
Asymptoti stability of a pendulum withquadrati dampingJitsuro SugieAbstrat. The equation onsidered in this paper isx00 + h(t)x0jx0j+ !2sinx = 0;where h(t) is ontinuous and nonnegative for t � 0 and ! is a positive real number. This may beregarded as an equation of motion of an underwater pendulum. The damping fore is proportional tothe square of the veloity. The primary purpose is to establish neessary and suÆient onditions onthe time-varying oeÆient h(t) for the origin to be asymptotially stable. The phase plane analysisonerning the positive orbits of an equivalent planar system to the above-mentioned equation isused to obtain the main results. In addition, solutions of the system are ompared with a partiularsolution of the �rst-order nonlinear di�erential equationu0 + h(t)ujuj + 1 = 0:Some examples are also inluded to illustrate our results. Finally, our results are extended to beapplied to an equation with a nonnegative real-power damping fore.Mathematis Subjet Classi�ation (2010). Primary 34D23, 34D45; Seondary 34C10, 37C75, 70K05.Keywords. Asymptoti stability, phase plane analysis, omparison of solutions, damped pendulum,quadrati damping fore.
1. IntrodutionAs known well, an objet under water reeives the resistane proportional to the square of the veloity.For example, let us think about the movement of an underwater simple pendulum. Then, all momentof inertia I to at on the pendulum is the sum total of the moment of inertia by the sinker, a thread andthe added mass. On the other hand, all torque T is the sum total of the torque by gravity, buoyanyand the drag whih at on the sinker and a thread. The torque for gravity or buoyany is proportionalto sin �, where � is the angle of swing. The torque for drag is proportional to the square of the angularveloity �0. This is the so-alled inertial resistane. Generally, sine I �00 = T , the movement of anunderwater simple pendulum is desribed by the equation�00 +  �0 j�0j+ !2sin � = 0;where  and ! are positive numbers. These numbers are often alled the damping (or drag) oeÆientand the restoring oeÆient per unit of the moment of inertia, respetively. As to spei� models ofthe pendulum, see [5, 10℄ for example.The above-mentioned equation is well approximated as follows:�00 +  �0 j�0j+ !2� = 0:



2 Jitsuro SugieSuh equations appear frequently in many phenomena, for instane, free rolling motion of a small�shing vessel and damping osillation by the air resistane. A pendulum and an osillator with qua-drati damping have been researhed from various angles in a wide range of �elds and there is a lotof literature about them (for example, see [1, 3, 6, 8, 9, 17, 18, 21, 22, 23, 26, 34, 35℄).In applied siene and tehnology, the damping oeÆient  is presumed from experimental databy using the least squares method. For this reason, the damping oeÆient must be always dealt withas a �xed positive number. Here, a simple doubt is aused. May we really assume that the dampingoeÆient is a onstant? It is a well-known fat that the inertial resistane hanges depending on thedensity of uid and the form of the objet. The density of uid is inuened by temperature andpressure. From this point of view, it would be reasonable to onsider that the damping oeÆienthanges with time.We onsider the damped pendulum equationx00 + h(t)x0 jx0j+ !2sinx = 0; (P )where the damping oeÆient h(t) is ontinuous and nonnegative for t � 0. The origin (x; x0) = (0; 0)is an equilibrium of (P ).Let x(t) = (x(t); x0(t)) and x0 2 R2 , and let k � k be any suitable norm. We denote the solutionof (P ) through (t0;x0) by x(t; t0;x0). The global existene and uniqueness of solutions of (P ) isguaranteed for the initial value problem.The origin is said to be stable if, for any " > 0 and any t0 � 0, there exists a Æ("; t0) > 0 suhthat kx0k < Æ implies kx(t; t0;x0)k < " for all t � t0. The origin is said to be attrative if, for anyt0 � 0, there exists a Æ0(t0) > 0 suh that kx0k < Æ0 implies kx(t; t0;x0)k ! 0 as t!1. The origin isasymptotially stable if it is stable and attrative. With respet to the various de�nitions of stability,the reader may refer to the books [2, 11, 12, 19, 24, 36℄ for example.The purpose of this paper is to establish a riterion for judging whether the origin of (P ) isasymptotially stable or not. Reently, the present author [29℄ has reported the following neessaryand suÆient ondition for the origin of the damped pendulumx00 + h(t)x0 + !2sinx = 0; (1.1)to be asymptotially stable.Theorem A. Suppose that there exists a 0 with 0 < 0 < �=! suh thatlim inft!1 Z t+0t h(s)ds > 0: (1.2)Then the origin of (1.1) is asymptotially stable if and only ifZ 10 R t0 eH(s)dseH(t) dt =1; (1.3)where H(t) =Z t0 h(s)ds:The damping fore is proportional to the veloity in equation (1.1). This is a big di�erene pointwith equation (P ). Equation (1.1) is a model on whih not the inertial resistane but the visousresistane ats predominantly.Smith [27℄ gave ondition (1.3) for the �rst time as a riterion whih judges whether the originof the linear osillator x00 + h(t)x0 + !2x = 0is asymptotially stable under the assumption that there exists an h > 0 suh that h(t) � h for t � 0.Afterwards, Smith's assumption was weakened to assumption (1.2) by Hatvani and Totik [16℄. Even ifintervals where h(t) beomes zero are in�nitely many, assumption (1.2) may be satis�ed if the lengthsof intervals are less than �. This is a good point of assumption (1.2).It is known that



A pendulum with quadrati damping 3(i) if h(t) is bounded for t � 0 or h(t) = t, then ondition (1.3) is satis�ed;(ii) if h(t) = t2, then ondition (1.3) is not satis�ed.(for details, see [15℄). However, generally it is not so easy to hek ondition (1.3). In most ases,it is impossible to on�rm whether ondition (1.3) is satis�ed, by using human's hand alulation.It is hard to verify ondition (1.3) even if we perform numerial analysis arried out by a personalomputer. We need muh patiene and time even if possible.Let u(t) = � R t0 eH(s)dseH(t) :Then, the funtion u(t) satis�es the salar di�erential equationu0 + h(t)u+ 1 = 0 (1.4)with u(0) = 0. From this relation and Theorem A, in order to determine whether the origin of (1.1)is asymptotially stable or not, we have only to examine whether the integral from 0 to 1 of thesolution u(t) of (1.4) satisfying the initial ondition u(0) = 0 diverges or not. Based on this fat, weall equation (1.4) a harateristi equation for the pendulum (1.1). Turning attention to the partiularsolution of the harateristi equation (1.4), we an easily obtain its integration value by numerialanalysis. This is an advantage in onsideration of the harateristi equation.The �rst main theorem is as follows:Theorem 1.1. Under the assumption (1.2), the origin of (P ) is asymptotially stable if and only ifZ 10 u(t)dt = �1; (1.5)where u(t) is the solution of u0 + h(t)ujuj+ 1 = 0 (1.6)satisfying u(0) = 0:As already mentioned, assumption (1.2) is a generalization of Smith's assumption that h(t) �h > 0 for t � 0. However, assumption (1.2) is not satis�ed iflimt!1h(t) = 0:For example, Theorem 1.1 is inappliable ifh(t) = 1=(1 + t) or h(t) = 1=((2 + t) log(2 + t)):To apply even to these ases, we replae the major premise, namely, assumption (1.2).As preparations to state the seond main theorem, we de�ne a family of funtions. We say thata nonnegative funtion  (t) is said to be weakly integrally positive if1Xn=1Z �n�n  (t)dt =1for every pairs of sequenes f�ng and f�ng satisfying �n + � < �n � �n+1 � �n + � for some � > 0and � > 0. The typial example of the weakly integrally positive funtion is 1=(1+ t) or sin2t=(1+ t)(for example, see [13, 14, 28, 30, 31℄).Theorem 1.2. Suppose that h(t) is uniformly ontinuous for t � 0 and weakly integrally positive. Letu(t) is the solution of (1.6) satisfying u(0) = 0: Then the origin of (P ) is asymptotially stable if andonly if ondition (1.5) holds .Even if h(t) has in�nitely many isolated zeros, it may be weakly integrally positive. However,h(t) is not weakly integrally positive any longer if intervals where h(t) beomes zero appear regularlyand frequently. For example, if h(t) = j sin 2tj+sin2t, then it is not weakly integrally positive. On theother hand, assumption (1.2) is satis�ed in this example. Therefore, Theorems 1.1 and 1.2 supplementeah other to expand the adaptation range.



4 Jitsuro SugieIn Theorems 1.1 and 1.2, assumption (1.2) and the weak integral positivity prohibit too fastdeline of the damping oeÆient h(t), respetively. Conversely, ondition (1.5) prohibits too fastgrowth of the damping oeÆient h(t).2. Preliminary arrangementsIn this setion, we prepare several lemmas and one proposition, in order to prove our main theorems.To begin with, we onsider the salar di�erential equationu0 = f(t; u); (2.1)where f(t; u) is ontinuous on [0;1)�R and satis�es loally a Lipshitz ondition with respet to u.As is well known, the following omparison results hold (for example, see [36, p. 5℄).Lemma 2.1. Let u(t) be a solution of (2.1) on an interval [a; b℄: Suppose that �(t) is ontinuous on[a; b℄ and satis�es the inequality �0(t) � f(t; �(t)) for a < t < b:If �(a) � u(a); then �(t) � u(t) for a � t � b:Lemma 2.2. Let u(t) be a solution of (2.1) on an interval [a; b℄: Suppose that �(t) is ontinuous on[a; b℄ and satis�es the inequality �0(t) � f(t; �(t)) for a < t < b:If �(a) � u(a); then �(t) � u(t) for a � t � b:As a speial ase of equation (2.1), we onsider the harateristi equation (1.6). Let T be anonnegative number. We denote the solution u(t) of (1.6) satisfying u(T ) = 0 by u(t;T ). Then, usingLemma 2.1, we obtain the following equivalene relation between u(t;T ) and u(t; 0). We omit thedetails (for the proof, see Lemma 2.1 in [32℄).Lemma 2.3. For any T � 0; Z 1T u(t;T )dt = �1if and only if Z 10 u(t; 0)dt = �1:Equation (P ) is equivalent to the planar systemx0 = !y;y0 = �! sinx� !h(t)y jyj: (2.2)The origin of (P ) orresponds to the zero solution of (2.2), namely, (x(t); y(t)) � (0; 0). Aording toustom, we divide R2 nf(0; 0)g into four quadrants:Q1 = �(x; y) : x � 0 and y > 0	; Q2 = �(x; y) : x < 0 and y � 0	;Q3 = �(x; y) : x � 0 and y < 0	; Q4 = �(x; y) : x > 0 and y � 0	:Consider the solution x(t; t0;x0) of (P ). The set�+(2.2)(t0;x0) def= [t�t0 x(t; t0;x0)is alled the positive orbit of (2.2) starting from a point x0 = (x0; y0) 2 R2 at a time t0 � 0. Sinesystem (2.2) is nonautonomous, even if �+(2.2)(t0;x0) starts from the same point x0, the shape isdi�erent aording to the initial time t0. We all the position of x(t; t0;x0) on the (x; y)-plane a phasepoint for eah time t � 0. Needless to say, the phase point moves along the positive orbit �+(2.2)(t0;x0).



A pendulum with quadrati damping 5It is natural to hoose the total energyV (x; y) = 1� osx+ 12 y2as a suitable Lyapunov funtion for system (2.2). As a matter of fat, we obtain_V(2.2)(t; x; y) = (sinx)x0 + y y0 = �!h(t)y2jyj � 0on [0;1)� R2 , by di�erentiating V (x; y) along any solution of (2.2). LetD = �(x; y) 2 R2 : jxj < �=2 and V (x; y) < 1	:Then, it turns out that D is a domain ontaining the origin and it is a positive invariant set of (2.2),namely, for any t0 � 0 and x0 2 D, the positive orbit �+(2.2)(t0;x0) is inluded in D. Sine V (x; y)is positive de�nite and _V(2.2)(t; x; y) is nonpositive, it follows from a basi Lyapunov's diret methodthat the zero solution of (2.2) is stable. Hene, we obtain the following result.Proposition 2.4. The origin of (P ) is stable.Proposition 2.4 an be led only under the assumption that h(t) is nonnegative for t � 0. Unfortu-nately, the derivative _V(2.2)(t; x; y) is not negative de�nite, and hene it is not so easy to demonstratethe global attrativity of the origin of (P ). We have to examine the harateristis of positive orbitsof (2.2) in detail. For this purpose, we transform system (2.2) into polar oordinates byx = r os � and y = r sin �:Then, we have r0 = ! r sin � os � � ! sin � sin(r os �)� ! h(t) r2sin2� j sin �j;�0 = � !r sin(r os �) os � � ! sin2� � ! h(t) r sin � j sin �jos �: (2.3)Sine r2�0 = �! x sinx� y2 � !h(t)xy jyj < 0if (x; y) 2 (Q1 [ Q3) \D, the phase point on �+(2.2)(t0;x0) turns lokwise around the origin as longas it moves through Q1 \ D or Q3 \ D. Afterwards, how does the phase point move? The followingresult answers this question.Lemma 2.5. There is no positive orbit of (2.2) whih is inluded in (Q1 [Q3) \D ultimately .Proof. Let t0 � 0 and x0 2 Q1 \ D (resp., Q3 \ D). Suppose that �+(2.2)(t0;x0) is ontained inQ1 \D (resp., Q3 \D). Let (r(t); �(t)) be the solution of (2.3) orresponding to �+(2.2)(t0;x0). Then,0 < r2(t) < �2=4 + 2 for t � t0. It follows from the assumptions that h(t) � 0 for t � 0 andsin �(t) os �(t) � 0 for t � t0 thatr2(t) �0(t) = �! r(t) os �(t) sin(r(t) os �(t))� r2(t) sin2�(t)� ! h(t) r3(t) os �(t) sin �(t)j sin �(t)j� �! r(t) os �(t) sin(r(t) os �(t))for t � t0. Sine x sinx is dereasing for ��=2 � x � 0 and inreasing for 0 � x � �=2, we see that�0(t) � � ! r(t0) os �(t0) sin(r(t0) os �(t0))r2(t)� � ! r(t0) os �(t0) sin(r(t0) os �(t0))�2=4 + 2for t � t0. Integrating this inequality from t0 to t, we obtain�(t) < �(t0)�M(t� t0)! �1 as t!1;where M = ! r(t0) os �(t0) sin(r(t0) os �(t0))=(�2=4 + 2) > 0. This is a ontradition. Thus, suh apositive orbit does not exist. �



6 Jitsuro SugieFrom Lemma 2.5, we onlude that system (2.2) has three types of positive orbits: (i) a positiveorbit oils itself around the origin; (ii) a positive orbit is ontained in Q4 (resp., Q2) ultimately andthe phase point that runs on the positive orbit approahes the origin through Q4 (resp., Q2); (iii) apositive orbit is inludes in Q4 (resp., Q2) ultimately and the phase point that runs on the positiveorbit approahes an interior point in Q4 (resp., Q2). From the vetor �eld of (2.2), we see that anyphase point moves to the left in Q4, and moves to the right in Q2. However, it does not always rotatearound the origin (0; 0), and may go up and down in Q4 and Q2.3. Proof of Theorem 1.1We are now ready to prove Theorem 1.1. By virtue of Proposition 2.4, we have only to disuss theattrativity of the origin of (P ).3.1. NeessityWe will prove that if ondition (1.5) does not hold, then the origin of (P ) is not attrative. Let " bean arbitrary positive number and let L = maxf1; !2g. Then, there exists a T > 0 suh thatZ 1T u(t)dt > � "2L :Reall that u(t;T ) is the solution of (1.6) satisfying u(T ;T ) = 0. From the uniqueness of solutions of(1.6) for the initial value problem, we see thatu(t) = u(t; 0) � u(t;T ) < 0 for t > T:Hene, we have Z 1T u(t;T )dt > � "2L : (3.1)Consider the positive orbit �+(2.2)(t0;x0), where t0 = T and x0 = ("; 0). Taking the vetor �eldof (2.2) into aount, we see that the phase point on �+(2.2)(t0;x0) goes into Q4 afterwards and it doesnot enter Q1 passing through the positive x-axis. Let (x(t); y(t)) be the solution of (2.2) satisfyingx(T ) = " and y(T ) = 0. If x(t) > "2 for t � T; (3.2)then naturally the origin of (P ) is not attrative. This ompletes the proof of `only if'-part.By way of ontradition, suppose that (3.2) is not true. Then, we an �nd a T1 > T suh thatx(T1) = "=2 and "=2 < x(t) � " for T � t < T1. Sine �+(2.2)(t0;x0) does not interset the positivex-axis, we see that y(t) < 0 for T < t � T1:Let �(t) = !y(t)=L. Then, from the seond equation of (2.2) it follows that�0(t) = � !2L sinx(t)� !2L h(t)y(t)jy(t)j� � 1� Lh(t)�(t)j�(t)j � � 1� h(t)�(t)j�(t)jfor T � t � T1. Let f(t; u) = � 1� h(t)ujuj. Then, we have�0(t) � f(t; �(t)) for T � t � T1:We ompare �(t) with u(t;T ). Sine u0(t;T ) = f(t; u(t;T )) for t � T and �(T ) = !y(T )=L = 0, itfollows from Lemma 2.1 that x0(t) = !y(t) = L�(t) � Lu(t;T )for T � t � T1. Hene, using (3.1), we obtainx(T1) � x(T ) + LZ T1T u(t;T )dt > "+ LZ 1T u(t;T )dt > "2 = x(T1):



A pendulum with quadrati damping 7This is a ontradition.3.2. SuÆienyLet x(t) be any solution of (P ) with the initial time t0 � 0 and let y(t) = x0(t) for t � t0. Then,(x(t); y(t)) is a solution of (2.2), whih orresponds to x(t). Let �+(2.2)(t0;x0) be the positive orbit of(2.2) orresponding to the solution (x(t); y(t)). To prove `if'-part of the theorem, we have only to showthat if x0 = (x(t0); y(t0)) 2 D, then (x(t); y(t)) tends to (0; 0) as t!1.De�ne v(t) = V (x(t); y(t))for t � t0. Then, v0(t) = �!h(t)y2(t)jy(t)j � 0 for t � t0. Hene, v(t) is dereasing and has thelimiting value v0 � 0. If v0 is zero, then the proof of `if'-part is omplete. We will show that the aseof v0 > 0 does not our provided assumptions (1.2) and (1.5) hold.Suppose that v0 is positive. Then, �+(2.2)(t0;x0) is ontained in the annulusA = �(x; y) 2 R2 : jxj < �=2 and v0 < V (x; y) < 1	 � Dfor all future time. Consider the losed urve given by V (x; y) = v0 > 0. It is lear that this urveis a symmetri oval. Hene, it intersets with the x-axis only at two points (�; 0) and (��; 0), where0 < � = aros(1� v0) < �=2.As already mentioned, it turns out from Lemma 2.5 that �+(2.2)(t0;x0) must belong to either ofthree types. However, �+(2.2)(t0;x0) does not belong to the seond type, namely, it is ontained in Q4(resp., Q2) and the phase point that runs on �+(2.2)(t0;x0) approahes the origin through Q4 (resp.,Q2), beause it stays in the annulus A that does not ontain the origin. Under the assumptions (1.2)and (1.5), �+(2.2)(t0;x0) does not belong to either of the �rst type and the third type. Hereafter, wewill on�rm this fat by dividing into two steps.Step (i). Suppose that �+(2.2)(t0;x0) belongs to the �rst type, namely, it oils itself around the originwhile remaining in the annulus A. Let (r(t); �(t)) be the solution of (2.3) orresponding to �+(2.2)(t0;x0).Then, there exist divergent sequenes f�ng and f�ng with t0 � �n < �n suh that �(�n) = 3�=2 and�(�n) = �=2 (mod 2�). In other words, �+(2.2)(t0;x0) intersets the negative y-axis at t = �n, and itintersets the positive y-axis at t = �n for n 2 N. Let " be so small that0 < " < � � !02 ; (3.3)where 0 is the number given in assumption (1.2). Then, �+(2.2)(t0;x0) rosses the straight lines y =(tan ")x and y = (tan(� � "))x in�nitely many times. Reall that the phase point on �+(2.2)(t0;x0)moves lokwise in (Q1 [Q3)\A. However, in (Q2 [Q4)\A, it does not always rotate lokwise andmay go up and down. The shape of �+(2.2)(t0;x0) may be so simple in (Q2[Q4)\A. For this reason, thepoint in the set ft 2 (�n; �n+1) : �(t) = "g is unique, but the point in the set ft 2 (�n; �n) : �(t) = ��"gmight not be only one. For n 2 N, let sn be the unique point satisfying �n < sn < �n+1 and �(sn) = ",and let tn be the supremum of all t 2 (�n; �n) for whih �(t) � � � ". Then, t0 � �n < tn < �n < sn,�(tn) = � � ", �(sn) = " and " < �(t) < � � " for tn < t < sn:Sine the urve V (x; y) = v0 is an oval, it intersets the straight line y = (tan ")x at only one pointin Q1. Let Æ(") be the y-omponent of the intersetions. Sine �+(2.2)(t0;x0) does not enter the region�(x; y) 2 R2 : V (x; y) � v0	, it follows that y(t) > Æ for tn � t � sn. Hene,v0(t) = �!h(t)y2(t)jy(t)j � �!h(t)Æ3 (3.4)for tn � t � sn.



8 Jitsuro SugieSuppose that there exists an N 2 N suh that sn � tn � 0 for n � N . Then, it turns out from(3.4) that v(sn)� v(tn) � �!Æ3Z sntn h(t)dt � �!Æ3Z tn+0tn h(t)dtfor n � N . Sine v0(t) = �!h(t)y2(t)jy(t)j � 0, it is lear thatv(tn+1)� v(sn) � 0 for n 2 N:Hene, we obtain v(tn+1)� v(tn) � �!Æ3Z tn+0tn h(t)dt for n � N;and therefore, v0 � v(tN ) � v(tn+1)� v(tN ) � �!Æ3 nXi=N Z ti+0ti h(t)dt: (3.5)From assumption (1.2), we see that 1Xi=N Z ti+0ti h(t)dt =1;whih ontradits (3.5). Thus, there exists a sequene fnkg with nk 2 N and nk !1 as k !1 suhthat snk � tnk < 0: (3.6)The annulus A is inluded in a irle. Let r be the radius of the irle. Sine �+(2.2)(t0;x0) isontained in A, we see that r(t) � r for t � t0. Hene, we an estimate that�0(t) � � !r(t) j sin(r(t) os �(t))jj os �(t)j � ! sin2�(t)� !h(t)r(t) sin2�(t)j os �(t)j� �! os2�(t)� ! sin2�(t)� h(t)r(t) � �! � h(t)rfor t � t0. It turns out from (3.6) that"� (� � ") = �(snk)� �(tnk )� �!(snk � tnk)� rZ snktnk h(t)dt > �!0 � rZ snktnk h(t)dtfor eah k 2 N, namely, rZ snktnk h(t)dt > � � !0 � 2" for k 2 N:Using this inequality and (3.4), we obtainv(snk )� v(tnk ) � �!Æ3Z snktnk h(t)dt < � !Æ3r (� � !0 � 2")for k 2 N. Sine v(tnk+1)� v(snk ) � 0 for k 2 N, we see thatv(tnk+1)� v(tnk ) < � !Æ3r (� � !0 � 2") for k 2 N:From (3.3), we an onlude thatv0 � v(t0) � 1Xk=1 �v(tnk+1)� v(tnk )� = �1;whih is a ontradition. Thus, �+(2.2)(t0;x0) does not belong to the �rst type.



A pendulum with quadrati damping 9Step (ii). Suppose that �+(t0;x0) belongs to the third type, namely, it is inluded in Q4 \ A (resp.,Q2\A) ultimately and the phase point on �+(t0;x0) approahes to an interior point in Q4\A (resp.,Q2 \ A). Then, there exist a point x1 2 Q4 \ A (resp., Q2 \ A) and a time T � t0 suh that x1 isthe phase point on �+(2.2)(t0;x0) for t = T and �+(2.2)(t0;x0) is ontained in Q4 \ A (resp., Q2 \ A)afterwards. From the uniqueness of solutions of (P ) to initial value problems, we see that �+(2.2)(T;x1)is a part of �+(2.2)(t0;x0). There are two ases that we should onsider: (a) �+(2.2)(T;x1) is inluded inQ4 \ A for all the future; (b) �+(2.2)(T;x1) is inluded in Q2 \ A for all the future. We onsider onlythe former, beause the latter is arried out in the same way.Sine (x(t); y(t)) 2 Q4 for t � T , we see that x0(t) = y(t) � 0 for t � T . Hene, there exists anumber  2 R with 0 �  < �=2 suh that x(t)&  as t!1. Reall that v(t) = 1�osx(t)+y2(t)=2&v0 as t!1. Hene, it turns out that 12 y2(t)! � as t!1;where � = v0 � 1 + os . Naturally, � � 0. If � > 0, then we an hoose a T1 � T so large thaty2(t) > � for t � T1:Hene, we have v0(t) = �!h(t)y2(t)jy(t)j � �!�p� h(t)for t � T1. Integrate this inequality to obtain�1 < v0 � v(T1) < v(t)� v(T1) � �!�p�Z tT1h(s)ds:This is a ontradition, beause it follows from assumption (1.2) thatZ 1T1 h(t)dt =1:Thus, it turns out that � = 0, namely,  = aros(1� v0) = �. We therefore onlude that the phasepoint on �+(2.2)(T;x1) approahes an interior point (�; 0) 2 Q4\A, whih is a intersetion of the losedurve V (x; y) = v0 and the x-axis.From the above-mentioned argument, we see that0 < � < x(t) � x(T ) < �2 and y(t) < 0for t � T . Note that sinx(t) > sin� > 0 for t � T . Let "0 = minf1; !2sin�g. Then, we an estimatethat �!y(t)"0 �0 = � !2"0 sinx(t)� !2h(t)"0 y(t)jy(t)j� � 1� h(t) !y(t)"0 ���� !y(t)"0 ����for t � T . Let �(t) = !y(t)="0 for t � t0 and let f(t; u) = � 1 � h(t)ujuj. Then, �0(t) � f(t; �(t))for t � T . We ompare �(t) with the solution u(t;T ) of (1.6) satisfying u(T ;T ) = 0. Sine �(T ) =!y(T )="0 < 0, it follows from Lemma 2.2 that!y(t)"0 = �(t) � u(t;T ) � 0for t � T . Hene, we have x0(t) = !y(t) � "0u(t;T ) for t � T:Integrating both sides of this inequality from T to t, we obtain� �2 < �� x(T ) < x(t) � x(T ) � "0Z tT u(s;T )ds:



10 Jitsuro SugieHowever, by means of Lemma 2.3 and ondition (1.5), we onlude thatZ tT u(s;T )ds! �1 as t!1:This is a ontradition. Thus, �+(t0;x0) does not belong to the third type.The proof of Theorem 1.1 is thus omplete. �4. Proof of Theorem 1.2Reall that the damped pendulum equation (P ) is equivalent to the planar system (2.2). Let (x(t); y(t))be any solution of (2.2) with the initial time t0 � 0, and let �+(2.2)(t0;x0) be the positive orbit of (2.2)orresponding to the solution (x(t); y(t)), where x0 = (x(t0); y(t0)) 2 D. The proof of Theorem 1.1was omposed of `only if'-part and `if'-part, and the proof of `if'-part was divided into two steps:(i) �+(2.2)(t0;x0) oils itself around the origin while remaining in the annulus A;(ii) �+(2.2)(t0;x0) is ontained in Q4\A (resp., Q2\A) ultimately and the phase point on �+(2.2)(T;x0)approahes an interior point in Q4 \ A (resp., Q2 \ A).Assumption (1.2) was not used in the proof of `only if'-part, and the proof of the seond step of`if'-part. In the seond step, the damping oeÆient h(t) had only to satisfyZ 10 h(t)dt =1:Therefore, we need to prove only the �rst step of `if'-part, when hanging assumption (1.2) to theassumption that h(t) is uniformly ontinuous for t � 0 and weakly integrally positive.Suppose that �+(2.2)(t0;x0) oils itself around the origin while remaining in the annulus A. Then,we onlude that lim inft!1 jy(t)j = 0 < p2v0 = lim supt!1 jy(t)j: (4.1)Sine h(t) is uniformly ontinuous for t � 0, we an �nd numbers T > 0 and � > 0 so thatjh(�)� h(�)j < 1 (4.2)whenever � � T and � � T with j�� �j < �. Note that � is independent of t. Let � be so small that2p2� � �(!2� 7�)pv0: (4.3)Needless to say, it is possible to �nd suh a positive number �, whih is less than !2=7. By (4.1), wean hoose three divergent sequenes f�ng, ftng and f�ng with T < �n < tn < �n � �n+1 suh thatjy(�n)j = jy(�n)j = p�v0=!, jy(tn)j = p2�v0=!,jy(t)j > p�v0=! for �n < t < �n; (4.4)p�v0=! < jy(t)j < p2�v0=! for �n < t < tn; (4.5)and jy(t)j � p2�v0=! for �n � t � �n+1: (4.6)In fat, it turns out from (4.1) that jy(t�)j � p�v0 for some t� > T . Lett1 = min�t > t� : jy(t)j = p2�v0=!	;�1 = max�t < t1 : jy(t)j = p�v0=!	;and �1 = min�t > t1 : jy(t)j = p�v0=!	:Suh numbers always exist beause of (4.1) and the ontinuity of jy(t)j. Using �1 instead of t�, wede�ne t2, �2 and �2 similarly to t1, �1 and �1, and so on. Then, t0 < �n < tn < �n � �n+1 and �n !1as n ! 1. Also, (4.4){(4.6) are satis�ed. To be preise, if y(�n)y(�n+1) > 0, then jy(t)j � p�v0=!for �n � t � �n+1; if y(�n)y(�n+1) < 0, then jy(t)j � p2�v0=! for �n � t � �n+1.



A pendulum with quadrati damping 11Let us estimate the distane between �n and �n for eah n 2 N. Sine jy(�n)j = p�v0=! andjy(tn)j = p2�v0=!, we see that�v0 = y2(tn)� y2(�n) = Z tn�n �y2(t)�0dt = 2Z tn�n y0(t)y(t)dt= 2Z tn�n (�! sinx(t)� !h(t)y(t)jy(t)j)y(t)dt � 2!Z tn�n jy(t)jdt:It follows from (4.5) that � def= p�v02p2!2 < tn � �n < �n � �n (4.7)for eah n 2 N.Let us pay attention to the value of h(t) at t = �n for eah n 2 N. De�neS = fn 2 N : h(�n) � 2g:Suppose that the number of elements in S is in�nite. Let d = minf�; �g. Then, it follows from (4.2)that n 2 S implies that h(t) > 1 for �n � d < t < �n:Also, it turns out from (4.4) and (4.7) thatjy(t)j > p�v0=! for �n � d < t < �n:Hene, we obtainlimt!1 v(t) � v(t0) = Z 1t0 v0(t)dt = �Z 1t0 !h(t)y2(t)jy(t)jdt� �Xn2S Z �n�n�d!h(t)y2(t)jy(t)jdt < �Xn2S(�v0) 32 d=!2 = �1:This ontradits the fat that v(t) > v0 > 0 for t � t0. Thus, the number of elements in the set S is�nite, and therefore, there exists an N 2 N suh thath(�n) < 2 for n � N: (4.8)By (4.6), we have 1� osx(t) = v(t)� 12 y2(t) > (1� �=!2)v0for �n � t � �n+1. Taking into aount that (1� �=!2)v0 < 1, we obtainjx(t)j > os�1�1� �1� �!2�v0� for �n � t � �n+1: (4.9)Sine the domain D is a positive invariant set of (2.2), we see thatjx(t)j < �2 for t � t0: (4.10)Let us estimate the distane between �n and �n+1 for eah n 2 N. Suppose that there exists ann0 � N suh that �n0+1 � �n0 > �. Then, from (4.2) and (4.8) it follows thath(t) < 1 + h(�n0 ) < 3 for �n0 � t � �n0+ �:Hene, using (4.3), (4.6), (4.9), (4.10) and the seond equation of (2.2), we getjy0(t)j � ! j sinx(t)j � !h(t)y2(t) � 2!� jx(t)j � !h(t)y2(t)> 2!� os�1�1� �1� �!2�v0�� 6�v0!> 2!� �2 �1� �!2�� 6�v0! � 2p2�v0�! > 0



12 Jitsuro Sugiefor �n0 � t � �n0+ � < �n0+1. Integrate this inequality to obtainjy(�n0+ �)j+ jy(�n0)j � �����Z �n0+��n0 y0(t)dt�����= Z �n0+��n0 jy0(t)jdt > 2p2�v0=!:This ontradits (4.6). We therefore onlude that� def= � � �n+1 � �n (4.11)for eah n 2 N.From (4.7) and (4.11), we see that �n + � < �n � �n+1 � �n + � for eah n 2 N. Sine h(t) isweakly integrally positive, we obtain 1Xn=1 Z �n�n h(t)dt =1: (4.12)However, it follows from (4.4) thatv(�n)� v(�1) = Z �n�1 v0(t)dt = �Z �n�1 !h(t)y2(t)jy(t)jdt� � nXi=1Z �i�i h(t)y2(t)jy(t)jdt � � (�v0) 32!2 nXi=1Z �i�i h(t)dt:This ontradits (4.12). We have thus proved Theorem 1.2. �5. The ase of bounded damping oeÆientWe onsider the ase that h(t) is bounded for t � 0, namely, there exists an h > 0 suh that 0 �h(t) � h for t � 0. Then, we have the following lemma.Lemma 5.1. Let u(t) be the solution of (1.6) satisfying u(0) = 0: If h(t) is bounded for t � 0; thenondition (1.5) holds .Proof. Sine u(0) = 0 and u0(0) = �1, we see that u(t) < 0 in a right-hand neighborhood of t = 0.Sine u0(t) = � 1� h(t)u(t)ju(t)j = � 1 + h(t)u2(t) � 0as long as �1=ph � u(t) � 0, there are two possibilities to onsider: (i) u(t) & �� as t ! 1 forsome positive � whih is less than 1=ph; (ii) u(t1) = �1=ph for some t1 > 0. In the former, ondition(1.5) is satis�ed, beause u(t) < ��=2 for t suÆient large. In the latter, if h(t) = h for t � t1, thenu(t) = �1=ph for t � t1. Hene, it is lear that ondition (1.5) is satis�ed. Otherwise, we an �nd at2 > t1 suh that u(t2) < �1=ph. Suppose that u(t3) > �1=ph for some t3 > t2. Lett4 = supnt < t3 : u(t) < �1=pho :Then, we see that u(t4) = �1=ph and u(t) > �1=ph for t4 < t � t3. By the mean value theorem,there exists a t5 with t4 < t5 < t3 suh that u0(t5) > 0. However, sine u(t5) > �1=ph, it follows thatu0(t5) = � 1 + h(t5)u2(t5) < � 1 + h 1h = 0:This is a ontradition. Thus, we onlude that u(t) � �1=ph for t � t2. It turns out from thisinequality that ondition (1.5) holds. �



A pendulum with quadrati damping 13In Theorem 1.2, we assumed that h(t) is uniformly ontinuous for t � 0. Reall that the uniformontinuity of h(t) was used only to obtain estimation (4.8). This estimation is unneessary when h(t)is bounded for t � 0. Hene, by means of this fat and Lemma 5.1, we have the following onsequeneof Theorems 1.1 and 1.2.Theorem 5.2. Suppose that either h(t) satis�es assumption (1.2) or that it is uniformly ontinuousfor t � 0 and weakly integrally positive. If h(t) is bounded for t � 0; then the origin of (P ) isasymptotially stable.6. DisussionAs shown in the preeding setion, ondition (1.5) holds under the assumption that the dampingoeÆient h(t) is bounded. The questions arise: Can ondition (1.5) be satis�ed for unbounded h(t)?Can ondition (1.5) be not satis�ed for unbounded h(t)? Theorems 6.1{ 6.3 below answer this question.The proofs of Theorems 6.1{6.3 are arried out in the same manner as the proofs of Corollaries 4.1,4.2 and 4.4 in [32℄, respetively. To save the spae, we omit details.Theorem 6.1. Suppose that there exist a di�erentiable funtion g(t) and a positive number T suhthat g(t) > 0 and h(t) � g(t)for t � T: If g0(t) � 0 for t � T and Z 1T 1pg(t) dt =1;then ondition (1.5) holds .Theorem 6.2. Suppose that there exist a di�erentiable funtion g(t) and positive numbers g and Tsuh that g(t) > g and h(t) � g(t)for t � T: If limt!1 g0(t)g(t) = 0 and Z 1T 1pg(t) dt =1;then ondition (1.5) holds .Note that both Theorem 6.1 and Theorem 6.2 are generalization of Lemma 5.1.Theorem 6.3. Suppose that there exist a di�erentiable funtion k(t) and positive numbers k and Tsuh that k � k(t) � h(t)for t � T: If limt!1 k0(t)k(t) = 0 and Z 1T 1pk(t) dt <1;then ondition (1.5) fails to hold .From Theorem 6.3, we see that ondition (1.5) does not hold when the damping oeÆient rapidlygrows. Combining Theorems 6.1{6.3, we obtain the following simple neessary and suÆient onditionfor the origin of (P ) to be asymptotially stable.Corollary 6.4. Suppose that there exist positive numbers  and T suh thath(t) = t for t � T:Then the origin of (P ) is asymptotially stable if and only if  � 2:



14 Jitsuro SugieNeedless to say, if the damping oeÆient is a polynomial of power funtions of t, then we merelyhave only to onsider the largest exponent of the polynomial as  in Corollary 6.4.To illustrate our theorems,we give two examples in whih lim inft!1h(t) = 0 and lim supt!1 h(t)=1. In the �rst example, the set ft � 0 : h(t) = 0g is the union of in�nitely many disjoint intervalswhose length are �=2.Example 6.1. Consider equation (P ) withh(t) = t �j sin32tj � sin32t�:Then the origin is asymptotially stable.Let In = [(n� 1)�; (n� 1=2)�℄ and Jn = [(n� 1=2)�; n�℄for eah n 2 N. Then h(t) = ( 0 if t 2 In;� 2 t sin32t if t 2 Jnwith n 2 N. Assumption (1.2) is satis�ed with 0 = 3�=4. In fat, sine h(t) � � 2 sin32t if t 2 Jn foreah n 2 N, we see that lim inft!1 Z t+3�=4t h(s)ds � lim inft!1 Z t+3�=4t eh(s)ds;where eh(t) = ( 0 if t 2 In;� 2 sin32t if t 2 Jn:Note that eh(t) is a periodi funtion with period �. De�ne'(t) = Z t+3�=4t eh(s)ds:Then, by a straightforward alulation, we obtain'(t) = 8>>>>>>>><>>>>>>>>:
sin 2t� (sin32t)=3 + 2=3 for 0 � t < �=4;3=4 for �=4 � t < �=2;� os 2t+ (os32t)=3 + 2=3 for �=2 � t < 3�=4;sin 2t� os 2t� (sin32t)=3 + (os32t)=3 + 4=3 for 3�=4 � t < �:Hene, it turns out that '(t) is inreasing for 0 � t � �=4 and 7�=8 � t � �, and dereasing for�=2 � t � 7�=8. In addition, '(0) = '(3�=4) = '(�) = 2=3 and '(t) = 4=3 for �=4 � t � �=2. Sine'(t) is also a periodi funtion with period �, we see thatlim inft!1 Z t+3�=4t h(s)ds � lim inft!1 '(t) � '(7�=8) = � 56 p2 + 43 > 0:Let g(t) = 2t and T = 1. Then, it is lear thatg(t) � 2; h(t) � g(t) and g0(t) = 2 > 0for t � T , and Z 1T 1pg(t) dt = Z 11 1p2t dt =1:Thus, from Theorem 6.1 it turns out that ondition (1.5) holds. Hene, by means of Theorem 1.1, weonlude that the origin is asymptotially stable (see Figure 1).



A pendulum with quadrati damping 15From Theorems 1.1 and 6.2, we an also on�rm the asymptoti stability of the origin, beauselimt!1 g0(t)g(t) = limt!1 1t = 0:We will show that the major premises of Theorem 1.2 are not satis�ed. The length of In is �=2for eah n 2 N. Hene, h(t) is not weakly integrally positive. Sineh0(t) = ( 0 if t 2 In� 2 sin32t� 12 t sin22t os 2t if t 2 Jnwith n 2 N, it is ontinuous for t � 0. However, h0(t) is not bounded. Hene, h(t) is not uniformlyontinuous. Thus, Theorem 1.2 annot be applied to Example 6.1.
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16 Jitsuro Sugiewith n 2 N. Sine jh0(t)j � ���� sinptpt ���� ���sin2pt���+ 3 ���sin2pt��� ���ospt���+ j sin 2tj1 + t + sin2t(1 + t)2� 6for t � �2, we see that h(t) is uniformly ontinuous for t � 0. As mentioned in Setion 1, the funtionsin2t=(1 + t) is weakly integrally positive (for the proof, see [31℄). Taking the inequalityh(t) � sin2t1 + t for t � 0;we see that h(t) is also a weakly integrally positive funtion. Thus, the major premises of Theorem1.2 are satis�ed. Let g(t) = 3pt and T = 1. Then, it is lear that g(t) � 3, g0(t) = 3=(2pt) > 0 andh(t) � 2pt+ 11 + t � g(t)for t � T . It is also leat that Z 1T 1pg(t) dt = Z 11 1p3 4pt dt =1:Thus, from Theorem 6.1 it turns out that ondition (1.5) holds. Hene, by means of Theorem 1.2, weonlude that the origin is asymptotially stable (see Figure 2).
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