
Asymptoti
 stability of a pendulum withquadrati
 dampingJitsuro SugieAbstra
t. The equation 
onsidered in this paper isx00 + h(t)x0jx0j+ !2sinx = 0;where h(t) is 
ontinuous and nonnegative for t � 0 and ! is a positive real number. This may beregarded as an equation of motion of an underwater pendulum. The damping for
e is proportional tothe square of the velo
ity. The primary purpose is to establish ne
essary and suÆ
ient 
onditions onthe time-varying 
oeÆ
ient h(t) for the origin to be asymptoti
ally stable. The phase plane analysis
on
erning the positive orbits of an equivalent planar system to the above-mentioned equation isused to obtain the main results. In addition, solutions of the system are 
ompared with a parti
ularsolution of the �rst-order nonlinear di�erential equationu0 + h(t)ujuj + 1 = 0:Some examples are also in
luded to illustrate our results. Finally, our results are extended to beapplied to an equation with a nonnegative real-power damping for
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1. Introdu
tionAs known well, an obje
t under water re
eives the resistan
e proportional to the square of the velo
ity.For example, let us think about the movement of an underwater simple pendulum. Then, all momentof inertia I to a
t on the pendulum is the sum total of the moment of inertia by the sinker, a thread andthe added mass. On the other hand, all torque T is the sum total of the torque by gravity, buoyan
yand the drag whi
h a
t on the sinker and a thread. The torque for gravity or buoyan
y is proportionalto sin �, where � is the angle of swing. The torque for drag is proportional to the square of the angularvelo
ity �0. This is the so-
alled inertial resistan
e. Generally, sin
e I �00 = T , the movement of anunderwater simple pendulum is des
ribed by the equation�00 + 
 �0 j�0j+ !2sin � = 0;where 
 and ! are positive numbers. These numbers are often 
alled the damping (or drag) 
oeÆ
ientand the restoring 
oeÆ
ient per unit of the moment of inertia, respe
tively. As to spe
i�
 models ofthe pendulum, see [5, 10℄ for example.The above-mentioned equation is well approximated as follows:�00 + 
 �0 j�0j+ !2� = 0:



2 Jitsuro SugieSu
h equations appear frequently in many phenomena, for instan
e, free rolling motion of a small�shing vessel and damping os
illation by the air resistan
e. A pendulum and an os
illator with qua-drati
 damping have been resear
hed from various angles in a wide range of �elds and there is a lotof literature about them (for example, see [1, 3, 6, 8, 9, 17, 18, 21, 22, 23, 26, 34, 35℄).In applied s
ien
e and te
hnology, the damping 
oeÆ
ient 
 is presumed from experimental databy using the least squares method. For this reason, the damping 
oeÆ
ient must be always dealt withas a �xed positive number. Here, a simple doubt is 
aused. May we really assume that the damping
oeÆ
ient is a 
onstant? It is a well-known fa
t that the inertial resistan
e 
hanges depending on thedensity of 
uid and the form of the obje
t. The density of 
uid is in
uen
ed by temperature andpressure. From this point of view, it would be reasonable to 
onsider that the damping 
oeÆ
ient
hanges with time.We 
onsider the damped pendulum equationx00 + h(t)x0 jx0j+ !2sinx = 0; (P )where the damping 
oeÆ
ient h(t) is 
ontinuous and nonnegative for t � 0. The origin (x; x0) = (0; 0)is an equilibrium of (P ).Let x(t) = (x(t); x0(t)) and x0 2 R2 , and let k � k be any suitable norm. We denote the solutionof (P ) through (t0;x0) by x(t; t0;x0). The global existen
e and uniqueness of solutions of (P ) isguaranteed for the initial value problem.The origin is said to be stable if, for any " > 0 and any t0 � 0, there exists a Æ("; t0) > 0 su
hthat kx0k < Æ implies kx(t; t0;x0)k < " for all t � t0. The origin is said to be attra
tive if, for anyt0 � 0, there exists a Æ0(t0) > 0 su
h that kx0k < Æ0 implies kx(t; t0;x0)k ! 0 as t!1. The origin isasymptoti
ally stable if it is stable and attra
tive. With respe
t to the various de�nitions of stability,the reader may refer to the books [2, 11, 12, 19, 24, 36℄ for example.The purpose of this paper is to establish a 
riterion for judging whether the origin of (P ) isasymptoti
ally stable or not. Re
ently, the present author [29℄ has reported the following ne
essaryand suÆ
ient 
ondition for the origin of the damped pendulumx00 + h(t)x0 + !2sinx = 0; (1.1)to be asymptoti
ally stable.Theorem A. Suppose that there exists a 
0 with 0 < 
0 < �=! su
h thatlim inft!1 Z t+
0t h(s)ds > 0: (1.2)Then the origin of (1.1) is asymptoti
ally stable if and only ifZ 10 R t0 eH(s)dseH(t) dt =1; (1.3)where H(t) =Z t0 h(s)ds:The damping for
e is proportional to the velo
ity in equation (1.1). This is a big di�eren
e pointwith equation (P ). Equation (1.1) is a model on whi
h not the inertial resistan
e but the vis
ousresistan
e a
ts predominantly.Smith [27℄ gave 
ondition (1.3) for the �rst time as a 
riterion whi
h judges whether the originof the linear os
illator x00 + h(t)x0 + !2x = 0is asymptoti
ally stable under the assumption that there exists an h > 0 su
h that h(t) � h for t � 0.Afterwards, Smith's assumption was weakened to assumption (1.2) by Hatvani and Totik [16℄. Even ifintervals where h(t) be
omes zero are in�nitely many, assumption (1.2) may be satis�ed if the lengthsof intervals are less than �. This is a good point of assumption (1.2).It is known that



A pendulum with quadrati
 damping 3(i) if h(t) is bounded for t � 0 or h(t) = t, then 
ondition (1.3) is satis�ed;(ii) if h(t) = t2, then 
ondition (1.3) is not satis�ed.(for details, see [15℄). However, generally it is not so easy to 
he
k 
ondition (1.3). In most 
ases,it is impossible to 
on�rm whether 
ondition (1.3) is satis�ed, by using human's hand 
al
ulation.It is hard to verify 
ondition (1.3) even if we perform numeri
al analysis 
arried out by a personal
omputer. We need mu
h patien
e and time even if possible.Let u(t) = � R t0 eH(s)dseH(t) :Then, the fun
tion u(t) satis�es the s
alar di�erential equationu0 + h(t)u+ 1 = 0 (1.4)with u(0) = 0. From this relation and Theorem A, in order to determine whether the origin of (1.1)is asymptoti
ally stable or not, we have only to examine whether the integral from 0 to 1 of thesolution u(t) of (1.4) satisfying the initial 
ondition u(0) = 0 diverges or not. Based on this fa
t, we
all equation (1.4) a 
hara
teristi
 equation for the pendulum (1.1). Turning attention to the parti
ularsolution of the 
hara
teristi
 equation (1.4), we 
an easily obtain its integration value by numeri
alanalysis. This is an advantage in 
onsideration of the 
hara
teristi
 equation.The �rst main theorem is as follows:Theorem 1.1. Under the assumption (1.2), the origin of (P ) is asymptoti
ally stable if and only ifZ 10 u(t)dt = �1; (1.5)where u(t) is the solution of u0 + h(t)ujuj+ 1 = 0 (1.6)satisfying u(0) = 0:As already mentioned, assumption (1.2) is a generalization of Smith's assumption that h(t) �h > 0 for t � 0. However, assumption (1.2) is not satis�ed iflimt!1h(t) = 0:For example, Theorem 1.1 is inappli
able ifh(t) = 1=(1 + t) or h(t) = 1=((2 + t) log(2 + t)):To apply even to these 
ases, we repla
e the major premise, namely, assumption (1.2).As preparations to state the se
ond main theorem, we de�ne a family of fun
tions. We say thata nonnegative fun
tion  (t) is said to be weakly integrally positive if1Xn=1Z �n�n  (t)dt =1for every pairs of sequen
es f�ng and f�ng satisfying �n + � < �n � �n+1 � �n + � for some � > 0and � > 0. The typi
al example of the weakly integrally positive fun
tion is 1=(1+ t) or sin2t=(1+ t)(for example, see [13, 14, 28, 30, 31℄).Theorem 1.2. Suppose that h(t) is uniformly 
ontinuous for t � 0 and weakly integrally positive. Letu(t) is the solution of (1.6) satisfying u(0) = 0: Then the origin of (P ) is asymptoti
ally stable if andonly if 
ondition (1.5) holds .Even if h(t) has in�nitely many isolated zeros, it may be weakly integrally positive. However,h(t) is not weakly integrally positive any longer if intervals where h(t) be
omes zero appear regularlyand frequently. For example, if h(t) = j sin 2tj+sin2t, then it is not weakly integrally positive. On theother hand, assumption (1.2) is satis�ed in this example. Therefore, Theorems 1.1 and 1.2 supplementea
h other to expand the adaptation range.



4 Jitsuro SugieIn Theorems 1.1 and 1.2, assumption (1.2) and the weak integral positivity prohibit too fastde
line of the damping 
oeÆ
ient h(t), respe
tively. Conversely, 
ondition (1.5) prohibits too fastgrowth of the damping 
oeÆ
ient h(t).2. Preliminary arrangementsIn this se
tion, we prepare several lemmas and one proposition, in order to prove our main theorems.To begin with, we 
onsider the s
alar di�erential equationu0 = f(t; u); (2.1)where f(t; u) is 
ontinuous on [0;1)�R and satis�es lo
ally a Lips
hitz 
ondition with respe
t to u.As is well known, the following 
omparison results hold (for example, see [36, p. 5℄).Lemma 2.1. Let u(t) be a solution of (2.1) on an interval [a; b℄: Suppose that �(t) is 
ontinuous on[a; b℄ and satis�es the inequality �0(t) � f(t; �(t)) for a < t < b:If �(a) � u(a); then �(t) � u(t) for a � t � b:Lemma 2.2. Let u(t) be a solution of (2.1) on an interval [a; b℄: Suppose that �(t) is 
ontinuous on[a; b℄ and satis�es the inequality �0(t) � f(t; �(t)) for a < t < b:If �(a) � u(a); then �(t) � u(t) for a � t � b:As a spe
ial 
ase of equation (2.1), we 
onsider the 
hara
teristi
 equation (1.6). Let T be anonnegative number. We denote the solution u(t) of (1.6) satisfying u(T ) = 0 by u(t;T ). Then, usingLemma 2.1, we obtain the following equivalen
e relation between u(t;T ) and u(t; 0). We omit thedetails (for the proof, see Lemma 2.1 in [32℄).Lemma 2.3. For any T � 0; Z 1T u(t;T )dt = �1if and only if Z 10 u(t; 0)dt = �1:Equation (P ) is equivalent to the planar systemx0 = !y;y0 = �! sinx� !h(t)y jyj: (2.2)The origin of (P ) 
orresponds to the zero solution of (2.2), namely, (x(t); y(t)) � (0; 0). A

ording to
ustom, we divide R2 nf(0; 0)g into four quadrants:Q1 = �(x; y) : x � 0 and y > 0	; Q2 = �(x; y) : x < 0 and y � 0	;Q3 = �(x; y) : x � 0 and y < 0	; Q4 = �(x; y) : x > 0 and y � 0	:Consider the solution x(t; t0;x0) of (P ). The set�+(2.2)(t0;x0) def= [t�t0 x(t; t0;x0)is 
alled the positive orbit of (2.2) starting from a point x0 = (x0; y0) 2 R2 at a time t0 � 0. Sin
esystem (2.2) is nonautonomous, even if �+(2.2)(t0;x0) starts from the same point x0, the shape isdi�erent a

ording to the initial time t0. We 
all the position of x(t; t0;x0) on the (x; y)-plane a phasepoint for ea
h time t � 0. Needless to say, the phase point moves along the positive orbit �+(2.2)(t0;x0).



A pendulum with quadrati
 damping 5It is natural to 
hoose the total energyV (x; y) = 1� 
osx+ 12 y2as a suitable Lyapunov fun
tion for system (2.2). As a matter of fa
t, we obtain_V(2.2)(t; x; y) = (sinx)x0 + y y0 = �!h(t)y2jyj � 0on [0;1)� R2 , by di�erentiating V (x; y) along any solution of (2.2). LetD = �(x; y) 2 R2 : jxj < �=2 and V (x; y) < 1	:Then, it turns out that D is a domain 
ontaining the origin and it is a positive invariant set of (2.2),namely, for any t0 � 0 and x0 2 D, the positive orbit �+(2.2)(t0;x0) is in
luded in D. Sin
e V (x; y)is positive de�nite and _V(2.2)(t; x; y) is nonpositive, it follows from a basi
 Lyapunov's dire
t methodthat the zero solution of (2.2) is stable. Hen
e, we obtain the following result.Proposition 2.4. The origin of (P ) is stable.Proposition 2.4 
an be led only under the assumption that h(t) is nonnegative for t � 0. Unfortu-nately, the derivative _V(2.2)(t; x; y) is not negative de�nite, and hen
e it is not so easy to demonstratethe global attra
tivity of the origin of (P ). We have to examine the 
hara
teristi
s of positive orbitsof (2.2) in detail. For this purpose, we transform system (2.2) into polar 
oordinates byx = r 
os � and y = r sin �:Then, we have r0 = ! r sin � 
os � � ! sin � sin(r 
os �)� ! h(t) r2sin2� j sin �j;�0 = � !r sin(r 
os �) 
os � � ! sin2� � ! h(t) r sin � j sin �j
os �: (2.3)Sin
e r2�0 = �! x sinx� y2 � !h(t)xy jyj < 0if (x; y) 2 (Q1 [ Q3) \D, the phase point on �+(2.2)(t0;x0) turns 
lo
kwise around the origin as longas it moves through Q1 \ D or Q3 \ D. Afterwards, how does the phase point move? The followingresult answers this question.Lemma 2.5. There is no positive orbit of (2.2) whi
h is in
luded in (Q1 [Q3) \D ultimately .Proof. Let t0 � 0 and x0 2 Q1 \ D (resp., Q3 \ D). Suppose that �+(2.2)(t0;x0) is 
ontained inQ1 \D (resp., Q3 \D). Let (r(t); �(t)) be the solution of (2.3) 
orresponding to �+(2.2)(t0;x0). Then,0 < r2(t) < �2=4 + 2 for t � t0. It follows from the assumptions that h(t) � 0 for t � 0 andsin �(t) 
os �(t) � 0 for t � t0 thatr2(t) �0(t) = �! r(t) 
os �(t) sin(r(t) 
os �(t))� r2(t) sin2�(t)� ! h(t) r3(t) 
os �(t) sin �(t)j sin �(t)j� �! r(t) 
os �(t) sin(r(t) 
os �(t))for t � t0. Sin
e x sinx is de
reasing for ��=2 � x � 0 and in
reasing for 0 � x � �=2, we see that�0(t) � � ! r(t0) 
os �(t0) sin(r(t0) 
os �(t0))r2(t)� � ! r(t0) 
os �(t0) sin(r(t0) 
os �(t0))�2=4 + 2for t � t0. Integrating this inequality from t0 to t, we obtain�(t) < �(t0)�M(t� t0)! �1 as t!1;where M = ! r(t0) 
os �(t0) sin(r(t0) 
os �(t0))=(�2=4 + 2) > 0. This is a 
ontradi
tion. Thus, su
h apositive orbit does not exist. �



6 Jitsuro SugieFrom Lemma 2.5, we 
on
lude that system (2.2) has three types of positive orbits: (i) a positiveorbit 
oils itself around the origin; (ii) a positive orbit is 
ontained in Q4 (resp., Q2) ultimately andthe phase point that runs on the positive orbit approa
hes the origin through Q4 (resp., Q2); (iii) apositive orbit is in
ludes in Q4 (resp., Q2) ultimately and the phase point that runs on the positiveorbit approa
hes an interior point in Q4 (resp., Q2). From the ve
tor �eld of (2.2), we see that anyphase point moves to the left in Q4, and moves to the right in Q2. However, it does not always rotatearound the origin (0; 0), and may go up and down in Q4 and Q2.3. Proof of Theorem 1.1We are now ready to prove Theorem 1.1. By virtue of Proposition 2.4, we have only to dis
uss theattra
tivity of the origin of (P ).3.1. Ne
essityWe will prove that if 
ondition (1.5) does not hold, then the origin of (P ) is not attra
tive. Let " bean arbitrary positive number and let L = maxf1; !2g. Then, there exists a T > 0 su
h thatZ 1T u(t)dt > � "2L :Re
all that u(t;T ) is the solution of (1.6) satisfying u(T ;T ) = 0. From the uniqueness of solutions of(1.6) for the initial value problem, we see thatu(t) = u(t; 0) � u(t;T ) < 0 for t > T:Hen
e, we have Z 1T u(t;T )dt > � "2L : (3.1)Consider the positive orbit �+(2.2)(t0;x0), where t0 = T and x0 = ("; 0). Taking the ve
tor �eldof (2.2) into a

ount, we see that the phase point on �+(2.2)(t0;x0) goes into Q4 afterwards and it doesnot enter Q1 passing through the positive x-axis. Let (x(t); y(t)) be the solution of (2.2) satisfyingx(T ) = " and y(T ) = 0. If x(t) > "2 for t � T; (3.2)then naturally the origin of (P ) is not attra
tive. This 
ompletes the proof of `only if'-part.By way of 
ontradi
tion, suppose that (3.2) is not true. Then, we 
an �nd a T1 > T su
h thatx(T1) = "=2 and "=2 < x(t) � " for T � t < T1. Sin
e �+(2.2)(t0;x0) does not interse
t the positivex-axis, we see that y(t) < 0 for T < t � T1:Let �(t) = !y(t)=L. Then, from the se
ond equation of (2.2) it follows that�0(t) = � !2L sinx(t)� !2L h(t)y(t)jy(t)j� � 1� Lh(t)�(t)j�(t)j � � 1� h(t)�(t)j�(t)jfor T � t � T1. Let f(t; u) = � 1� h(t)ujuj. Then, we have�0(t) � f(t; �(t)) for T � t � T1:We 
ompare �(t) with u(t;T ). Sin
e u0(t;T ) = f(t; u(t;T )) for t � T and �(T ) = !y(T )=L = 0, itfollows from Lemma 2.1 that x0(t) = !y(t) = L�(t) � Lu(t;T )for T � t � T1. Hen
e, using (3.1), we obtainx(T1) � x(T ) + LZ T1T u(t;T )dt > "+ LZ 1T u(t;T )dt > "2 = x(T1):



A pendulum with quadrati
 damping 7This is a 
ontradi
tion.3.2. SuÆ
ien
yLet x(t) be any solution of (P ) with the initial time t0 � 0 and let y(t) = x0(t) for t � t0. Then,(x(t); y(t)) is a solution of (2.2), whi
h 
orresponds to x(t). Let �+(2.2)(t0;x0) be the positive orbit of(2.2) 
orresponding to the solution (x(t); y(t)). To prove `if'-part of the theorem, we have only to showthat if x0 = (x(t0); y(t0)) 2 D, then (x(t); y(t)) tends to (0; 0) as t!1.De�ne v(t) = V (x(t); y(t))for t � t0. Then, v0(t) = �!h(t)y2(t)jy(t)j � 0 for t � t0. Hen
e, v(t) is de
reasing and has thelimiting value v0 � 0. If v0 is zero, then the proof of `if'-part is 
omplete. We will show that the 
aseof v0 > 0 does not o

ur provided assumptions (1.2) and (1.5) hold.Suppose that v0 is positive. Then, �+(2.2)(t0;x0) is 
ontained in the annulusA = �(x; y) 2 R2 : jxj < �=2 and v0 < V (x; y) < 1	 � Dfor all future time. Consider the 
losed 
urve given by V (x; y) = v0 > 0. It is 
lear that this 
urveis a symmetri
 oval. Hen
e, it interse
ts with the x-axis only at two points (�; 0) and (��; 0), where0 < � = ar

os(1� v0) < �=2.As already mentioned, it turns out from Lemma 2.5 that �+(2.2)(t0;x0) must belong to either ofthree types. However, �+(2.2)(t0;x0) does not belong to the se
ond type, namely, it is 
ontained in Q4(resp., Q2) and the phase point that runs on �+(2.2)(t0;x0) approa
hes the origin through Q4 (resp.,Q2), be
ause it stays in the annulus A that does not 
ontain the origin. Under the assumptions (1.2)and (1.5), �+(2.2)(t0;x0) does not belong to either of the �rst type and the third type. Hereafter, wewill 
on�rm this fa
t by dividing into two steps.Step (i). Suppose that �+(2.2)(t0;x0) belongs to the �rst type, namely, it 
oils itself around the originwhile remaining in the annulus A. Let (r(t); �(t)) be the solution of (2.3) 
orresponding to �+(2.2)(t0;x0).Then, there exist divergent sequen
es f�ng and f�ng with t0 � �n < �n su
h that �(�n) = 3�=2 and�(�n) = �=2 (mod 2�). In other words, �+(2.2)(t0;x0) interse
ts the negative y-axis at t = �n, and itinterse
ts the positive y-axis at t = �n for n 2 N. Let " be so small that0 < " < � � !
02 ; (3.3)where 
0 is the number given in assumption (1.2). Then, �+(2.2)(t0;x0) 
rosses the straight lines y =(tan ")x and y = (tan(� � "))x in�nitely many times. Re
all that the phase point on �+(2.2)(t0;x0)moves 
lo
kwise in (Q1 [Q3)\A. However, in (Q2 [Q4)\A, it does not always rotate 
lo
kwise andmay go up and down. The shape of �+(2.2)(t0;x0) may be so simple in (Q2[Q4)\A. For this reason, thepoint in the set ft 2 (�n; �n+1) : �(t) = "g is unique, but the point in the set ft 2 (�n; �n) : �(t) = ��"gmight not be only one. For n 2 N, let sn be the unique point satisfying �n < sn < �n+1 and �(sn) = ",and let tn be the supremum of all t 2 (�n; �n) for whi
h �(t) � � � ". Then, t0 � �n < tn < �n < sn,�(tn) = � � ", �(sn) = " and " < �(t) < � � " for tn < t < sn:Sin
e the 
urve V (x; y) = v0 is an oval, it interse
ts the straight line y = (tan ")x at only one pointin Q1. Let Æ(") be the y-
omponent of the interse
tions. Sin
e �+(2.2)(t0;x0) does not enter the region�(x; y) 2 R2 : V (x; y) � v0	, it follows that y(t) > Æ for tn � t � sn. Hen
e,v0(t) = �!h(t)y2(t)jy(t)j � �!h(t)Æ3 (3.4)for tn � t � sn.



8 Jitsuro SugieSuppose that there exists an N 2 N su
h that sn � tn � 
0 for n � N . Then, it turns out from(3.4) that v(sn)� v(tn) � �!Æ3Z sntn h(t)dt � �!Æ3Z tn+
0tn h(t)dtfor n � N . Sin
e v0(t) = �!h(t)y2(t)jy(t)j � 0, it is 
lear thatv(tn+1)� v(sn) � 0 for n 2 N:Hen
e, we obtain v(tn+1)� v(tn) � �!Æ3Z tn+
0tn h(t)dt for n � N;and therefore, v0 � v(tN ) � v(tn+1)� v(tN ) � �!Æ3 nXi=N Z ti+
0ti h(t)dt: (3.5)From assumption (1.2), we see that 1Xi=N Z ti+
0ti h(t)dt =1;whi
h 
ontradi
ts (3.5). Thus, there exists a sequen
e fnkg with nk 2 N and nk !1 as k !1 su
hthat snk � tnk < 
0: (3.6)The annulus A is in
luded in a 
ir
le. Let r be the radius of the 
ir
le. Sin
e �+(2.2)(t0;x0) is
ontained in A, we see that r(t) � r for t � t0. Hen
e, we 
an estimate that�0(t) � � !r(t) j sin(r(t) 
os �(t))jj 
os �(t)j � ! sin2�(t)� !h(t)r(t) sin2�(t)j 
os �(t)j� �! 
os2�(t)� ! sin2�(t)� h(t)r(t) � �! � h(t)rfor t � t0. It turns out from (3.6) that"� (� � ") = �(snk)� �(tnk )� �!(snk � tnk)� rZ snktnk h(t)dt > �!
0 � rZ snktnk h(t)dtfor ea
h k 2 N, namely, rZ snktnk h(t)dt > � � !
0 � 2" for k 2 N:Using this inequality and (3.4), we obtainv(snk )� v(tnk ) � �!Æ3Z snktnk h(t)dt < � !Æ3r (� � !
0 � 2")for k 2 N. Sin
e v(tnk+1)� v(snk ) � 0 for k 2 N, we see thatv(tnk+1)� v(tnk ) < � !Æ3r (� � !
0 � 2") for k 2 N:From (3.3), we 
an 
on
lude thatv0 � v(t0) � 1Xk=1 �v(tnk+1)� v(tnk )� = �1;whi
h is a 
ontradi
tion. Thus, �+(2.2)(t0;x0) does not belong to the �rst type.



A pendulum with quadrati
 damping 9Step (ii). Suppose that �+(t0;x0) belongs to the third type, namely, it is in
luded in Q4 \ A (resp.,Q2\A) ultimately and the phase point on �+(t0;x0) approa
hes to an interior point in Q4\A (resp.,Q2 \ A). Then, there exist a point x1 2 Q4 \ A (resp., Q2 \ A) and a time T � t0 su
h that x1 isthe phase point on �+(2.2)(t0;x0) for t = T and �+(2.2)(t0;x0) is 
ontained in Q4 \ A (resp., Q2 \ A)afterwards. From the uniqueness of solutions of (P ) to initial value problems, we see that �+(2.2)(T;x1)is a part of �+(2.2)(t0;x0). There are two 
ases that we should 
onsider: (a) �+(2.2)(T;x1) is in
luded inQ4 \ A for all the future; (b) �+(2.2)(T;x1) is in
luded in Q2 \ A for all the future. We 
onsider onlythe former, be
ause the latter is 
arried out in the same way.Sin
e (x(t); y(t)) 2 Q4 for t � T , we see that x0(t) = y(t) � 0 for t � T . Hen
e, there exists anumber 
 2 R with 0 � 
 < �=2 su
h that x(t)& 
 as t!1. Re
all that v(t) = 1�
osx(t)+y2(t)=2&v0 as t!1. Hen
e, it turns out that 12 y2(t)! � as t!1;where � = v0 � 1 + 
os 
. Naturally, � � 0. If � > 0, then we 
an 
hoose a T1 � T so large thaty2(t) > � for t � T1:Hen
e, we have v0(t) = �!h(t)y2(t)jy(t)j � �!�p� h(t)for t � T1. Integrate this inequality to obtain�1 < v0 � v(T1) < v(t)� v(T1) � �!�p�Z tT1h(s)ds:This is a 
ontradi
tion, be
ause it follows from assumption (1.2) thatZ 1T1 h(t)dt =1:Thus, it turns out that � = 0, namely, 
 = ar

os(1� v0) = �. We therefore 
on
lude that the phasepoint on �+(2.2)(T;x1) approa
hes an interior point (�; 0) 2 Q4\A, whi
h is a interse
tion of the 
losed
urve V (x; y) = v0 and the x-axis.From the above-mentioned argument, we see that0 < � < x(t) � x(T ) < �2 and y(t) < 0for t � T . Note that sinx(t) > sin� > 0 for t � T . Let "0 = minf1; !2sin�g. Then, we 
an estimatethat �!y(t)"0 �0 = � !2"0 sinx(t)� !2h(t)"0 y(t)jy(t)j� � 1� h(t) !y(t)"0 ���� !y(t)"0 ����for t � T . Let �(t) = !y(t)="0 for t � t0 and let f(t; u) = � 1 � h(t)ujuj. Then, �0(t) � f(t; �(t))for t � T . We 
ompare �(t) with the solution u(t;T ) of (1.6) satisfying u(T ;T ) = 0. Sin
e �(T ) =!y(T )="0 < 0, it follows from Lemma 2.2 that!y(t)"0 = �(t) � u(t;T ) � 0for t � T . Hen
e, we have x0(t) = !y(t) � "0u(t;T ) for t � T:Integrating both sides of this inequality from T to t, we obtain� �2 < �� x(T ) < x(t) � x(T ) � "0Z tT u(s;T )ds:



10 Jitsuro SugieHowever, by means of Lemma 2.3 and 
ondition (1.5), we 
on
lude thatZ tT u(s;T )ds! �1 as t!1:This is a 
ontradi
tion. Thus, �+(t0;x0) does not belong to the third type.The proof of Theorem 1.1 is thus 
omplete. �4. Proof of Theorem 1.2Re
all that the damped pendulum equation (P ) is equivalent to the planar system (2.2). Let (x(t); y(t))be any solution of (2.2) with the initial time t0 � 0, and let �+(2.2)(t0;x0) be the positive orbit of (2.2)
orresponding to the solution (x(t); y(t)), where x0 = (x(t0); y(t0)) 2 D. The proof of Theorem 1.1was 
omposed of `only if'-part and `if'-part, and the proof of `if'-part was divided into two steps:(i) �+(2.2)(t0;x0) 
oils itself around the origin while remaining in the annulus A;(ii) �+(2.2)(t0;x0) is 
ontained in Q4\A (resp., Q2\A) ultimately and the phase point on �+(2.2)(T;x0)approa
hes an interior point in Q4 \ A (resp., Q2 \ A).Assumption (1.2) was not used in the proof of `only if'-part, and the proof of the se
ond step of`if'-part. In the se
ond step, the damping 
oeÆ
ient h(t) had only to satisfyZ 10 h(t)dt =1:Therefore, we need to prove only the �rst step of `if'-part, when 
hanging assumption (1.2) to theassumption that h(t) is uniformly 
ontinuous for t � 0 and weakly integrally positive.Suppose that �+(2.2)(t0;x0) 
oils itself around the origin while remaining in the annulus A. Then,we 
on
lude that lim inft!1 jy(t)j = 0 < p2v0 = lim supt!1 jy(t)j: (4.1)Sin
e h(t) is uniformly 
ontinuous for t � 0, we 
an �nd numbers T > 0 and � > 0 so thatjh(�)� h(�)j < 1 (4.2)whenever � � T and � � T with j�� �j < �. Note that � is independent of t. Let � be so small that2p2� � �(!2� 7�)pv0: (4.3)Needless to say, it is possible to �nd su
h a positive number �, whi
h is less than !2=7. By (4.1), we
an 
hoose three divergent sequen
es f�ng, ftng and f�ng with T < �n < tn < �n � �n+1 su
h thatjy(�n)j = jy(�n)j = p�v0=!, jy(tn)j = p2�v0=!,jy(t)j > p�v0=! for �n < t < �n; (4.4)p�v0=! < jy(t)j < p2�v0=! for �n < t < tn; (4.5)and jy(t)j � p2�v0=! for �n � t � �n+1: (4.6)In fa
t, it turns out from (4.1) that jy(t�)j � p�v0 for some t� > T . Lett1 = min�t > t� : jy(t)j = p2�v0=!	;�1 = max�t < t1 : jy(t)j = p�v0=!	;and �1 = min�t > t1 : jy(t)j = p�v0=!	:Su
h numbers always exist be
ause of (4.1) and the 
ontinuity of jy(t)j. Using �1 instead of t�, wede�ne t2, �2 and �2 similarly to t1, �1 and �1, and so on. Then, t0 < �n < tn < �n � �n+1 and �n !1as n ! 1. Also, (4.4){(4.6) are satis�ed. To be pre
ise, if y(�n)y(�n+1) > 0, then jy(t)j � p�v0=!for �n � t � �n+1; if y(�n)y(�n+1) < 0, then jy(t)j � p2�v0=! for �n � t � �n+1.



A pendulum with quadrati
 damping 11Let us estimate the distan
e between �n and �n for ea
h n 2 N. Sin
e jy(�n)j = p�v0=! andjy(tn)j = p2�v0=!, we see that�v0 = y2(tn)� y2(�n) = Z tn�n �y2(t)�0dt = 2Z tn�n y0(t)y(t)dt= 2Z tn�n (�! sinx(t)� !h(t)y(t)jy(t)j)y(t)dt � 2!Z tn�n jy(t)jdt:It follows from (4.5) that � def= p�v02p2!2 < tn � �n < �n � �n (4.7)for ea
h n 2 N.Let us pay attention to the value of h(t) at t = �n for ea
h n 2 N. De�neS = fn 2 N : h(�n) � 2g:Suppose that the number of elements in S is in�nite. Let d = minf�; �g. Then, it follows from (4.2)that n 2 S implies that h(t) > 1 for �n � d < t < �n:Also, it turns out from (4.4) and (4.7) thatjy(t)j > p�v0=! for �n � d < t < �n:Hen
e, we obtainlimt!1 v(t) � v(t0) = Z 1t0 v0(t)dt = �Z 1t0 !h(t)y2(t)jy(t)jdt� �Xn2S Z �n�n�d!h(t)y2(t)jy(t)jdt < �Xn2S(�v0) 32 d=!2 = �1:This 
ontradi
ts the fa
t that v(t) > v0 > 0 for t � t0. Thus, the number of elements in the set S is�nite, and therefore, there exists an N 2 N su
h thath(�n) < 2 for n � N: (4.8)By (4.6), we have 1� 
osx(t) = v(t)� 12 y2(t) > (1� �=!2)v0for �n � t � �n+1. Taking into a

ount that (1� �=!2)v0 < 1, we obtainjx(t)j > 
os�1�1� �1� �!2�v0� for �n � t � �n+1: (4.9)Sin
e the domain D is a positive invariant set of (2.2), we see thatjx(t)j < �2 for t � t0: (4.10)Let us estimate the distan
e between �n and �n+1 for ea
h n 2 N. Suppose that there exists ann0 � N su
h that �n0+1 � �n0 > �. Then, from (4.2) and (4.8) it follows thath(t) < 1 + h(�n0 ) < 3 for �n0 � t � �n0+ �:Hen
e, using (4.3), (4.6), (4.9), (4.10) and the se
ond equation of (2.2), we getjy0(t)j � ! j sinx(t)j � !h(t)y2(t) � 2!� jx(t)j � !h(t)y2(t)> 2!� 
os�1�1� �1� �!2�v0�� 6�v0!> 2!� �2 �1� �!2�� 6�v0! � 2p2�v0�! > 0



12 Jitsuro Sugiefor �n0 � t � �n0+ � < �n0+1. Integrate this inequality to obtainjy(�n0+ �)j+ jy(�n0)j � �����Z �n0+��n0 y0(t)dt�����= Z �n0+��n0 jy0(t)jdt > 2p2�v0=!:This 
ontradi
ts (4.6). We therefore 
on
lude that� def= � � �n+1 � �n (4.11)for ea
h n 2 N.From (4.7) and (4.11), we see that �n + � < �n � �n+1 � �n + � for ea
h n 2 N. Sin
e h(t) isweakly integrally positive, we obtain 1Xn=1 Z �n�n h(t)dt =1: (4.12)However, it follows from (4.4) thatv(�n)� v(�1) = Z �n�1 v0(t)dt = �Z �n�1 !h(t)y2(t)jy(t)jdt� � nXi=1Z �i�i h(t)y2(t)jy(t)jdt � � (�v0) 32!2 nXi=1Z �i�i h(t)dt:This 
ontradi
ts (4.12). We have thus proved Theorem 1.2. �5. The 
ase of bounded damping 
oeÆ
ientWe 
onsider the 
ase that h(t) is bounded for t � 0, namely, there exists an h > 0 su
h that 0 �h(t) � h for t � 0. Then, we have the following lemma.Lemma 5.1. Let u(t) be the solution of (1.6) satisfying u(0) = 0: If h(t) is bounded for t � 0; then
ondition (1.5) holds .Proof. Sin
e u(0) = 0 and u0(0) = �1, we see that u(t) < 0 in a right-hand neighborhood of t = 0.Sin
e u0(t) = � 1� h(t)u(t)ju(t)j = � 1 + h(t)u2(t) � 0as long as �1=ph � u(t) � 0, there are two possibilities to 
onsider: (i) u(t) & �� as t ! 1 forsome positive � whi
h is less than 1=ph; (ii) u(t1) = �1=ph for some t1 > 0. In the former, 
ondition(1.5) is satis�ed, be
ause u(t) < ��=2 for t suÆ
ient large. In the latter, if h(t) = h for t � t1, thenu(t) = �1=ph for t � t1. Hen
e, it is 
lear that 
ondition (1.5) is satis�ed. Otherwise, we 
an �nd at2 > t1 su
h that u(t2) < �1=ph. Suppose that u(t3) > �1=ph for some t3 > t2. Lett4 = supnt < t3 : u(t) < �1=pho :Then, we see that u(t4) = �1=ph and u(t) > �1=ph for t4 < t � t3. By the mean value theorem,there exists a t5 with t4 < t5 < t3 su
h that u0(t5) > 0. However, sin
e u(t5) > �1=ph, it follows thatu0(t5) = � 1 + h(t5)u2(t5) < � 1 + h 1h = 0:This is a 
ontradi
tion. Thus, we 
on
lude that u(t) � �1=ph for t � t2. It turns out from thisinequality that 
ondition (1.5) holds. �



A pendulum with quadrati
 damping 13In Theorem 1.2, we assumed that h(t) is uniformly 
ontinuous for t � 0. Re
all that the uniform
ontinuity of h(t) was used only to obtain estimation (4.8). This estimation is unne
essary when h(t)is bounded for t � 0. Hen
e, by means of this fa
t and Lemma 5.1, we have the following 
onsequen
eof Theorems 1.1 and 1.2.Theorem 5.2. Suppose that either h(t) satis�es assumption (1.2) or that it is uniformly 
ontinuousfor t � 0 and weakly integrally positive. If h(t) is bounded for t � 0; then the origin of (P ) isasymptoti
ally stable.6. Dis
ussionAs shown in the pre
eding se
tion, 
ondition (1.5) holds under the assumption that the damping
oeÆ
ient h(t) is bounded. The questions arise: Can 
ondition (1.5) be satis�ed for unbounded h(t)?Can 
ondition (1.5) be not satis�ed for unbounded h(t)? Theorems 6.1{ 6.3 below answer this question.The proofs of Theorems 6.1{6.3 are 
arried out in the same manner as the proofs of Corollaries 4.1,4.2 and 4.4 in [32℄, respe
tively. To save the spa
e, we omit details.Theorem 6.1. Suppose that there exist a di�erentiable fun
tion g(t) and a positive number T su
hthat g(t) > 0 and h(t) � g(t)for t � T: If g0(t) � 0 for t � T and Z 1T 1pg(t) dt =1;then 
ondition (1.5) holds .Theorem 6.2. Suppose that there exist a di�erentiable fun
tion g(t) and positive numbers g and Tsu
h that g(t) > g and h(t) � g(t)for t � T: If limt!1 g0(t)g(t) = 0 and Z 1T 1pg(t) dt =1;then 
ondition (1.5) holds .Note that both Theorem 6.1 and Theorem 6.2 are generalization of Lemma 5.1.Theorem 6.3. Suppose that there exist a di�erentiable fun
tion k(t) and positive numbers k and Tsu
h that k � k(t) � h(t)for t � T: If limt!1 k0(t)k(t) = 0 and Z 1T 1pk(t) dt <1;then 
ondition (1.5) fails to hold .From Theorem 6.3, we see that 
ondition (1.5) does not hold when the damping 
oeÆ
ient rapidlygrows. Combining Theorems 6.1{6.3, we obtain the following simple ne
essary and suÆ
ient 
onditionfor the origin of (P ) to be asymptoti
ally stable.Corollary 6.4. Suppose that there exist positive numbers 
 and T su
h thath(t) = t
 for t � T:Then the origin of (P ) is asymptoti
ally stable if and only if 
 � 2:



14 Jitsuro SugieNeedless to say, if the damping 
oeÆ
ient is a polynomial of power fun
tions of t, then we merelyhave only to 
onsider the largest exponent of the polynomial as 
 in Corollary 6.4.To illustrate our theorems,we give two examples in whi
h lim inft!1h(t) = 0 and lim supt!1 h(t)=1. In the �rst example, the set ft � 0 : h(t) = 0g is the union of in�nitely many disjoint intervalswhose length are �=2.Example 6.1. Consider equation (P ) withh(t) = t �j sin32tj � sin32t�:Then the origin is asymptoti
ally stable.Let In = [(n� 1)�; (n� 1=2)�℄ and Jn = [(n� 1=2)�; n�℄for ea
h n 2 N. Then h(t) = ( 0 if t 2 In;� 2 t sin32t if t 2 Jnwith n 2 N. Assumption (1.2) is satis�ed with 
0 = 3�=4. In fa
t, sin
e h(t) � � 2 sin32t if t 2 Jn forea
h n 2 N, we see that lim inft!1 Z t+3�=4t h(s)ds � lim inft!1 Z t+3�=4t eh(s)ds;where eh(t) = ( 0 if t 2 In;� 2 sin32t if t 2 Jn:Note that eh(t) is a periodi
 fun
tion with period �. De�ne'(t) = Z t+3�=4t eh(s)ds:Then, by a straightforward 
al
ulation, we obtain'(t) = 8>>>>>>>><>>>>>>>>:
sin 2t� (sin32t)=3 + 2=3 for 0 � t < �=4;3=4 for �=4 � t < �=2;� 
os 2t+ (
os32t)=3 + 2=3 for �=2 � t < 3�=4;sin 2t� 
os 2t� (sin32t)=3 + (
os32t)=3 + 4=3 for 3�=4 � t < �:Hen
e, it turns out that '(t) is in
reasing for 0 � t � �=4 and 7�=8 � t � �, and de
reasing for�=2 � t � 7�=8. In addition, '(0) = '(3�=4) = '(�) = 2=3 and '(t) = 4=3 for �=4 � t � �=2. Sin
e'(t) is also a periodi
 fun
tion with period �, we see thatlim inft!1 Z t+3�=4t h(s)ds � lim inft!1 '(t) � '(7�=8) = � 56 p2 + 43 > 0:Let g(t) = 2t and T = 1. Then, it is 
lear thatg(t) � 2; h(t) � g(t) and g0(t) = 2 > 0for t � T , and Z 1T 1pg(t) dt = Z 11 1p2t dt =1:Thus, from Theorem 6.1 it turns out that 
ondition (1.5) holds. Hen
e, by means of Theorem 1.1, we
on
lude that the origin is asymptoti
ally stable (see Figure 1).



A pendulum with quadrati
 damping 15From Theorems 1.1 and 6.2, we 
an also 
on�rm the asymptoti
 stability of the origin, be
auselimt!1 g0(t)g(t) = limt!1 1t = 0:We will show that the major premises of Theorem 1.2 are not satis�ed. The length of In is �=2for ea
h n 2 N. Hen
e, h(t) is not weakly integrally positive. Sin
eh0(t) = ( 0 if t 2 In� 2 sin32t� 12 t sin22t 
os 2t if t 2 Jnwith n 2 N, it is 
ontinuous for t � 0. However, h0(t) is not bounded. Hen
e, h(t) is not uniformly
ontinuous. Thus, Theorem 1.2 
annot be applied to Example 6.1.
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16 Jitsuro Sugiewith n 2 N. Sin
e jh0(t)j � ���� sinptpt ���� ���sin2pt���+ 3 ���sin2pt��� ���
ospt���+ j sin 2tj1 + t + sin2t(1 + t)2� 6for t � �2, we see that h(t) is uniformly 
ontinuous for t � 0. As mentioned in Se
tion 1, the fun
tionsin2t=(1 + t) is weakly integrally positive (for the proof, see [31℄). Taking the inequalityh(t) � sin2t1 + t for t � 0;we see that h(t) is also a weakly integrally positive fun
tion. Thus, the major premises of Theorem1.2 are satis�ed. Let g(t) = 3pt and T = 1. Then, it is 
lear that g(t) � 3, g0(t) = 3=(2pt) > 0 andh(t) � 2pt+ 11 + t � g(t)for t � T . It is also 
leat that Z 1T 1pg(t) dt = Z 11 1p3 4pt dt =1:Thus, from Theorem 6.1 it turns out that 
ondition (1.5) holds. Hen
e, by means of Theorem 1.2, we
on
lude that the origin is asymptoti
ally stable (see Figure 2).
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A pendulum with quadrati
 damping 17Assumption (1.2) is not satis�ed. In fa
t, sin
e the length of In is not less than � for ea
h n 2 N,we see that 0 � lim inft!1 Z t+
0t h(s)ds � limn!1 Z 4(n�1)2�2+�4(n�1)2�2 11 + tdt� limn!1 �1 + 4(n� 1)2�2 = 0for any 
0 with 0 < 
0 < �. Thus, Theorem 1.1 
annot be applied to Example 6.2.Finally, to apply to also a pendulum with a nonnegative real-power damping for
e, we extend themain results, namely, Theorems 1.1 and 1.2. Physi
al models whose damping for
e is neither linearnor quadrati
 have been reported in many papers (for example, see [4, 7, 20, 25℄). For 
onvenien
e,we de�ne �q(y) = jyjq�2y; y 2 Rwith q � 2 (but may not be ne
essarily an integer) and 
onsider the damped superlinear pendulumx00 + h(t)�q(x0) + !2sinx = 0: (SP )Then, 
ombining mathemati
al ideas of the present paper and re
ent papers [32, 33℄, we 
an obtainthe following results.Theorem 6.5. Suppose that either h(t) satis�es assumption (1.2) or that it is uniformly 
ontinuousfor t � 0 and weakly integrally positive. Let u(t) is the solution of the 
hara
teristi
 equationu0 + h(t)�q(u) + 1 = 0satisfying u(0) = 0: Then the origin of (SP ) is asymptoti
ally stable if and only if 
ondition (1.5)holds .A
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