Asymptotic stability of a pendulum with
quadratic damping

Jitsuro Sugie

Abstract. The equation considered in this paper is
" + h(t)z'|z'| + w’sinz = 0,

where h(t) is continuous and nonnegative for ¢ > 0 and w is a positive real number. This may be
regarded as an equation of motion of an underwater pendulum. The damping force is proportional to
the square of the velocity. The primary purpose is to establish necessary and sufficient conditions on
the time-varying coefficient h(t) for the origin to be asymptotically stable. The phase plane analysis
concerning the positive orbits of an equivalent planar system to the above-mentioned equation is
used to obtain the main results. In addition, solutions of the system are compared with a particular
solution of the first-order nonlinear differential equation

u +h(t)ulul +1=0.

Some examples are also included to illustrate our results. Finally, our results are extended to be
applied to an equation with a nonnegative real-power damping force.
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1. Introduction

As known well, an object under water receives the resistance proportional to the square of the velocity.
For example, let us think about the movement of an underwater simple pendulum. Then, all moment
of inertia I to act on the pendulum is the sum total of the moment of inertia by the sinker, a thread and
the added mass. On the other hand, all torque T is the sum total of the torque by gravity, buoyancy
and the drag which act on the sinker and a thread. The torque for gravity or buoyancy is proportional
to sin @, where 6 is the angle of swing. The torque for drag is proportional to the square of the angular
velocity #'. This is the so-called inertial resistance. Generally, since 168" = T, the movement of an
underwater simple pendulum is described by the equation

0" + 66| + w?sinh = 0,

where ¢ and w are positive numbers. These numbers are often called the damping (or drag) coefficient
and the restoring coefficient per unit of the moment of inertia, respectively. As to specific models of
the pendulum, see [5, 10] for example.

The above-mentioned equation is well approximated as follows:

0" +c0'0'| +w?0 = 0.
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Such equations appear frequently in many phenomena, for instance, free rolling motion of a small
fishing vessel and damping oscillation by the air resistance. A pendulum and an oscillator with qua-
dratic damping have been researched from various angles in a wide range of fields and there is a lot
of literature about them (for example, see [1, 3, 6, 8, 9, 17, 18, 21, 22, 23, 26, 34, 35]).

In applied science and technology, the damping coefficient ¢ is presumed from experimental data
by using the least squares method. For this reason, the damping coefficient must be always dealt with
as a fixed positive number. Here, a simple doubt is caused. May we really assume that the damping
coefficient is a constant? It is a well-known fact that the inertial resistance changes depending on the
density of fluid and the form of the object. The density of fluid is influenced by temperature and
pressure. From this point of view, it would be reasonable to consider that the damping coefficient
changes with time.

We consider the damped pendulum equation

7" + h(t)a' |2'| + w?sinz = 0, (P)
where the damping coefficient h(t) is continuous and nonnegative for ¢ > 0. The origin (z,z') = (0,0)
is an equilibrium of (P).

Let x(t) = (z(t),2'(t)) and xo € R?, and let || - || be any suitable norm. We denote the solution
of (P) through (to,xo) by x(t;t0,%o). The global existence and uniqueness of solutions of (P) is
guaranteed for the initial value problem.

The origin is said to be stable if, for any ¢ > 0 and any ¢y > 0, there exists a d(g,tp) > 0 such
that ||xo|| < 0 implies ||x(¢;to,%0)|| < € for all ¢ > to. The origin is said to be attractive if, for any
to > 0, there exists a dg(tp) > 0 such that ||xo|| < do implies ||x(¢; o, %0)|| = 0 as t — co. The origin is
asymptotically stable if it is stable and attractive. With respect to the various definitions of stability,
the reader may refer to the books [2, 11, 12, 19, 24, 36] for example.

The purpose of this paper is to establish a criterion for judging whether the origin of (P) is
asymptotically stable or not. Recently, the present author [29] has reported the following necessary
and sufficient condition for the origin of the damped pendulum

2" + h(t)z' + w?sinz = 0, (1.1)
to be asymptotically stable.
Theorem A. Suppose that there exists a vy with 0 < v9 < w/w such that

t+v0
liminf/ h(s)ds > 0. (1.2)
¢

t—o00

Then the origin of (1.1) is asymptotically stable if and only if

oo t B
IN eH($) dg p

0 t = oo, (1.3)

0
where

H(t) = /0 h(s)ds.

The damping force is proportional to the velocity in equation (1.1). This is a big difference point
with equation (P). Equation (1.1) is a model on which not the inertial resistance but the viscous
resistance acts predominantly.

Smith [27] gave condition (1.3) for the first time as a criterion which judges whether the origin
of the linear oscillator

2" + h(t)z' + W’z =0
is asymptotically stable under the assumption that there exists an h > 0 such that h(t) > h for ¢t > 0.
Afterwards, Smith’s assumption was weakened to assumption (1.2) by Hatvani and Totik [16]. Even if
intervals where h(t) becomes zero are infinitely many, assumption (1.2) may be satisfied if the lengths
of intervals are less than 7. This is a good point of assumption (1.2).
It is known that
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(i) if h(t) is bounded for ¢t > 0 or h(t) = ¢, then condition (1.3) is satisfied;

(ii) if A(t) = t2, then condition (1.3) is not satisfied.
(for details, see [15]). However, generally it is not so easy to check condition (1.3). In most cases,
it is impossible to confirm whether condition (1.3) is satisfied, by using human’s hand calculation.
It is hard to verify condition (1.3) even if we perform numerical analysis carried out by a personal
computer. We need much patience and time even if possible.

Let —
Jy e )ds
u(t) = BT ON
Then, the function u(t) satisfies the scalar differential equation
u +h(t)u+1=0 (1.4)

with u(0) = 0. From this relation and Theorem A, in order to determine whether the origin of (1.1)
is asymptotically stable or not, we have only to examine whether the integral from 0 to co of the
solution u(t) of (1.4) satisfying the initial condition u(0) = 0 diverges or not. Based on this fact, we
call equation (1.4) a characteristic equation for the pendulum (1.1). Turning attention to the particular
solution of the characteristic equation (1.4), we can easily obtain its integration value by numerical
analysis. This is an advantage in consideration of the characteristic equation.

The first main theorem is as follows:

Theorem 1.1. Under the assumption (1.2), the origin of (P) is asymptotically stable if and only if

/Oou(t)dt = — 00, (1.5)

where u(t) is the solution of
u 4+ h(t)ulul+1=0 (1.6)
satisfying u(0) = 0.

As already mentioned, assumption (1.2) is a generalization of Smith’s assumption that h(t) >
h > 0 for t > 0. However, assumption (1.2) is not satisfied if

lim h(t) = 0.
t—o00
For example, Theorem 1.1 is inapplicable if
h(t)=1/(1+1t) or h(t)=1/((2+t)log(2 +t)).

To apply even to these cases, we replace the major premise, namely, assumption (1.2).
As preparations to state the second main theorem, we define a family of functions. We say that
a nonnegative function 1 (t) is said to be weakly integrally positive if

> | W)t = oo

n=1"Tn
for every pairs of sequences {7,,} and {o,} satisfying 7,, + A < 0, < 7,41 < 0, + A for some A > 0
and A > 0. The typical example of the weakly integrally positive function is 1/(1 +t) or sin*¢/(1 + t)
(for example, see [13, 14, 28, 30, 31]).

Theorem 1.2. Suppose that h(t) is uniformly continuous for t > 0 and weakly integrally positive. Let
u(t) is the solution of (1.6) satisfying u(0) = 0. Then the origin of (P) is asymptotically stable if and
only if condition (1.5) holds.

Even if h(t) has infinitely many isolated zeros, it may be weakly integrally positive. However,
h(t) is not weakly integrally positive any longer if intervals where h(¢) becomes zero appear regularly
and frequently. For example, if h(t) = | sin 2¢| + sin 2¢, then it is not weakly integrally positive. On the
other hand, assumption (1.2) is satisfied in this example. Therefore, Theorems 1.1 and 1.2 supplement
each other to expand the adaptation range.
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In Theorems 1.1 and 1.2, assumption (1.2) and the weak integral positivity prohibit too fast
decline of the damping coefficient h(t), respectively. Conversely, condition (1.5) prohibits too fast
growth of the damping coefficient h(t).

2. Preliminary arrangements

In this section, we prepare several lemmas and one proposition, in order to prove our main theorems.
To begin with, we consider the scalar differential equation

u' = f(t,u), (2.1)
where f(t,u) is continuous on [0,00) x R and satisfies locally a Lipschitz condition with respect to u.

As is well known, the following comparison results hold (for example, see [36, p. 5]).

Lemma 2.1. Let u(t) be a solution of (2.1) on an interval [a,b]. Suppose that 1(t) is continuous on
[a,b] and satisfies the inequality

n'(t) = f(t,n(t) for a<t<b.
If n(a) > u(a), then n(t) > u(t) for a <t <.
Lemma 2.2. Let u(t) be a solution of (2.1) on an interval [a,b]. Suppose that n(t) is continuous on
[a,b] and satisfies the inequality

' (t) < f(tn(t) for a <t <b
If n(a) < u(a), then n(t) < u(t) for a <t <.

nonnegative number. We denote the solution wu(t) of (1.6) satisfying u(T") = 0 by w(¢; T"). Then, using
Lemma 2.1, we obtain the following equivalence relation between wu(t;T) and u(t;0). We omit the
details (for the proof, see Lemma 2.1 in [32]).

As a special case of equation (2.1), we consider the characteristic equation (1.6). Let 7" be a
t

Lemma 2.3. For any T' > 0,

/ u(t; T)dt = — o0
T
if and only if

/ u(t; 0)dt = — 0.
0

Equation (P) is equivalent to the planar system

' =wy,
(2.2)

!

The origin of (P) corresponds to the zero solution of (2.2), namely, (z(t),y(t)) = (0,0). According to
custom, we divide R?\{(0,0)} into four quadrants:

Q1= {(z,9): x>0 and y > 0}; Q2= {(z,y): 2 <0 and y > 0};

ng{(x,y):x§0 and y<0}; Q4:{(x,y):x>0 and ySO}.
Consider the solution x(t;to,xo) of (P). The set
def
F(;Q)(t())xo) = U x(t; to, Xo)
t>to
is called the positive orbit of (2.2) starting from a point xo = (zg,y0) € R? at a time ¢, > 0. Since
system (2.2) is nonautonomous, even if F(Jg_2) (to,xo) starts from the same point xg, the shape is

different according to the initial time t5. We call the position of x(t; ¢, o) on the (x,y)-plane a phase
point for each time ¢ > 0. Needless to say, the phase point moves along the positive orbit F(gj) (to,Xo)-
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It is natural to choose the total energy

1 .
V(z,y)=1—cosz + Eyz

as a suitable Lyapunov function for system (2.2). As a matter of fact, we obtain

Vi (t,,9) = (sin2)a’ +yy' = —wh(t)y’ly| <0
on [0,00) x R?, by differentiating V (z,y) along any solution of (2.2). Let

D ={(z,y) €R*: |z| < 7/2 and V(z,y) < 1}.

Then, it turns out that D is a domain containing the origin and it is a positive invariant set of (2.2),
namely, for any to > 0 and x¢ € D, the positive orbit F(J.g.z) (to,%p) is included in D. Since V (z,y)
is positive definite and V(M) (t,z,y) is nonpositive, it follows from a basic Lyapunov’s direct method
that the zero solution of (2.2) is stable. Hence, we obtain the following result.

Proposition 2.4. The origin of (P) is stable.

Proposition 2.4 can be led only under the assumption that h(t) is nonnegative for ¢ > 0. Unfortu-
nately, the derivative V(M) (t,z,y) is not negative definite, and hence it is not so easy to demonstrate
the global attractivity of the origin of (P). We have to examine the characteristics of positive orbits
of (2.2) in detail. For this purpose, we transform system (2.2) into polar coordinates by

x=rcosf and y =rsiné.

Then, we have

7' = wrsinf cos§ — wsin O sin(r cos §) — w h(t) r’sin?@| sin 6],

o =— 2 sin(r cos @) cos § — wsin? — w h(t) 7 sin @] sin | cos 6.

T
Since
20 = —wasinz — y?> —wh(t)zyly] <0

if (z,y) € (@1 UQ3) N D, the phase point on F(J.g.z) (to,xo) turns clockwise around the origin as long

as it moves through Q1 N D or Q3 N D. Afterwards, how does the phase point move? The following
result answers this question.

Lemma 2.5. There is no positive orbit of (2.2) which is included in (Q1 U Q3) N D ultimately.

Proof. Let to > 0 and x9 € @1 N D (resp., @3 N D). Suppose that 1"(;2) (to,Xp) is contained in

Q1N D (resp., @3 N D). Let (r(t),8(t)) be the solution of (2.3) corresponding to F(E.z) (to,%o0). Then,
0 < r3(t) < n%/4+ 2 for t > ty. It follows from the assumptions that h(t) > 0 for t > 0 and

sin6(t) cos§(t) > 0 for ¢ > ¢ that
r2(t)0'(t) = —wr(t) cos (t) sin(r(t) cos B(t)) — r*(t) sin6(¢)
— wh(t) r*(t) cos B(t) sin O(t)| sin O(t)]
< —wr(t) cos @(t) sin(r(t) cos 6(t))
for ¢ > ty. Since zsinz is decreasing for —7/2 < z < 0 and increasing for 0 < z < 7/2, we see that
o) < — wr(tg) cos G(to);in(r(to) cosB(to))
(1)
_ wr(to) cosB(to) sin(r(to) cos B(to))
- w2 /442
for t > ty. Integrating this inequality from ¢y to t, we obtain
0(t) < O(to) — M(t—1to) » —oc0 as t — oo,

where M = wr(to) cos O(to) sin(r(to) cosf(tg))/(7*/4 + 2) > 0. This is a contradiction. Thus, such a
positive orbit does not exist. a
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From Lemma 2.5, we conclude that system (2.2) has three types of positive orbits: (i) a positive
orbit coils itself around the origin; (ii) a positive orbit is contained in @4 (resp., @2) ultimately and
the phase point that runs on the positive orbit approaches the origin through @4 (resp., @2); (iii) a
positive orbit is includes in @4 (resp., J2) ultimately and the phase point that runs on the positive
orbit approaches an interior point in ()4 (resp., Q2). From the vector field of (2.2), we see that any
phase point moves to the left in ()4, and moves to the right in Q. However, it does not always rotate
around the origin (0,0), and may go up and down in Q4 and Q.

3. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. By virtue of Proposition 2.4, we have only to discuss the
attractivity of the origin of (P).

3.1. Necessity

We will prove that if condition (1.5) does not hold, then the origin of (P) is not attractive. Let € be
an arbitrary positive number and let L = max{1, w?}. Then, there exists a T" > 0 such that

> €
u(t)dt > — —.
/T 2L

Recall that u(t;T") is the solution of (1.6) satisfying u(T';T') = 0. From the uniqueness of solutions of
(1.6) for the initial value problem, we see that

u(t) =u(t;0) <u(t;T) <0 for t>T.
Hence, we have

/Oou(t;T)dt > = (3.1

T 2L
Consider the positive orbit 1"(;2) (to,Xo), where to = T and x¢ = (¢,0). Taking the vector field
of (2.2) into account, we see that the phase point on F('g.z) (to,Xo) goes into @4 afterwards and it does
not enter () passing through the positive xz-axis. Let (x(t),y(t)) be the solution of (2.2) satisfying
z(T)=¢eand y(T) =0.If
2(t) > % for t > T, (3.2)
then naturally the origin of (P) is not attractive. This completes the proof of ‘only if’-part.

By way of contradiction, suppose that (3.2) is not true. Then, we can find a 77 > T such that
z(Th) =€/2 and /2 < z(t) < efor T <t < T). Since F(J.g.z) (to,x0) does not intersect the positive
x-axis, we see that

y(t) <0 for T <t <Ty.

Let n(t) = wy(t)/L. Then, from the second equation of (2.2) it follows that

1(t) = = <= sina(t) = <= hOy(Oly(0)

> —1=Lh(®)n®)n@)| =2 =1 = ht)n(t)n()]
for T <t <Ti. Let f(t,u) = —1 — h(t)u|u|. Then, we have
n'(t) > f(t,n(t)) for T <t<Ti.

We compare n(t) with u(t;T). Since u'(t;T) = f(t,u(t;T)) for ¢ > T and n(T) = wy(T)/L =0, it
follows from Lemma 2.1 that

#'(t) = wy(t) = Ly() > Lu(t;T)
for T' < ¢ < Ti. Hence, using (3.1), we obtain

11
z(Ty) > «(T) + L/T

u(t; T)dt > ¢ + L/ u(t; T)dt > % = z(T}).
T
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This is a contradiction.

3.2. Sufficiency

Let x(t) be any solution of (P) with the initial time to > 0 and let y(t) = «'(¢) for ¢ > to. Then,
(z(t),y(t)) is a solution of (2.2), which corresponds to z(t). Let 1"(;2) (to,xo) be the positive orbit of
(2.2) corresponding to the solution (x(t),y(t)). To prove ‘if’-part of the theorem, we have only to show
that if xo = (z(to),y(to)) € D, then (x(t),y(t)) tends to (0,0) as t — oo.

Define
v(t) =V (x(t),y(t))
for t > to. Then, v'(t) = —wh(t)y*(t)|y(t)] < 0 for t > to. Hence, v(t) is decreasing and has the
limiting value vg > 0. If vy is zero, then the proof of ‘if’-part is complete. We will show that the case
of vgp > 0 does not occur provided assumptions (1.2) and (1.5) hold.
Suppose that vy is positive. Then, F(Jg_2) (to, %) is contained in the annulus

A={(z,y) e R’:|z| <7w/2 and vy < V(z,y) <1} C D

for all future time. Consider the closed curve given by V(x,y) = v > 0. It is clear that this curve
is a symmetric oval. Hence, it intersects with the z-axis only at two points (u,0) and (—pu,0), where
0 < p = arccos(l —wvg) < /2.

As already mentioned, it turns out from Lemma 2.5 that I (;2)
three types. However, F(Jg_2) (to,x0) does not belong to the second type, namely, it is contained in Q4

(to,xo) must belong to either of

(resp., @2) and the phase point that runs on F(Jg_2) (to,xo) approaches the origin through Q4 (resp.,
(Q)2), because it stays in the annulus A that does not contain the origin. Under the assumptions (1.2)
and (1.5), F(zj) (to,xo) does not belong to either of the first type and the third type. Hereafter, we
will confirm this fact by dividing into two steps.

Step (i). Suppose that F(§_2) (to,xo) belongs to the first type, namely, it coils itself around the origin
while remaining in the annulus A. Let (r(¢), 6(t)) be the solution of (2.3) corresponding to F(§_2) (to,Xo)-
Then, there exist divergent sequences {7,} and {0, } with o <7, < oy, such that (r,) = 37/2 and
6(op) = w/2 (mod 27). In other words, F(Jg_2) (to,xo) intersects the negative y-axis at t = 7,, and it
intersects the positive y-axis at t = o, for n € N. Let ¢ be so small that

D<e< w,
2
where 7 is the number given in assumption (1.2). Then, 1"(;2)
(tane)z and y = (tan(m — €))z infinitely many times. Recall that the phase point on F('g_2) (to,Xo0)

(3.3)

(to,Xo) crosses the straight lines y =

moves clockwise in (@1 U®3) N A. However, in (Q2UQ4) N A, it does not always rotate clockwise and
may go up and down. The shape of F('g_2) (to,Xo) may be so simple in (Q2UQ4)NA. For this reason, the
point in the set {t € (oy,, Tn+1): 8(t) = €} is unique, but the point in the set {t € (7,,,04,): (t) = 7—¢}
might not be only one. For n € N, let s,, be the unique point satisfying o, < s, < 7,41 and 8(s,) = ¢,
and let t,, be the supremum of all ¢ € (7,,,0y,) for which 8(¢) > 7 —e. Then, tg < 7, < tp, < 0, < Sp,
O(tn) =m—¢, O(sp) =€ and

e<l(t)y<m—e for t, <t<sp.

Since the curve V(z,y) = vp is an oval, it intersects the straight line y = (tane)z at only one point

in ;. Let §(¢) be the y-component of the intersections. Since 1"(;2) (to,xo) does not enter the region

{(z,y) e R?: V(z,y) <wo}, it follows that y(t) > & for ¢, <t < s,. Hence,
V'(t) = —wh(®)y*(t)ly(t)] < —wh(t)d’ (3.4)

for t, <t < sp-
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Suppose that there exists an NV € N such that s,, —¢,, > v for n > N. Then, it turns out from

(3.4) that
sn tn+70
v(sp) —v(ty) < —wd [ h(t)dt < —w63/ h(t)dt
tn tn
for n > N. Since v'(t) = —wh(t)y?(t)|y(t)] <0, it is clear that

V(tnt1) —v(sp) <0 for n €N,

Hence, we obtain
tn+70
V(tpt1) — v(tn) < —w63/ h(t)dt for n> N,
tn

and therefore,

n ti+vo
vo — (tw) < vltns1) — vlty) < —wd®Y / h(t)dt. (3.5)
i= ti
From assumption (1.2), we see that
% ptito
2/ h(t)dt = oo,
i=N "t

which contradicts (3.5). Thus, there exists a sequence {ny} with ny € N and ny — oo as k — oo such
that

Sny, — tn, < Y0 (3.6)
The annulus A is included in a circle. Let ¥ be the radius of the circle. Since 1"(;2) (to,X0) is
contained in A, we see that r(t) < T for t > to. Hence, we can estimate that

0'(t) > — %| sin(r(t) cos 0(¢))|| cos B(t)] — wsin6(t)
— wh(t)r(t) sin?6(t)| cos O(t)]
> —wcos?d(t) — wsin?(t) — h(t)r(t) > — h(t)F

for t > tg. It turns out from (3.6) that
e~ (m—¢) =0(sn,) = 0(tn,)

> —w($n, — tny) —F/ “h)dt > —wro —F/ ")t
t t

Tk
for each k € N, namely,
Sn
F/ kh(t)dt >m—wy —2 for kel
oy,
Using this inequality and (3.4), we obtain

3 e wé
t r

Tk

for k € N. Since v(t,, ;) — v(sn,) <0 for k € N, we see that

3
U(tnk+1) - v(tnk) <= ;5 (ﬂ' — WY — 28) for ke N.

From (3.3), we can conclude that

o0
vo — v(to) Z (tngsy) — V(tn,)) = — 00,
k=1

which is a contradiction. Thus, T (2 ) (to,x0) does not belong to the first type.
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Step (ii). Suppose that I'"(tg,xo) belongs to the third type, namely, it is included in Q4 N A (resp.,
Q2N A) ultimately and the phase point on I't (¢, xg) approaches to an interior point in Q4N A (resp.,
Q@2 N A). Then, there exist a point x; € @4 N A (resp., @2 N A) and a time T > to such that x; is
the phase point on 1"(;2) (to,xp) for t = T and 1"(;2) (to,Xo) is contained in Q4 N A (resp., @2 N A)
afterwards. From the uniqueness of solutions of (P) to initial value problems, we see that F('g_2) (T,x1)

is a part of F(gj) (to,Xo). There are two cases that we should consider: (a) I} ., (T, x;) is included in

(2.2)
Q4 N A for all the future; (b) F(Jga) (T, x1) is included in Q2 N A for all the future. We consider only
the former, because the latter is carried out in the same way.

Since (z(t),y(t)) € Q4 for t > T, we see that x'(¢t) = y(¢t) < 0 for ¢t > T. Hence, there exists a
number ¢ € R with 0 < ¢ < 7/2 such that z(t) \, cast — oo. Recall that v(t) = 1—cosz(t)+y>(t)/2 \

vg as t = oo. Hence, it turns out that

1
53/2(75) —p as t— oo,

where p = vg — 1 + cos c. Naturally, p > 0. If p > 0, then we can choose a 77 > T so large that
yi(t) > p for t > Ty.
Hence, we have
V'(t) = —wh(t)y* (t)ly(t)] < —wpyph(t)
for t > T;. Integrate this inequality to obtain

—00 < v —v(Th) <v(t) —v(Th) < —wp/p . h(s)ds.

This is a contradiction, because it follows from assumption (1.2) that

h(t)dt = oo.
T

Thus, it turns out that p = 0, namely, ¢ = arccos(1 — vg) = pu. We therefore conclude that the phase
point on F(Jg_2) (T, x1) approaches an interior point (u,0) € Q4N A, which is a intersection of the closed

curve V(z,y) = vp and the z-axis.
From the above-mentioned argument, we see that

0<u<az(t)§m(T)<% and y(t) <0

for t > T. Note that sinx(t) > sinp > 0 for t > T'. Let €9 = min{1, w?sin u}. Then, we can estimate

that
(M) Sl O WYY

€0 €0 €0
< _1_npu) ‘ wy(t)\
€0 €0

for t > T. Let n(t) = wy(t)/eo for t > to and let f(t,u) = —1 — h(t)uju|. Then, n'(t) < f(t,n(t)
for t > T. We compare n(t) with the solution u(t;T") of (1.6) satisfying u(T;T) = 0. Since n(T) =
wy(T)/eo < 0, it follows from Lemma 2.2 that
t
U0 _ ) < () <0
€0
for t > T'. Hence, we have
' (t) = wy(t) < eou(t;T) for t>T.
Integrating both sides of this inequality from T to t, we obtain

t

—5 <h- z(T) <z(t) —z(T) < SO/TU(5§T)d5-
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However, by means of Lemma 2.3 and condition (1.5), we conclude that

t
/ u(s;T)ds = —o0  as t — 0.
T
This is a contradiction. Thus, I'" (g, %) does not belong to the third type.

The proof of Theorem 1.1 is thus complete. O

4. Proof of Theorem 1.2

Recall that the damped pendulum equation (P) is equivalent to the planar system (2.2). Let (z(t), y(¢))
be any solution of (2.2) with the initial time t; > 0, and let F(J.g.z) (to,Xo) be the positive orbit of (2.2)
corresponding to the solution (z(t),y(t)), where xo = (x(to),y(to)) € D. The proof of Theorem 1.1

was composed of ‘only if’-part and ‘if’-part, and the proof of ‘if’-part was divided into two steps:

() I,
(i) I75,
approaches an interior point in Q4 N A (resp., @2 N A).

)(to, Xp) coils itself around the origin while remaining in the annulus A;

)(to, Xp) is contained in Q4N A (resp., Q2N A) ultimately and the phase point on F(J.g.z) (T, x0)

Assumption (1.2) was not used in the proof of ‘only if’-part, and the proof of the second step of
‘if’-part. In the second step, the damping coefficient h(t) had only to satisfy

/Oooh(t)dt = 00.

Therefore, we need to prove only the first step of ‘if’-part, when changing assumption (1.2) to the
assumption that h(t) is uniformly continuous for ¢ > 0 and weakly integrally positive.

Suppose that I (;2) (to,xo) coils itself around the origin while remaining in the annulus A. Then,
we conclude that

liminf |y(¢)] = 0 < v2up = lim sup |y(¢)]. (4.1)
t—roo t—o0
Since h(t) is uniformly continuous for ¢ > 0, we can find numbers 7' > 0 and & > 0 so that
|h(e) = h(B)] <1 (4.2)
whenever @ > T and > T with |a — | < k. Note that x is independent of ¢. Let v be so small that
2V2v < k(w?— Tv)y/vo. (4.3)

Needless to say, it is possible to find such a positive number v, which is less than w?/7. By (4.1), we
can choose three divergent sequences {7,,}, {t,} and {o,} with T' < 7, < t,, < 0,, < Ty,41 such that

ly()| = ly(on)| = rvo/w, |y(tn)| = V2vvo/w,
ly(t)| > Vrvvo/w for 7, <t < op, (4.4)
Voo /w < |y(t)] < V2vug/w  for T, <t < ty,

and

ly(t)] < V2vup/w for op <t < Tptr. (4.6)
In fact, it turns out from (4.1) that |y(t*)| < /vvg for some t* > T'. Let

t1 = min{t > t*: |y(t)| = V2vuo/w},

T = max{t < t,: [y(t)] = Vruo/w},

oy =min{t > ¢;: [y(t)] = /roo/w}.
Such numbers always exist because of (4.1) and the continuity of |y(¢)|. Using oy instead of ¢*, we
define ty, 75 and o4 similarly to t;, 71 and o1, and so on. Then, tg < 7, < t,, < 0, < Tpq1 and 7, = 00
as n — 00. Also, (4.4)—(4.6) are satisfied. To be precise, if y(0,)y(Tn41) > 0, then |y(t)| < /vvg/w
for o, <t < Tpga; if y(op)y(The1) < 0, then |y(t)] < v2vug/w for o, <t < Ty

and
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Let us estimate the distance between 7,, and o,, for each n € N. Since |y(r,,)| = /Pvo/w and

ly(tn)| = V2vvo /w, we see that
voo =y (tn) — y*(1a) = / (2 () dt = 2/ "y (£)y ()t

n

=2 / (—wsina(t) — wh@®y®)yO)y()dt < 2w / y(#)]de.

n

It follows from (4.5) that

def /Y00
A= <tp—Tn < 0Op—Tn 4.7
2v/202 (47)

for each n € N.
Let us pay attention to the value of h(t) at t = oy, for each n € N. Define

S ={n € N: h(op) > 2}.

Suppose that the number of elements in S is infinite. Let d = min{x, A}. Then, it follows from (4.2)
that n € S implies that
h(t) >1 for o, —d <t <o,

Also, it turns out from (4.4) and (4.7) that
ly(t)| > rvvo/w for o, —d <t < oy

Hence, we obtain

Jim ()=o) = [ o0 = - / "Wy Ol
Z/ |y()|dt<_Z(VU0)%d/w2:—oo.

nes nes

This contradicts the fact that v(t) > vy > 0 for ¢ > to. Thus, the number of elements in the set S is
finite, and therefore, there exists an N € N such that

h(on) <2 for n> N. (4.8)
By (4.6), we have
| — cosa(t) = u(t) - %;ﬁ(t) > (1= v/w?)vo
for 0, <t < 7,41. Taking into account that (1 — v/w?)vy < 1, we obtain

|z(t)] > cos ™t (1 - (1 - F)UO) for o, <t < Tpgq. (4.9)

Since the domain D is a positive invariant set of (2.2), we see that
z(t)| < % for ¢ > to. (4.10)
Let us estimate the distance between o, and 7,41 for each n € N. Suppose that there exists an
ng > N such that 7,,4+1 — 0, > £. Then, from (4.2) and (4.8) it follows that
h(t) <14+ h(on,) <3 for op, <t < op,+ k.
Hence, using (4.3), (4.6), (4.9), (4.10) and the second equation of (2.2), we get

ly'(t)] > wlsinz(t)] — wh(t)y*(t) > —Iﬂ«"( )| = wh(t)y*(t)

2
> it cos™ ! (1 — (1 — %)vo) — Bvv
w

T w
Ei(l_i)_ 6rvg > 2+/2vvg >0
T 2 w2 w Kw
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for oy, <t < opy+ K < Tpy+1- Integrate this inequality to obtain

U'n0+li
/ ' (t)dt

70

OnotkK
=/ U ()]dt > 22000 fw.

70

[y(ono + K)| + |y(on,)| >

This contradicts (4.6). We therefore conclude that
AL k> Tntl — Op (4.11)

for each n € N.
From (4.7) and (4.11), we see that 7, + A < 0, < 741 < 0y, + A for each n € N. Since h(t) is
weakly integrally positive, we obtain

Z/ “h(t)dt = oo, (4.12)
n=1"YTn
However, it follows from (4.4) that
o) =olm) = [ w0 =~ [yl

n o ‘ - 3 n o
<=3 [ oo < - Y5 [
i=1vTi §=17 Ti

This contradicts (4.12). We have thus proved Theorem 1.2. O

5. The case of bounded damping coefficient

We consider the case that h(t) is bounded for ¢+ > 0, namely, there exists an & > 0 such that 0 <
h(t) < h for t > 0. Then, we have the following lemma.

Lemma 5.1. Let u(t) be the solution of (1.6) satisfying uw(0) = 0. If h(t) is bounded for t > 0, then
condition (1.5) holds.

Proof. Since u(0) = 0 and u'(0) = —1, we see that u(t) < 0 in a right-hand neighborhood of ¢t = 0.
Since
u'(t) = —1— h(t)u(t)|u(t)| = — 1 + h(t)u?(t) <0

as long as —l/ﬁ < u(t) < 0, there are two possibilities to consider: (i) u(t) \y —a as t — oo for
some positive a which is less than 1/\/ﬁ; (il) u(ty) = —1/\/ﬁ for some t; > 0. In the former, condition
(1.5) is satisfied, because u(t) < —a/2 for ¢ sufficient large. In the latter, if h(t) = h for ¢t > t1, then
u(t) = —1/\/ﬁ for t > t;. Hence, it is clear that condition (1.5) is satisfied. Otherwise, we can find a
t2 > t1 such that u(t2) < —l/ﬁ. Suppose that u(t3) > —1/\/ﬁ for some t3 > t2. Let

ty = sup{t <tg:u(t) < —1/\/ﬁ} .

Then, we see that u(ts) = —1/\/ﬁ and u(t) > —1/\/ﬁ for t4 < t < t3. By the mean value theorem,
there exists a t5 with t4 < t5 < t3 such that u'(t5) > 0. However, since u(t5) > —l/ﬁ, it follows that

-1
Ul(t5) =—1+ h(t5)u2(t5) < -1+ hf = 0.

This is a contradiction. Thus, we conclude that u(t) < —1/ Vh for t > to. It turns out from this
inequality that condition (1.5) holds. O
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In Theorem 1.2, we assumed that h(t) is uniformly continuous for ¢ > 0. Recall that the uniform
continuity of h(t) was used only to obtain estimation (4.8). This estimation is unnecessary when h(t)
is bounded for ¢ > 0. Hence, by means of this fact and Lemma 5.1, we have the following consequence
of Theorems 1.1 and 1.2.

Theorem 5.2. Suppose that either h(t) satisfies assumption (1.2) or that it is uniformly continuous
for t > 0 and weakly integrally positive. If h(t) is bounded for t > 0, then the origin of (P) is
asymptotically stable.

6. Discussion

As shown in the preceding section, condition (1.5) holds under the assumption that the damping
coefficient h(t) is bounded. The questions arise: Can condition (1.5) be satisfied for unbounded h(t)?
Can condition (1.5) be not satisfied for unbounded h(t)? Theorems 6.1- 6.3 below answer this question.
The proofs of Theorems 6.1-6.3 are carried out in the same manner as the proofs of Corollaries 4.1,
4.2 and 4.4 in [32], respectively. To save the space, we omit details.

Theorem 6.1. Suppose that there exist a differentiable function g(t) and a positive number T such
that

g(t) >0 and h(t) < g(t)
for t >T. If ¢'(t) >0 for t > T and

00,

/w; df =
7 \/g(t)

then condition (1.5) holds.

Theorem 6.2. Suppose that there exist a differentiable function g(t) and positive numbers g and T
such that

g(t) >g and h(t) <g(t)
for t > T. If
AU

> 1
A and /T ——g(t) dt =

00,

then condition (1.5) holds.
Note that both Theorem 6.1 and Theorem 6.2 are generalization of Lemma 5.1.

Theorem 6.3. Suppose that there exist a differentiable function k(t) and positive numbers k and T
such that

k< k(1) < A(t)
for t > T. If

* 1
0 and / —dt < o0,
T

VE(t)

lim KO _
t—o00 k(t) o

then condition (1.5) fails to hold.

From Theorem 6.3, we see that condition (1.5) does not hold when the damping coefficient rapidly
grows. Combining Theorems 6.1-6.3, we obtain the following simple necessary and sufficient condition
for the origin of (P) to be asymptotically stable.

Corollary 6.4. Suppose that there exist positive numbers v and T such that
h(t)=t" for t>T.
Then the origin of (P) is asymptotically stable if and only if v < 2.
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Needless to say, if the damping coefficient is a polynomial of power functions of ¢, then we merely
have only to consider the largest exponent of the polynomial as v in Corollary 6.4.

To illustrate our theorems, we give two examples in which lim inf;_, . h(t) = 0 and lim sup,_, ., h(t)
= 00. In the first example, the set {¢ > 0: h(t) = 0} is the union of infinitely many disjoint intervals
whose length are 7/2.

Ezample 6.1. Consider equation (P) with
h(t) =t (] sin®2¢| — sin®2t).
Then the origin is asymptotically stable.

Let
In=[n—-Dnm,(n—1/2)xr] and J,=[(n—1/2)7,nn]

for each n € N. Then
0 if t e l,,
h(t) =

—2tsin®2t if t e J,

with n € N. Assumption (1.2) is satisfied with v = 37 /4. In fact, since h(t) > — 2sin®2t if ¢ € J, for
each n € N, we see that

t+3m/4 t+37r/4~
lim inf h(s)ds > lim inf h(s)ds,
t—o0 t t—o0 t
where
~ 0 if tel,,
h(t) =
—2sin®2t  if t € J,.

Note that h(t) is a periodic function with period . Define
t+3ﬂ'/4~

o= [ Hss

Then, by a straightforward calculation, we obtain

(sin2t — (sin®2t)/3 + 2/3 for 0 <t< /4,
3/4 for 7/4 <t < 7/2,
o(t) =< — cos2t + (cos®2t)/3 +2/3 for /2 <t < 3m/4,

sin 2t — cos 2t

— (sin®2t)/3 + (cos®2t)/3 +4/3  for 3x/4 <t < m.

Hence, it turns out that ¢(t) is increasing for 0 < ¢ < n/4 and 77/8 < ¢t < m, and decreasing for
m/2 <t < Tr/8. In addition, ¢(0) = ¢(37/4) = ¢o(7) = 2/3 and (t) = 4/3 for 7/4 < t < w/2. Since
p(t) is also a periodic function with period 7, we see that

t+37l'/4 5 4
lim inf/ h(s)ds > liminf p(t) > p(77/8) = — —V2+ — > 0.
¢ t—o00 6 3

=00
Let g(t) =2t and T' = 1. Then, it is clear that

g(t)>2, h(t) <g(t) and ¢'(t)=2>0
fort > T, and

[ [
= —dt = 0.
T /g(t) 1 V2t
Thus, from Theorem 6.1 it turns out that condition (1.5) holds. Hence, by means of Theorem 1.1, we
conclude that the origin is asymptotically stable (see Figure 1).
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From Theorems 1.1 and 6.2, we can also confirm the asymptotic stability of the origin, because

!
im g = lim l:0.
t—>o0 g(t) t—oo t

We will show that the major premises of Theorem 1.2 are not satisfied. The length of I,, is /2
for each n € N. Hence, h(t) is not weakly integrally positive. Since

, 0 if tel,
W(t) = s .2 .
—2sin°2t — 12¢sin“2tcos 2t if t € J,

with n € N, it is continuous for ¢ > 0. However, h'(t) is not bounded. Hence, h(t) is not uniformly
continuous. Thus, Theorem 1.2 cannot be applied to Example 6.1.

Y

[ —

Fig. 1. The positive orbit of the system z' = y, y' =
—w?sing — ¢ (|sin®2¢| — sin®2t) y |y| starting from the
point (zo,yo) = (0.03,0.01) at the initial time ¢y = 0.

In contrast to Example 6.1, we next give an example that is applied to Theorem 1.2, but is not
applied to Theorem 1.1.

Ezample 6.2. Consider equation (P) with

h(t) =Vt (‘sin3\/¥‘ - singx/f) + iu_l:i )

Then the origin is asymptotically stable.

Let
L, =[4(n—1)*7%(2n —1)*7%] and J, =[(2n — 1)*7% 4n’7?]
for each n € N. Then

—2/tsin®V/t +sin’t/(1+1t) if t € J,
with n € N. The function h(t) is continuously differentiable for ¢ > 0 and

sin®t/(1+t if tel,,
h(t:{ /(L +1t)

2sint cost/(1 +t) — sin’t/(1 + t)? if tel,,
B'(t) =< — (sin®V/t) /vt — 3sin*V/t cosV/t

+2sint cost/(1+t) —sin’t/(1+1)* if t € J,
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with n € N. Since

invt . .
| (t)] < Sl\n/_\t/_ ‘ ‘sinzx/i‘ + 3‘sin2\/i‘ ‘cosx/f‘
| sin 2¢] sin®t
1+t @ (1+1)2
<6

for t > 72, we see that h(t) is uniformly continuous for ¢+ > 0. As mentioned in Section 1, the function
sin?t/(1 + t) is weakly integrally positive (for the proof, see [31]). Taking the inequality

sin’t

1+t

h(t) > for t >0,

we see that h(t) is also a weakly integrally positive function. Thus, the major premises of Theorem
1.2 are satisfied. Let g(t) = 3v/t and T = 1. Then, it is clear that g(t) > 3, ¢'(t) = 3/(2v/t) > 0 and

1
h(t) <2vt+ —— < g(t
() < 2Vi+ 1 < gt
for t > T. It is also cleat that
>~ 1 < 1
—dt:/ ———dt = 0.
/T\/g(t) 1 V3V

Thus, from Theorem 6.1 it turns out that condition (1.5) holds. Hence, by means of Theorem 1.2, we
conclude that the origin is asymptotically stable (see Figure 2).

0.03

0.02F

0.0

/k,‘

—0.03\} 0.00 0
Lt

(.01 0.02 §0.0B

—0.02F

Fig. 2. The positive orbit of the system z' = y, v =
—z— (\/f(|sin3\/i| —sin®v/t) +sin’t/(1 + t))|yly starting
from the point (zo,yo) = (0.03,0.01) at the initial time
to = 0.

From Theorems 1.2 and 6.2, we can also confirm the asymptotic stability of the origin, because

!
fm 28— L,
to00 g(t) t—oo 2t
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Assumption (1.2) is not satisfied. In fact, since the length of I, is not less than = for each n € N,
we see that

t+v0 4(n71)27r2+7r 1
0 < liminf h(s)ds < lim ——dt
t—o0 t n— 00 4(1’7,71)271'2 1 +t
<lim——2 =0

~ n—oo 1+ 4(n —1)272
for any 9 with 0 < 79 < 7. Thus, Theorem 1.1 cannot be applied to Example 6.2.

Finally, to apply to also a pendulum with a nonnegative real-power damping force, we extend the
main results, namely, Theorems 1.1 and 1.2. Physical models whose damping force is neither linear
nor quadratic have been reported in many papers (for example, see [4, 7, 20, 25]). For convenience,
we define

¢(y) = lyl"%y, yeR
with ¢ > 2 (but may not be necessarily an integer) and consider the damped superlinear pendulum

z" + h(t) py(z') + w?sinz = 0. (SP)

Then, combining mathematical ideas of the present paper and recent papers [32, 33], we can obtain
the following results.

Theorem 6.5. Suppose that either h(t) satisfies assumption (1.2) or that it is uniformly continuous
for t > 0 and weakly integrally positive. Let u(t) is the solution of the characteristic equation

u + h(t)g(u) +1=0

satisfying w(0) = 0. Then the origin of (SP) is asymptotically stable if and only if condition (1.5)
holds.
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