualifications
for surrogate and surrogate min-max duality, and showed some examples that
these duality theorems are used effectively. Also, we obtained a surrogate
duality theorem and a surrogate min-max duality theorem for semi-definite
optimization problems in the face of data uncertainty.
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