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Abstract This paper deals with the damped superlinear oscillator

x′′+a(t)φp(x
′)+b(t)φq(x

′)+ω2x= 0,

wherea(t) andb(t) are continuous and nonnegative fort ≥ 0; p andq are real numbers
greater than or equal to 2;φr(x′) = |x′|r−2x′. This equation is a generalization of nonlinear
ship rolling motion with Froude’s expression, which is very familiar in marine engineering,
ocean engineering and so on. Our concern is to establish a necessary and sufficient condition
for the equilibrium to be globally asymptotically stable. In particular, the effect of the damp-
ing coefficientsa(t), b(t) and the nonlinear functionsφp(x′), φq(x′) on the global asymptotic
stability is discussed. The obtained criterion is judged by whether the integral of a particular
solution of the first-order nonlinear differential equation

u′+ω p−2a(t)φp(u)+ωq−2b(t)φq(u)+1= 0

is divergent or convergent. In addition, explicit sufficient conditions and explicit necessary
conditions are given for the equilibrium of the damped superlinear oscillator to be globally
attractive. Moreover, some examples are included to illustrate our results. Finally, our results
are extended to be applied to a more complicated model.
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1 Introduction

It is well-known that the resistance of free rolling motion of a small fishing vessel is mainly
classified into three types. The first is frictional resistance produced when the surrounding
water of a ship rubs the surface of a hull. The second is eddy-making resistance produced
by vortices formed when the flow of water exfoliates from a hull. This is also called vis-
cous pressure resistance. The third is wave-making resistance caused when a bow or a stern
generates the propagating waves. In the latter half of the 19th century, William Froude who
was an English engineer thought that frictional resistance and eddy-making resistance are
proportional to the square of the angular velocityθ ′(t), whereθ(t) is the roll angle att ≥ 0
and the prime denotesd/dt, and that wave-making resistance is proportional to the angular
velocity θ ′(t). To verify his assertion, he repeated many experiments. Afterwards, by ex-
periments, a lot of engineers examined causes that influence the extinction of free rolling
motion (for example, see [4, 5, 9, 14, 18, 25, 31, 42]).

Let the initial timet0 be zero and let us assume the inclination of a hull at the initial time
to beθ0; that is,θ(0) = θ0 andθ ′(0) = 0. Denote byθn the absolute value of roll angleθ(t)
at the time of then-th extreme value. The valueθn can be measured in an experiment of free
rolling motion of a ship. Let∆θ andθ n be the difference and the average ofθn−1 andθn,
respectively; namely,

∆θ = θn−1−θn and θ n =
1
2
(θn−1+θn)

with n∈ N. As a relation between∆θ andθ n, Froude proposed

∆θ = aθ n+bθ 2
n,

wherea andb are real positive numbers. This is Froude’s expression which is famous in
marine engineering. The numbersa andb are called extinction coefficients. The extinction
coefficientsa andb are presumed from experimental data by using the least squares method.
Hence, we have to suppose the extinction coefficients to be positive fixed numbers.

According to the above-mentioned idea of Froude, the equation of rolling motion of a
vessel on still water can be written as:

θ ′′+αθ ′+β |θ ′|θ ′+ω2θ = 0

with the initial condition(θ(0),θ ′(0)) = (θ0,0), whereα andβ are the damping coeffi-
cients per unit of the virtual moment of inertia, andω is the restoring coefficient per unit of
the virtual moment of inertia. The relation between the damping coefficientsα, β and the
extinction coefficientsa, b can be derived as follows: Lettn be the time of then-th extreme
value of roll angleθ(t). The time lag oftn−1 andtn is called the natural period of roll by a
technical term. Researchers of ocean engineering assume that{tn} is an arithmetic sequence
with common difference 2π/ω; namely,tn+1− tn−1 = 2π/ω for arbitraryn ∈ N. Such an
approximation has validity when the damping coefficientsα andβ are relatively smaller
thanω. Multiplying θ ′(t) in the both sides of the above equation of motion and integrating
from 0 toπ/ω, we obtain∫ π/ω

0
θ ′′(t)θ ′(t)dt+α

∫ π/ω

0
(θ ′(t))2 dt+β

∫ π/ω

0
|θ ′(t)|(θ ′(t))2 dt+ω2

∫ π/ω

0
θ(t)θ ′(t)dt= 0.

The first term of this integral equation means the kinetic energy of a hull. Sinceθ ′(0) = 0
andθ ′(π/ω) = θ ′(t1) = 0, we see that the kinetic energy is zero. The total of the second
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and third terms means an energy dissipated by the damping force. Using the approximation
formulaθ(t)≃ θ n cosωt, we get

∫ π/ω

0
(θ ′(t))2 dt ≃ π

2
ωθ 2

n and
∫ π/ω

0
|θ ′(t)|(θ ′(t))2 dt ≃ 4

3
ω2θ 3

n.

The last term means the potential energy of a hull. We can estimate that

∫ π/ω

0
θ(t)θ ′(t)dt =

∫ θn

θn−1

θ dθ =
1
2

(
θ 2

n −θ 2
n−1

)
=−θ n∆θ .

Arranging these evaluations, we obtain

∆θ =
π

2ω
αθ n+

4
3

βθ 2
n.

Hence, the damping coefficientsα andβ are given from the extinction coefficientsa andb
by a simple expression of relations

α =
2ω
π

a and β =
3
4

b.

We can refer to Himeno [25] for the details of how to derive the damping coefficientsα
andβ . In this paper, however, we are not concerned with finding the relationship between
the damping coefficients and the extinction coefficients. From a mathematical viewpoint, we
intend to consider merely Froude-type equations with damping coefficients.

Clearly, the above-mentioned equation proposed by Froude is a second-order nonlinear
differential equation with two constants coefficients. Here, some simple doubts arise: Will
the damping force be really proportional to the square of the angular velocity or the angular
velocity? Can the damping force always be expressed by only the linear or quadratic form
of the angular velocity? Actually, some models where the damping force is shown by the
cubic form of the angular velocity have already been researched in free rolling motion (for
example, see [4, 8, 9, 12, 14, 18, 35, 42]). Then, may we think that the damping force has the
polynomial expression of the angular velocity? However, it was reported that the damping
force of an air spring model is proportional to a velocity exponent of 1.7 or 1.8 though
it was a different equation of motion (see [6, 36]). The damping coefficientsα and β of
the classic Froude-type equation are constants, but may we really assume that the damping
coefficient is a constant? Do not the damping coefficients change with time under some kind
of influence? We will be able to cite aging deterioration of a vessel as an example. If a ship
has not gone into dock for a long time, then seaweed, shellfishes, and others will adhere,
and if the surface of the hull loses smoothness, then frictional resistance becomes large
rapidly. Let us consider a submarine instead of a vessel. Wave-making resistance acts when
the submarine surfaces, but it is lost when the submarine dives. It is well-known that eddy-
making resistance changes depending on the density of fluid and the form of the object. The
density of fluid is influenced by temperature and atmospheric pressure, which change with
time. From this point of view, it would be reasonable to deal with Froude-type equations
with time-varying damping terms.

Hereafter, we consider the following second-order differential equation:

x′′+a(t)φp(x
′)+b(t)φq(x

′)+ω2x= 0, (1.1)



4 Jitsuro Sugie, Takashi Yamasaki

where the damping coefficientsa(t) andb(t) are continuous and nonnegative fort ≥ 0, the
restoring coefficientω is positive, and the functionsφp(z) andφq(z) are defined by

φp(z) = |z|p−2z and φq(z) = |z|q−2z for z∈ R

with p≥ 2 andq≥ 2, respectively. It is clear that the only equilibrium of (1.1) is the origin
(x,x′) = (0,0). In the special case in whicha(t) ≡ α, b(t) ≡ β , p= 2 andq= 3, equation
(1.1) coincides with the Froude’s expression above. Sincep≥ 2 andq≥ 2, we call equation
(1.1) a damped superlinearFroude-type oscillator. The global existence and uniqueness of
solutions of (1.1) are guaranteed for the initial value problem becausea(t)≥ 0 andb(t)≥ 0
for t ≥ 0.

The purpose of this paper is to present a necessary and sufficient condition for the equi-
librium of (1.1) to be globally asymptotically stable. It is well-known that the damping co-
efficients changes according to the form and the design of a ship; namely, they are affected
by the shapes of hull and the design of the antiroll apparatus (bilge keels, fins, or antiroll
tanks, and so on). The result that the stability of a ship was very sensitive to the change in
the damping coefficients was often reported. For example, see [17]. Therefore, it is safe to
say that research of the stability of a ship is extremely important in determining the form
and the design of the ship.

To begin with, we give a set of definitions concerning stability. Letx(t) = (x(t),x′(t))
andx0 ∈ R2, and let∥ · ∥ be any suitable norm. We denote the solution of (1.1) through
(t0,x0) by x(t; t0,x0). The equilibrium is said to bestableif, for any ε > 0 and anyt0 ≥ 0,
there exists aδ (ε, t0) > 0 such that∥x0∥ < δ implies ∥x(t; t0,x0)∥ < ε for all t ≥ t0. The
equilibrium is said to beglobally attractiveif, for any t0 ≥ 0, anyη > 0, and anyx0 ∈ R2,
there is aT(t0,η ,x0) > 0 such that∥x(t; t0,x0)∥ < η for all t ≥ t0+T(t0,η ,x0). Roughly
speaking, if∥x(t; t0,x0)∥→ 0 ast → ∞ for anyt0 ≥ 0 and anyx0 ∈R2, then the equilibrium
is globally attractive. The equilibrium isglobally asymptotically stableif it is stable and
globally attractive. With respect to the various definitions of stability, the reader may refer
to the books [2, 7, 10, 13, 19, 20, 30, 34, 44] for example.

The study of global asymptotic stability is one of main themes in the qualitative theory
of differential equations. Many efforts have been poured to find sufficient conditions and/or
necessary conditions which guarantee that the equilibrium (or the zero solution) of nonlinear
differential equations (or systems) is globally asymptotically stable (for example, see [1,
3, 15, 21–24, 27, 29, 32, 33, 37, 38, 40, 41]). The historical development of this research is
concisely summarized in Sugie [38, Section 1].

Recently, the present authors [41] have discussed the stability problem for the damped
superlinear oscillator

x′′+a(t)φp(x
′)+ω2x= 0, (1.2)

and reported the following result.

Theorem A Suppose that there exists aγ1 with 0< γ1 < π/ω such that

liminf
t→∞

∫ t+γ1

t
a(s)ds> 0. (1.3)

Then the equilibrium of(1.2) is globally asymptotically stable if and only if∫ ∞

0
u(t)dt =−∞, (1.4)
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where u(t) is the solution of

u′+ω p−2a(t)φp(u)+1= 0

satisfying u(0) = 0.

Theorem A is a generalization of the results given to the damped linear oscillator

x′′+a(t)x′+ω2x= 0.

by Smith [37, Theorems 1 and 2] and Hatvani and Totik [24, Theorem 3.1]. In the special
case in whichp= 2, condition (1.4) coincides with

∫ ∞

0

∫ t
0 eA(s)ds

eA(t)
dt = ∞,

where

A(t) =
∫ t

0
a(s)ds.

Even if intervals wherea(t) is zero appear repeatedly many times, condition (1.3) may be
satisfied if the lengths of intervals are less thanπ/ω. Hatvani and Totik [24, Example 3.2]
pointed out that the requirement that 0< γ1 < π/ω was best possible for the linear case
(p= 2) in the meaning that it cannot be changed toγ1 = π/ω.

Unfortunately, however, Theorem A cannot be applied to the superlinear Froude-type
oscillator (1.1), because it has two different kinds of damping terms. Of course, the method
which was used to obtain Theorem A might give a resolution to the questions below, but a
detailed analysis often will be required.

What conditions should the two coefficients satisfy in order to guarantee that all solu-
tions of (1.1) converge to zero as time increases? From Theorem A, we see that all solutions
of (1.1) withb(t)≡ 0 approach the origin ast tends to∞ if conditions (1.3) and (1.4) are sat-
isfied. Then, do all solutions of (1.1) approach the origin ast tends to∞ wheneverb(t)≥ 0
for t ≥ 0? The answer is no (for example, see Example 5.1). From Theorem A, we also see
that under the assumption that

liminf
t→∞

∫ t+γ2

t
b(s)ds> 0 (1.5)

for someγ2 with 0< γ2 < π/ω, all solutions of (1.1) witha(t)≡ 0 approach the origin ast
tends to∞ if ∫ ∞

0
u(t)dt =−∞,

whereu(t) is the solution of

u′+ωq−2b(t)φq(u)+1= 0

satisfyingu(0) = 0. Then, cannot we say that all solutions of (1.1) approach the origin ast
tends to∞ whenever neither condition (1.3) nor condition (1.5) is satisfied? The answer is
also no. There are cases that all solutions of (1.1) approach the origin ast tends to∞ even if
both conditions are not necessarily satisfied (for example, see Example 4.2).

Our main theorem is as follows:
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Theorem 1.1 Suppose that there exists aγ0 with 0< γ0 < π/ω such that

liminf
t→∞

∫ t+γ0

t

(
a(s)+b(s)

)
ds> 0. (1.6)

Then the equilibrium of(1.1) is globally asymptotically stable if and only if∫ ∞

0
u(t)dt =−∞,

where u(t) is the solution of

u′+ω p−2a(t)φp(u)+ωq−2b(t)φq(u)+1= 0 (1.7)

satisfying u(0) = 0.

Note that condition (1.6) is weaker than conditions (1.3) and (1.5). In fact, leta(t) = s(t)
andb(t) = s(t +π/ω), where

s(t) =


sin2(ω t) for

2(n−1)
ω

π ≤ t <
2n−1

ω
π,

0 for
2n−1

ω
π ≤ t <

2n
ω

π

with n∈ N. Then,a(t)+b(t) = sin2(ω t) for t ≥ 0 and∫ t+γ0

t

(
a(s)+b(s)

)
ds=

∫ t+γ0

t
sin2(ω s)ds≥ 1

2

(
γ0−

sin(ωγ0)

ω

)
> 0,

and therefore, condition (1.6) is satisfied. However, neither condition (1.3) nor condition
(1.5) is satisfied (see Figure 1).

2 Equivalence relation

Let u(t) be any solution of (1.7). Sincea(t) ≥ 0 andb(t) ≥ 0 for t ≥ 0, it is clear that
u′(t) ≤ −1 as long asu(t) ≥ 0. Hence, there exists aT ≥ 0 such thatu(T) = 0. Since
u′(T) = −1, we see thatu(t) < 0 in a right-hand neighborhood ofT. Suppose that there
exists at1 > T such thatu(t1) = 0 and

u(t)< 0 for T < t < t1.

From u(t1) = 0 it follows thatu′(t1) = −1. Sinceu′(t) is continuous as long as it exists,
there exists a smallδ > 0 such thatu′(t)< 0 for t ∈ [t1−δ , t1]. This means thatu(t1−δ )>
u(t1) = 0, which contradicts the definition oft1. Hence,u(t) is negative fort > T as long as
it exists. It is also clear thatu′(t)≥−1 as long asu(t)< 0. We therefore conclude thatu(t)
exists in the future and

u(t)< 0 for t > T.

In addition, sincep≥ 2 andq≥ 2, the uniqueness of solutions of (1.7) is guaranteed for the
initial value problem.

Let T be a nonnegative number. We denote the solutionu(t) of (1.7) satisfyingu(T) = 0
by u(t;T). Then, we have the following equivalence relation, which plays an important role
in this paper.
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Fig. 1. (a) The graph ofa(t); (b) The graph ofb(t); (c) The graph of
a(t)+b(t).

Lemma 2.1 For any T≥ 0, ∫ ∞

T
u(t;T)dt =−∞

if and only if ∫ ∞

0
u(t;0)dt =−∞.

To prove Lemma 2.1, we need the following comparison results concerning the scalar
differential equation

u′ = f (t,u), (2.1)

where f (t,u) is continuous on[0,∞)×R and satisfies locally a Lipschitz condition with
respect tou (for example, see [28, pp. 30–31] and [44, p. 5]).

Lemma 2.2 Let u(t) be a solution of(2.1) on an interval[a,b]. Suppose thatη(t) is con-
tinuous on[a,b] and satisfies the inequality

η ′(t)≥ f (t,η(t)) for a< t < b.

If η(a)≥ u(a), thenη(t)≥ u(t) for a≤ t ≤ b.

Lemma 2.3 Let u(t) be a solution of(2.1) on an interval[a,b]. Suppose thatη(t) is con-
tinuous on[a,b] and satisfies the inequality

η ′(t)≤ f (t,η(t)) for a< t < b.

If η(a)≤ u(a), thenη(t)≤ u(t) for a≤ t ≤ b.
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3 Global asymptotic stability

Let y= x′/ω as a new variable. Then, Eq. (1.1) becomes the planar system

x′ = ωy,

y′ =−ωx−ω p−2a(t)φp(y)−ωq−2b(t)φq(y).
(3.1)

The equilibrium of (1.1) corresponds to the zero solution of (3.1). Hence, in order to verify
Theorem 1.1, we have only to discuss whether the zero solution of (3.1) is stable and globally
attractive or not. For convenience’s sake, we divide the wholex-y plane into four quadrants:

Q1 =
{
(x,y) : x≥ 0 and y> 0

}
,

Q2 =
{
(x,y) : x< 0 and y≥ 0

}
,

Q3 =
{
(x,y) : x≤ 0 and y< 0

}
,

Q4 =
{
(x,y) : x> 0 and y≤ 0

}
.

We call the projection of a positive semitrajectory of (3.1) onto thex-y plane apositive orbit
and we denote byΓ +(t0,x0) the positive orbit of (3.1) starting from a pointx0 = (x0,y0) ∈
R2 at the initial timet0 ≥ 0.

As a suitable Lyapunov function for system (3.1), we choose the total energy

V(x,y) =
1
2

(
x2+y2).

Then, we obtain

V̇(3.1)(t,x,y) = xx′+yy′ =−ω p−2a(t)|y|p−ωq−2b(t)|y|q ≤ 0

on [0,∞)×R2. This means the derivative ofV(x,y) along any solution of (3.1). SinceV(x,y)
is positive definite anḋV(3.1)(t,x,y) is nonpositive, we obtain the following result by means
of a basic Lyapunov’s direct method.

Proposition 3.1 The zero solution of(3.1) is stable.

Note that Proposition 3.1 can be led only under the assumption thata(t)≥ 0 andb(t)≥ 0
for t ≥ 0. To be precise, the zero solution of (3.1) is uniformly stable.

Next, we discuss the global attractivity of the zero solution of (3.1). We first prove ‘only
if’-part of Theorem 1.1.

Theorem 3.2 If the zero solution of(3.1) is attractive, then∫ ∞

0
u(t)dt =−∞, (3.2)

where u(t) is the solution of(1.7)satisfying u(0) = 0.

Proof. The proof is by contradiction. Suppose that (3.2) does not holds. LetL=max{1, ω}.
Then, there exists aT > 0 such that∫ ∞

T
u(t)dt >− 1

2ωL
.



Global dynamics of Froude-type oscillators with superlinear damping terms 9

Since
u(t) = u(t;0)≤ u(t;T)< 0 for t > T

as shown in the proof of Lemma 2.1, we see that∫ ∞

T
u(t;T)dt >− 1

2ωL
. (3.3)

Consider the positive orbitΓ +(t0,x0), wheret0 = T andx0 = (1,0). Let (x(t),y(t)) be the
solution of (3.1) corresponding to the positive orbit. Then,x(T) = 1 andy(T) = 0. Taking
the vector field of (3.1) into account, we see that the positive orbit goes intoQ4 afterwards
and it does not enterQ1 passing through the positivex-axis. If

x(t)>
1
2

for t ≥ T, (3.4)

then naturally the solution(x(t),y(t)) does not approach the origin; namely, the zero solution
of (3.1) is not attractive. This completes the proof.

Hereafter, we will show that (3.4) holds. If (3.4) is not satisfied, we can find aT1 > T
such thatx(T1) = 1/2 and 1/2< x(t) ≤ 1 for T ≤ t < T1. Since the positive orbit does not
enterQ1 passing through the positivex-axis, we see that

y(t)< 0 for T < t ≤ T1.

Let η(t) = y(t)/L. We compareη(t) with the solutionu(t;T) of (1.7) satisfyingu(T;T) = 0.
From the second equation of (3.1) it follows that

η ′(t) =− ω
L

x(t)− ω p−2

L
a(t)φp(y(t))−

ωq−2

L
b(t)φq(y(t))

≥−1−ω p−2 φp(L)

L
a(t)φp(η(t))−ωq−2 φq(L)

L
b(t)φq(η(t))

≥−1−ω p−2a(t)φp(η(t))−ωq−2b(t)φq(η(t))

for T ≤ t ≤ T1. Let f (t,u) =−1−ω p−2a(t)φp(u)−ωq−2b(t)φq(u). Then, we have

η ′(t)≥ f (t,η(t)) for T ≤ t ≤ T1.

Sinceη(T) = y(T)/L = 0, it follows from Lemma 2.2 that

Lu(t;T)≤ Lη(t) = y(t)≤ 0

for T ≤ t ≤ T1. Hence, we have

x′(t) = ωy(t)≥ ωLu(t;T) for T ≤ t ≤ T1.

From this inequality and (3.3) it turns out that

x(T1)≥ x(T)+ωL
∫ T1

T
u(t;T)dt > 1+ωL

∫ ∞

T
u(t;T)dt >

1
2
= x(T1).

This is a contradiction.
We have thus proved the theorem. ⊓⊔
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To examine the motion of positive orbits of (3.1), we transform system (3.1) into polar
coordinates by

x= r cosθ and y= r sinθ .

Then, we have

r ′ =−ω p−2a(t)φp(r)|sinθ |p−ωq−2b(t)φq(r)|sinθ |q,

θ ′ =−ω −ω p−2a(t)r p−2φp(sinθ)cosθ −ωq−2b(t)rq−2φq(sinθ)cosθ .
(3.5)

Consider the positive orbitΓ +(t0,x0) starting from a pointx0 ∈Q1∪Q3 at a timet0 ≥ 0. Let
(r(t),θ(t)) be the solution of (3.5) corresponding toΓ +(t0,x0). The positive orbitΓ +(t0,x0)
moves clockwise around the origin as long as it is inQ1∪Q3. In fact,

r2θ ′ =−ω
(
x2+y2)−ω p−2a(t)xy|y|p−2−ωq−2b(t)xy|y|q−2 < 0

if (x,y) ∈ Q1∪Q3. Suppose thatΓ +(t0,x0) keeps staying inQ1∪Q3. Then,

sinθ(t)cosθ(t)≥ 0 for t ≥ t0.

Hence, we obtain

θ ′(t) =−ω −ω p−2a(t)(r(t))p−2φp(sinθ(t))cosθ(t)

−ωq−2b(t)(r(t))q−2φq(sinθ(t))cosθ(t)

=−ω −a(t)(ω r(t)|sinθ(t)|)p−2 sinθ(t)cosθ(t)

−b(t)(ω r(t)|sinθ(t)|)q−2 sinθ(t)cosθ(t)
≤−ω

for t ≥ t0, and therefore,
θ(t)≤ θ(t0)−ω(t − t0),

which tends to−∞ ast → ∞. This is a contradiction. Thus, we have the following result.

Lemma 3.3 No positive orbit of(3.1)can continue staying in Q1∪Q3 ultimately.

Judging from Lemma 3.3, system (3.1) has three types of positive orbits. Positive orbits
of the first type keep rotating around the origin. Those of the second type remain inQ4

(resp.,Q2) and approach the origin throughQ4 (resp.,Q2). Those of the third type stay in
Q4 (resp.,Q2) and tend to an interior point inQ4 (resp.,Q2).

We are now ready to prove ‘if’-part of Theorem 1.1.

Theorem 3.4 Assume(1.6)and(3.2).Then the zero solution of(3.1) is globally attractive.

Proof. Let (x(t),y(t)) be any solution of (3.1) with the initial timet0 ≥ 0. Define

v(t) =V(x(t),y(t)) for t ≥ t0.

To prove the theorem, we have only to show that

v(t)→ 0 as t → ∞.

Since
v′(t) = V̇(3.1)(t,x(t),y(t)) =−ω p−2a(t)|y(t)|p− ωq−2b(t)|y(t)|q ≤ 0
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for t ≥ t0, the functionv(t) has the limitv0 ≥ 0. If v0 = 0, then the proof is complete. We
will show that the case ofv0 > 0 does not occur provided (1.6) and (3.2) hold.

Suppose thatv0 > 0. Consider the closed curve given byV(x,y) = v0. This closed curve
is the circumference of a circle whose center is at the origin and whose radius is

√
2v0.

Hence, this circle crosses with thex-axis only at two points(
√

2v0,0) and(−
√

2v0,0). Let
x0 = (x(t0),y(t0)) and letΓ +(t0,x0) be the positive orbit of (3.1), which corresponds to the
solution(x(t),y(t)).

As already mentioned, all positive orbits of (3.1) are classified into three types. Here-
after, we will complete the proof in three steps as follows: (i)Γ +(t0,x0) does not belong
to the first type; (ii)Γ +(t0,x0) does not belong to the second type; (iii)Γ +(t0,x0) does not
belong to the third type. This contradiction is caused from the assumption thatv0 > 0.

Step(i): Suppose thatΓ +(t0,x0) belongs to the first type; namely, it keeps rotating
around the origin. Letε be so small that

0< ε <
π −ωγ0

2
, (3.6)

whereγ0 is the number given in assumption (1.6). Consider the straight linesy =(tanε)x
andy = (tan(π − ε))x. Naturally,Γ +(t0,x0) crosses the two lines and they-axis infinitely
many times. Let(r(t),θ(t)) be the solution of (3.5) corresponding toΓ +(t0,x0). Then, we
can find four divergent sequences{τn}, {tn}, {σn} and{sn} with t0 ≤ τn < tn < σn < sn

such thatθ(τn) = 3π/2, θ(tn) = π − ε, θ(σn) = π/2 andθ(sn) = ε. The positive orbit
Γ +(t0,x0) moves clockwise around the origin when it passes through(Q1∪Q3). However,
Γ +(t0,x0) does not always move clockwise when it is in(Q2 ∪Q4), becauseθ ′(t) may
change the sign. Hence,Γ +(t0,x0) might advance temporarily anti-clockwise. In such a
case, we should select the supremum of allt ∈ (τn,σn) for which θ(t)≥ π − ε as the point
tn. Then, we have

ε < θ(t)< π − ε for tn < t < sn.

Sincev(t)↘ v0 > 0 ast → ∞, the positive orbitΓ +(t0,x0) does not enter in the circle{
(x,y) : x2+y2 ≤ 2v0

}
. The circumference of the circle intersects with the half-lineθ = ε

at only one point. Leth(ε) be they-coordinate of the intersection. Then, it turns out that
y(t) = r(t)sinθ(t)> h> 0 for tn ≤ t ≤ sn. Let µ = min{ω p−2hp, ωq−2hq}. Then, we obtain

v′(t) =−ω p−2a(t)|y(t)|p−ωq−2b(t)|y(t)|q

≤−ω p−2hpa(t)−ωq−2hqb(t)≤−µ
(
a(t)+b(t)

)
(3.7)

for tn ≤ t ≤ sn. Needless to say,v′(t) is nonpositive fort ≥ t0.
Suppose that there exists anN ∈ N such thatsn − tn ≥ γ0 for n ≥ N. Then, it follows

from (3.7) that

v(sn)−v(tn)<−µ
∫ sn

tn

(
a(t)+b(t)

)
dt ≤−µ

∫ tn+γ0

tn

(
a(t)+b(t)

)
dt

for n≥ N. Sincev(tn+1)−v(sn)≤ 0 for n∈ N, we obtain

v(tn+1)−v(tn)<−µ
∫ tn+γ0

tn

(
a(t)+b(t)

)
dt for n≥ N,

and therefore,

v0−v(tN)≤ v(tn+1)−v(tN)<−µ
n

∑
i=N

∫ ti+γ0

ti

(
a(t)+b(t)

)
dt.
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However, from (1.6) it turns out that

∞

∑
n=N

∫ tn+γ0

tn

(
a(t)+b(t)

)
dt = ∞.

This is a contradiction. Thus, there exists a sequence{nk} with nk ∈N andnk → ∞ ask→ ∞
such that

snk − tnk < γ0. (3.8)

Sincer ′(t)=−ω p−2a(t)φp(r(t))|sinθ(t)|p−ωq−2b(t)φq(r(t))|sinθ(t)|q ≤ 0 for t ≥ t0,
we see thatr(t)≤ r(t0) for t ≥ t0. Hence,

θ ′(t)≥−ω −a(t)(ω r(t)|sinθ(t)|)p−2|sinθ(t)||cosθ(t)|
−b(t)(ω r(t)|sinθ(t)|)q−2|sinθ(t)||cosθ(t)|

≥ −ω − (ω r(t0))
p−2a(t)− (ω r(t0))

q−2b(t)

≥−ω −ν
(
a(t)+b(t)

)
for t ≥ t0, whereν = max

{
(ω r(t0))p−2, (ω r(t0))q−2

}
. From (3.8) it follows that

ε − (π − ε) = θ(snk)−θ(tnk)

≥−ω(snk − tnk)−ν
∫ snk

tnk

(
a(t)+b(t)

)
dt

>−ωγ0−ν
∫ snk

tnk

(
a(t)+b(t)

)
dt

for eachk∈ N; namely,

ν
∫ snk

tnk

(
a(t)+b(t)

)
dt > π −ωγ0−2ε for k∈ N.

Using this estimation and (3.7), we obtain

v(snk)−v(tnk)<−µ
∫ snk

tnk

(
a(t)+b(t)

)
dt <− µ

ν
(π −ωγ0−2ε)

for k∈ N. Sincev(tnk+1)−v(snk)≤ 0 for k∈ N, we see that

v(tnk+1)−v(tnk)<− µ
ν
(π −ωγ0−2ε) for k∈ N.

Taking (3.6) into consideration, we can conclude that

v0−v(t0)≤
∞

∑
k=1

(
v(tnk+1)−v(tnk)

)
=−∞,

which is a contradiction. Thus,Γ +(t0,x0) does not belong to the first type.

Step(ii): Suppose thatΓ +(t0,x0) belongs to the second type; namely, it remains in
Q4 (resp.,Q2) and approaches the origin throughQ4 (resp.,Q2). Then, there exist a point
x1 ∈ Q4 (resp.,Q2) and a timeT ≥ t0 so thatΓ +(t0,x0) passes throughx1 at T and remains
in Q4 (resp.,Q2) afterwards. We consider only the case in whichΓ +(t0,x0) remains inQ4

ultimately, because the other case is carried out in the same way.
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Since(x(t),y(t)) ∈ Q4 for t ≥ T, we see thatx′(t) = ωy(t) < 0 for t ≥ T. Hence, there
exists anα ≥ 0 such thatx(t)→ α ast → ∞, and therefore, it follows that

1
2

y2(t)→ v0−
1
2

α2 ≥ 0 as t → ∞.

From the assumption of step (ii), the solution(x(t),y(t)) has to approach(0,0) ast → ∞.
Hence,α = v0−α2/2 = 0. This is impossible becausev0 > 0. Thus,Γ +(t0,x0) does not
belong to the second type.

If v0 > α2/2, then we can choose aT1 ≥ T so large that

y2(t)> v0−
1
2

α2 > 0 for t ≥ T1.

Hence, we have

v′(t) =−ω p−2a(t)|y(t)|p−ωq−2b(t)|y(t)|q

≤−ω p−2(v0−α2/2
)p/2

a(t)−ωq−2(v0−α2/2
)q/2

b(t)

≤−λ
(
a(t)+b(t)

)
for t ≥ T1, where

λ = min
{

ω p−2(v0−α2/2
)p/2

, ωq−2(v0−α2/2
)q/2
}
.

Integrating this inequality fromT1 to t, we obtain

v0−v(T1)< v(t)−v(T1)≤−λ
∫ t

T1

(
a(s)+b(s)

)
ds.

However, it follows from (1.6) that∫ ∞

T1

(
a(t)+b(t)

)
dt = ∞.

This is a contradiction. Thus, we see thatα =
√

2v0. We therefore conclude thatΓ +(t0,x0)
approaches the point(

√
2v0,0) which is an intersection of the closed curveV(x,y) = v0 and

thex-axis.

Step(iii): Suppose thatΓ +(t0,x0) belongs to the third type; namely, it stays inQ4 (resp.,
Q2) and tends to an interior point inQ4 (resp.,Q2). Then, as shown above, the interior
point is (

√
2v0,0) (resp.,(−

√
2v0,0)). Let ε0 = min{1, ω

√
2v0}. Then,φp(ε0) ≤ ε0 and

φq(ε0)≤ ε0 becausep≥ 2 andq≥ 2. Taking into account that√
2v0 < x(t)≤ x(T) and y(t)< 0

for t ≥ T, we can estimate that(
y(t)
ε0

)′
=− ωx(t)

ε0
−

ω p−2a(t)φp(y(t))

ε0
−

ωq−2b(t)φq(y(t))

ε0

<− ω
√

2v0

ε0
−

ω p−2a(t)φp(y(t))

φp(ε0)
−

ωq−2b(t)φq(y(t))

φq(ε0)

≤−1−ω p−2a(t)φp

(
y(t)
ε0

)
−ωq−2b(t)φq

(
y(t)
ε0

)
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for t ≥ T. Let η(t) = y(t)/ε0 for t ≥ t0 and define

f (t,u) =−1−ω p−2a(t)φp(u)−ωq−2b(t)φq(u).

Then,η ′(t)≤ f (t,η(t)) for t ≥ T. We compareη(t) with the solutionu(t;T) of (1.7) satis-
fying u(T;T) = 0. Sinceη(T) = y(T)/ε0 < 0, it follows from Lemma 2.3 that

y(t)
ε0

= η(t)≤ u(t;T)≤ 0

for t ≥ T. Hence, we have

x′(t)≤ ω ε0 u(t;T) for t ≥ T.

Integrate both sides of this inequality fromT to t to obtain

−x(T)< x(t)−x(T)≤ ω ε0

∫ t

T
u(s;T)ds.

By (3.2) and Lemma 2.1, however,∫ t

T
u(s;T)ds→−∞ as t → ∞.

This is a contradiction. Thus,Γ +(t0,x0) does not belong to the third type.
The proof of the theorem is now complete. ⊓⊔

We can obtain Theorem 1.1 by combining Theorems 3.2 and 3.4 with Proposition 3.1.

4 Sufficient conditions for global attractivity

In the special case in whichp= 2 andq= 2, we can seek the solutionu(t) of (1.7) satisfying
u(0) = 0 concretely. In fact,

u(t) =−
∫ t

0
exp

{∫ s

t

(
a(u)+b(u)

)
du

}
ds.

In general, however, it is difficult to confirm whether condition (3.2) is satisfied or not. For
this reason, it is safe to say that Theorem 1.1 gives an implicit necessary and sufficient
condition for global asymptotic stability. In this section, we give some explicit sufficient
conditions for the equilibrium of (1.1) to be globally attractive.

Let p∗ be the conjugate number ofp; namely,

1
p
+

1
p∗

= 1.

Since it is assumed throughout this paper thatp≥ 2, the conjugate numberp∗ satisfies that
1< p∗ ≤ 2. Define

w= φp(u) =

 up−1 if u≥ 0,

−(−u)p−1 if u< 0.
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Then,w has the same sign asu andu= φp∗(w). In fact, since

u=

 w1/(p−1) if w≥ 0,

−(−w)1/(p−1) if w< 0,

it follows from (p−1)(p∗−1) = 1 thatw1/(p−1) = wp∗−1 = |w|p∗−2w= φp∗(w) if w≥ 0 and
−(−w)1/(p−1) =−(−w)p∗−1 = (−w)p∗−2w= |w|p∗−2w= φp∗(w) if w< 0. Hence,φp∗ is the
inverse function ofφp. Similarly, φq∗ is the inverse function ofφq, whereq∗ is the number
satisfying 1/q+1/q∗ = 1.

Corollary 4.1 Suppose that assumption(1.6) holds. Suppose also that there exist a T> 0
and differentiable functions c(t) and d(t) such that

c(t)+d(t)> 0, a(t)≤ c(t) and b(t)≤ d(t) (4.1)

for t ≥ T. If , in addition, c(t) and d(t) are increasing for t≥ T and∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt = ∞, (4.2)

then the equilibrium of(1.1) is globally attractive.

Proof. We divide the infinite interval[0,∞) as follows:

I =
{

t ≥ T : c(t) = 0
}
,

J =
{

t ≥ T : d(t) = 0
}
,

K = [T,∞)\ (I ∪J).

From (4.1) it follows that the union ofI andJ is the empty set, and therefore,

c(t) = 0 and d(t)> 0 for t ∈ I ,

c(t)> 0 and d(t) = 0 for t ∈ J,

c(t)> 0 and d(t)> 0 for t ∈ K.

Define

g(t) =− 1
φp∗(c(t))+φq∗(d(t))

for t ≥ T. Then, it is clear thatg(t)< 0,

c(t)φp(g(t))≥−1 and d(t)φq(g(t))≥−1 (4.3)

for t ≥ T. We can rewriteg(t) as

g(t) =



− 1
φq∗(d(t))

if t ∈ I ,

− 1
φp∗(c(t))

if t ∈ J,

− 1
φp∗(c(t))+φq∗(d(t))

if t ∈ K.
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Sincec(t) andd(t) are differentiable and increasing fort ≥ T, we see that

g′(t) =
(q∗−1)d(t)q∗−2d′(t)

φq∗(d(t))2 ≥ 0 for t ∈ I ,

g′(t) =
(p∗−1)c(t)p∗−2c′(t)

φp∗(c(t))2 ≥ 0 for t ∈ J,

g′(t) =
(p∗−1)c(t)p∗−2c′(t)+(q∗−1)d(t)q∗−2d′(t)(

φp∗(c(t))+φq∗(d(t))
)2 ≥ 0 for t ∈ K.

In brief, g(t) is negative, differentiable and increasing fort ≥ T.
Consider the solutionu(t;T) of (1.7) satisfyingu(T;T) = 0. Sinceu′(T;T) =−1, there

exists aδ > 0 such that
u(t;T)< 0 for T < t < T +δ .

Taking into account thatg(T)< 0= u(T;T), we can choose at∗ ∈ (T,T +δ ) so that

g(t∗)≤ u(t∗;T)< 0.

Let us compareu(t;T) with η(t) = λ g(t), where

λ = min

{
u(t∗;T)
g(t∗)

, φp∗

(
1

2ω p−2

)
, φq∗

(
1

2ωq−2

)}
.

Note that 0< ω p−2φp(λ )≤ 1/2 and 0< ωq−2φq(λ )≤ 1/2. Using (4.3), we obtain

ω p−2c(t)φp(η(t)) = ω p−2φp(λ )c(t)φp(g(t))≥−ω p−2φp(λ )≥− 1
2

and

ωq−2d(t)φq(η(t)) = ωq−2φq(λ )d(t)φq(g(t))≥−ωq−2φq(λ )≥− 1
2

for t ≥ T. From these estimations it follows that

ω p−2c(t)φp(η(t))+ωq−2d(t)φq(η(t))≥−1 for t ≥ T.

Hence, by (4.1) and the fact thatη(t) = λ g(t)< 0 for t ≥ T, we have

η ′(t) = λ g′(t)≥ 0≥−1−ω p−2c(t)φp(η(t))−ωq−2d(t)φq(η(t))

≥−1−ω p−2a(t)φp(η(t))−ωq−2b(t)φq(η(t))

for t ≥ T. Let f (t,u) = −1−ω p−2a(t)φp(u)−ωq−2b(t)φq(u). Then, it is continuous on
[0,∞)×R. Sincep≥ 2 andq≥ 2, we see thatf (t,u) satisfies locally a Lipschitz condition
with respect tou. In addition, we see that

η ′(t)≥ f (t,η(t)) for t ≥ T.

Moreover, it follows from the definitions ofη(t) andλ that

η(t∗) = λ g(t∗)≥ u(t∗;T).

Hence, by means of Lemma 2.2, we have

η(t)≥ u(t;T) for t ≥ t∗,
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and therefore, ∫ t

t∗
η(s)ds≥

∫ t

t∗
u(s;T)ds for t ≥ t∗.

It follows from this inequality and (4.2) that∫ ∞

T
u(t;T)dt =

∫ t∗

T
u(t;T)dt+

∫ ∞

t∗
u(t;T)dt

≤
∫ t∗

T
u(t;T)dt+

∫ ∞

t∗
η(t)dt

=
∫ t∗

T
u(t;T)dt−

∫ t∗

T
η(t)dt+

∫ ∞

T
η(t)dt

=
∫ t∗

T

(
u(t;T)−η(t)

)
dt+λ

∫ ∞

T
g(t)dt

=
∫ t∗

T

(
u(t;T)−η(t)

)
dt−λ

∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt =−∞.

Hence, by Theorem 3.4 and Lemma 2.1, we conclude that the equilibrium of (1.1) is globally
attractive. ⊓⊔

In Corollary 4.1, the functionsc(t) andd(t) are assumed to be increasing. However, the
increase properties ofc(t) andd(t) are not always necessary for the equilibrium of (1.1) to
be globally attractive. As shown by the following result, another condition onc(t) andd(t)
can substitute for the increase properties.

Corollary 4.2 Suppose that assumption(1.6) holds. Suppose also that there exist a T> 0
and differentiable functions c(t) and d(t) satisfying conditions(4.1) and (4.2). If , in addi-
tion,

lim
t→∞

(
1

φp∗(c(t))+φq∗(d(t))

)′
= 0, (4.4)

then the equilibrium of(1.1) is globally attractive.

Proof. As in the proof of Corollary 4.1, we define

g(t) =− 1
φp∗(c(t))+φq∗(d(t))

< 0

for t ≥ T. Then, it satisfies (4.3). From (4.4) it follows that

g′(t)→ 0 as t → ∞.

Hence, we can choose aT1 ≥ T so that

g′(t)>− 1
2µ

for t ≥ T1, (4.5)

where

µ = min

{
φp∗

(
1

4ω p−2

)
, φq∗

(
1

4ωq−2

)}
.
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From the definition ofµ it turns out that

0< ω p−2φp(µ)≤
1
4

and 0< ωq−2φq(µ)≤
1
4
. (4.6)

Consider the solutionu(t;T1) of (1.7) satisfyingu(T1;T1) = 0. Sinceu′(T1;T1) = −1,
we can find aδ > 0 such that

u(t;T1)< 0 for T1 < t < T1+δ .

Taking into account thatg(T1)< 0= u(T1;T1)/µ, we can choose at∗ ∈ (T1,T1+δ ) so that

g(t∗)≤ u(t∗;T)
µ

< 0.

Let

ν =
u(t∗;T1)

g(t∗)
and η(t) = νg(t).

Then, we see thatν ≤ µ andη(t)< 0 for t ≥ T. Hence, using (4.3) and (4.6), we obtain

ω p−2c(t)φp(η(t)) = ω p−2φp(ν)c(t)φp(g(t))

≥ ω p−2φp(µ)c(t)φp(g(t))≥−ω p−2φp(µ)≥− 1
4

and

ωq−2d(t)φq(η(t)) = ωq−2φq(ν)d(t)φq(g(t))

≥ ωq−2φq(µ)d(t)φq(g(t))≥−ωq−2φq(µ)≥− 1
4

for t ≥ T. From these estimations it follows that

ω p−2c(t)φp(η(t))+ωq−2d(t)φq(η(t))≥− 1
2

for t ≥ T.

Hence, by (4.5), we have

η ′(t) = ν g′(t)>− ν
2µ

≥− 1
2
≥−1−ω p−2c(t)φp(η(t))−ωq−2d(t)φq(η(t))

≥−1−ω p−2a(t)φp(η(t))−ωq−2b(t)φq(η(t)) = f (t,η(t))

for t ≥ T1, where f (t,u) =−1−ω p−2a(t)φp(u)−ωq−2b(t)φq(u). Note thatf (t,u) is con-
tinuous on[0,∞)×R and satisfies locally a Lipschitz condition with respect tou. It also
follows from the definitions ofη(t) andν that

η(t∗) = ν g(t∗) = u(t∗;T1).

Hence, from Lemma 2.2 it turns out that

η(t)≥ u(t;T1) for t ≥ t∗.

Using this inequality and following the same process as in the proof of Corollary 4.1, we
can estimate that ∫ ∞

T1

u(t;T1)dt =−∞.
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Hence, from Theorem 3.4 and Lemma 2.1, we see that the equilibrium of (1.1) is globally
attractive. ⊓⊔

In Corollary 4.2, we assumed that there exist aT > 0 and differentiable functionsc(t)
andd(t) such that

c(t)≥ 0, d(t)≥ 0 and c(t)+d(t)> 0

for t ≥ T. When we strengthen this assumption somewhat, we can change condition (4.4)
into a simple one.

Proposition 4.3 Supose that there exist numbers T> 0 and e> 0 and differentiable func-
tions c(t) and d(t) such that

c(t)> 0, d(t)> 0 and c(t)+d(t)≥ e (4.7)

for t ≥ T. If

lim
t→∞

c′(t)
c(t)

= 0 and lim
t→∞

d′(t)
d(t)

= 0, (4.8)

then condition(4.4) is satisfied.

Proof. From (4.7) it turns out that there exists anẽ> 0 satisfying

φp∗(c(t))+φq∗(d(t))≥ ẽ for t ≥ T1. (4.9)

Actually, otherwise we can choose the different sequence{tn} such that

φp∗(c(tn))+φq∗(d(tn))→ 0 as n→ ∞.

Sinceφp∗(c(tn))> 0 andφq∗(d(tn))> 0 for n∈N, we see thatφp∗(c(tn)) andφq∗(d(tn)) tend
to 0 ast → ∞, and therefore,

c(tn)+d(tn)→ 0 as n→ ∞.

This contradicts (4.7). From (4.8) it follows that for anyε > 0 there exists aT1(ε)> 0 such
that ∣∣∣∣c′(t)c(t)

∣∣∣∣< ẽε
2(p∗−1)

and

∣∣∣∣d′(t)
d(t)

∣∣∣∣< ẽε
2(q∗−1)

(4.10)

for t ≥ T1. Let T2 = max{T, T1}. Then, by (4.7), (4.9) and (4.10), we have∣∣∣∣( 1
φp∗(c(t))+φq∗(d(t))

)′∣∣∣∣=
∣∣∣∣∣ (p∗−1)c(t)p∗−2c′(t)+(q∗−1)d(t)q∗−2d′(t)(

φp∗(c(t))+φq∗(d(t))
)2

∣∣∣∣∣
≤

(p∗−1)φp∗(c(t))(
φp∗(c(t))+φq∗(d(t))

)2

∣∣∣∣c′(t)c(t)

∣∣∣∣
+

(p∗−1)φp∗(d(t))(
φp∗(c(t))+φq∗(d(t))

)2

∣∣∣∣d′(t)
d(t)

∣∣∣∣
≤

(p∗−1)φp∗(c(t))

ẽ
(
φp∗(c(t))+φq∗(d(t))

) ∣∣∣∣c′(t)c(t)

∣∣∣∣
+

(p∗−1)φp∗(d(t))

ẽ
(
φp∗(c(t))+φq∗(d(t))

) ∣∣∣∣d′(t)
d(t)

∣∣∣∣< ε
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for t ≥ T2; namely, condition (4.4). ⊓⊔

By Corollary 4.2 and Proposition 4.3, we obtain the following result.

Corollary 4.4 Suppose that assumptions(1.6), (4.2)and (4.8)hold. If there exist numbers
T > 0 and e> 0 and differentiable functions c(t) and d(t) such that

c(t)> 0, d(t)> 0, c(t)+d(t)≥ e, a(t)≤ c(t) and b(t)≤ d(t) (4.11)

for t ≥ T, then the equilibrium of(1.1) is globally attractive.

To compare Corollary 4.2 with Corollary 4.4, we give an example. Let

f (t) = 1+
1
4

sin3 t +max
{

0,
√

t sin3 t
}

=


1+

1
4

sin3 t +
√

t sin3 t if 2(n−1)π ≤ t < (2n−1)π,

1+
1
4

sin3 t if (2n−1)π ≤ t < 2nπ

with n∈ N. Then, it is clear thatf (t)≥ 3/4 for t ≥ 0 and f (t)≤ 1 for t ∈ [(2n−1)π,2nπ].
Since

f ′(t) =


3
4

sin2 t cost +
sin3 t

2
√

t
+3

√
t sin2 t cost if 2(n−1)π ≤ t < (2n−1)π,

3
4

sin2 t cost if (2n−1)π ≤ t < 2nπ,

the functionf (t) is continuously differentiable fort ≥ 0.

Example4.1 Consider equation (1.1) with

a(t) = φp(t
f (t)) and b(t) = φq(t

f (t))

for any p≥ 2 andq≥ 2. Then the equilibrium is globally attractive.

It is obvious that assumption (1.6) is satisfied. LetT = 1. We definec(t) = φp(t f (t)) and
d(t) = φq(t f (t)) for t ≥ T. Then, condition (4.1) holds. We also see that∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt =
∫ π

T

1

2t f (t)
dt+

∫ ∞

π

1

2t f (t)
dt

=
∫ π

T

1

2t f (t)
dt

+
1
2

∞

∑
n=1

{∫ 2nπ

(2n−1)π

(
1
t

)f (t)

dt+
∫ (2n+1)π

2nπ

(
1
t

)f (t)

dt

}

≥
∫ π

T

1

2t f (t)
dt+

1
2

∞

∑
n=1

∫ 2nπ

(2n−1)π

1
t

dt

=
∫ π

T

1

2t f (t)
dt+

1
2

∞

∑
n=1

log
2n

2n−1

=
∫ π

T

1

2t f (t)
dt+

1
2

lim
n→∞

log
2
1

4
3

6
5
· · · 2n

2n−1
.
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For anym∈ N, let

Im =
∫ π/2

0
sinmx dx.

Then, it is well-known that

I2n =
1
2

4
4

5
6
· · · 2n−1

2n
π
2

and lim
n→∞

√
n I2n =

√
π

2
.

Hence,I2n tends 0 asn→ ∞, and therefore, we get∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt = ∞;

namely condition (4.2). Moreover, we see that

φp∗(c(t))≥ t3/4 for t ≥ T. (4.12)

Since logc(t) = (p−1) f (t) logt for t ≥ T, it turns out that∣∣∣∣c′(t)c(t)

∣∣∣∣= ∣∣(logc(t))′
∣∣= ∣∣∣∣(p−1) f ′(t) logt +(p−1)

f (t)
t

∣∣∣∣
≤ (p−1)

∣∣ f ′(t)∣∣ | logt|+(p−1)
f (t)
t

≤ (p−1)

(
3
4
+

1

2
√

t
+3

√
t

)
logt +(p−1)

(
5
4
+
√

t

)
for t ≥ T. Using this estimation and (4.12), we obtain∣∣∣∣( 1

φp∗(c(t))+φq∗(d(t))

)′∣∣∣∣= ∣∣∣∣( 1
2φp∗(c(t))

)′∣∣∣∣= p∗−1
2φp∗(c(t))

∣∣∣∣c′(t)c(t)

∣∣∣∣
≤ (p∗−1)(p−1)

2
3/4+1/(2

√
t)+3

√
t

t3/4
logt

+
(p∗−1)(p−1)

2
5/4+

√
t

t3/4

=

(
3

8t3/4
+

1

4t5/4
+

3

2t1/4

)
logt +

5

8t3/4
+

1

2t1/4
,

which tends to 0 ast → ∞. Thus, condition (4.4) is also satisfied. Hence, by Corollary 4.2,
we conclude that the equilibrium is globally attractive (see Figure 2).

However, condition (4.8) is not satisfied whenc(t) = φp(t f (t)) andd(t) = φq(t f (t)). In
fact, lettn = (2n−1/4)π for n∈ N. Then,

f ′(tn) =
3
√

2
16

and f (tn) = 1−
√

2
16

,

and therefore,

c′(tn)
c(tn)

= (p−1)
3
√

2
16

log

(
(2n− 1

4
)π
)
+(p−1)

1−
√

2/16
(2n−1/4)π

,

which diverges to infinity asn→ ∞. It is difficult to find suitable upper functionsc(t) and
d(t) satisfying condition (4.8) in Example 4.1, because the damping coefficientsa(t) and
b(t) fluctuate intensely.



22 Jitsuro Sugie, Takashi Yamasaki

PSfrag repla
ements xy 11 2 2 3
4

4 5

6

6

7 8

����

�

Fig. 2. The positive orbit ofx′ = y, y′ = −x− t f (t)y− t2 f (t)|y|y starting
from the point(x0,y0) = (6,−7) at the initial timet0 = 0.

Although condition (4.4) looks more complicated than condition (4.2), as shown in Ex-
ample 4.1, it may be easy to check condition (4.4).

It is convenient to use the following result when the damping coefficientsa(t) andb(t)
are polynomial.

Corollary 4.5 Suppose that assumption(1.6)holds. Suppose also that there exist numbers
γ , σ , ℓ1, ℓ2 and T> 0 such that

0≤ a(t)≤ ℓ1tγ and 0≤ b(t)≤ ℓ2 tσ for t ≥ T. (4.13)

If 0≤ γ ≤ p−1 and0≤ σ ≤ q−1, then the equilibrium of(1.1) is globally attractive.

Proof. Let c(t) = ℓ1tγ andd(t) = ℓ2 tσ . Then, condition (4.1) is clearly satisfied. It is also
clear thatc(t) andd(t) are increasing fort ≥T becauseγ ≥ 0 andσ ≥ 0. LetT1 =max{1, T}
andℓ3 = max{ℓp∗−1

1 , ℓq∗−1
2 }. Since 0≤ γ ≤ p−1 and 0≤ σ ≤ q−1, we see that

1
φp∗(c(t))+φq∗(d(t))

=
1

c(t)p∗−1+d(t)q∗−1 =
1

ℓp∗−1
1 tγ/(p−1)+ ℓq∗−1

2 tσ/(q−1)
≥ 1

2ℓ3 t

for t ≥ T1. From this inequality, we can verify that∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt ≥
∫ T1

T

1
φp∗(c(t))+φq∗(d(t))

dt+
1

2ℓ3

∫ ∞

T1

1
t

dt = ∞;

namely, condition (4.2). Hence, by Corollary 4.1, we conclude that the equilibrium of (1.1)
is globally attractive. ⊓⊔

In the proof of Corollary 4.5, we can also confirm condition (4.4). In fact, since(
1

φp∗(c(t))+φq∗(d(t))

)′
=−

γ
p−1ℓ

p∗−1
1 tγ/(p−1)−1+ σ

q−1ℓ
q∗−1
2 tσ/(q−1)−1(

ℓp∗−1
1 tγ/(p−1)+ ℓq∗−1

2 tσ/(q−1)
)2
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for t ≥ T1, it tends to 0 ast → ∞ because 0≤ γ ≤ p−1 and 0≤ σ ≤ q−1. Hence, we can
also lead Corollary 4.5 from Corollary 4.2.

Recall that we defined the functions(t) in Section 1. Then, we can give the following
example.

Example4.2 Consider equation (1.1) with

a(t) = t s(t) and b(t) = t s(t +π/ω)

for any p≥ 2 andq≥ 2. Then the equilibrium is globally attractive.

Sincea(t)+b(t) = t sin2(ω t) for t ≥ 0, assumption (1.6) is satisfied. Condition (4.13)
is also satisfied withγ = σ = ℓ1 = ℓ2 = 1. Sincep≥ 2 andq≥ 2, it is clear that

0≤ γ ≤ p−1 and 0≤ σ ≤ q−1.

Hence, from Corollary 4.5, we see that the equilibrium is globally attractive (see Figure 3).
Note that neither condition (1.3) nor condition (1.5) is satisfied.
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Fig. 3. The positive orbit ofx′ = y, y′ =−x−ts(t)y−ts(t+π)|y|y starting
from the point(x0,y0) = (5,0) at the initial timet0 = 0.

5 Necessary conditions for attractivity

In this section, we give some explicit necessary conditions for the equilibrium of (1.1) to be
attractive. We judge that the equilibrium of (1.1) is not attractive by using lower functions
instead of the damping coefficientsa(t) andb(t).

Corollary 5.1 Suppose that there exist a T> 0 and differentiable functions c(t) and d(t)
satisfying condition(4.4)and

c(t)+d(t)> 0, 0≤ c(t)≤ a(t) and 0≤ d(t)≤ b(t) (5.1)
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for t ≥ T. If ∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt < ∞, (5.2)

then the equilibrium of(1.1) is not attractive.

Proof. Let

g(t) =− 1
φp∗(c(t))+φq∗(d(t))

for t ≥ T. Then, we can easily confirm thatg(t)< 0 and

φp∗(c(t)φp(g(t)))+φq∗(d(t)φq(g(t))) = φp∗(c(t))g(t)+φq∗(d(t))g(t) =−1 (5.3)

for t ≥ T. From (5.3) it turns out that there exists aρ > 0 such that

ω p−2c(t)φp(g(t))+ωq−2d(t)φq(g(t))≤−ρ for t ≥ T. (5.4)

Actually, otherwise we can find a divergent sequence{tn} such that

ω p−2c(tn)φp(g(tn))+ωq−2d(tn)φq(g(tn))→ 0 as n→ ∞.

Sincec(t)≥ 0, d(t)≥ 0 andg(t)< 0 for t ≥ T, we see that

ω p−2c(t)φp(g(t))+ωq−2d(t)φq(g(t))≤ ω p−2c(t)φp(g(t))≤ 0
and

ω p−2c(t)φp(g(t))+ωq−2d(t)φq(g(t))≤ ωq−2d(t)φq(g(t))≤ 0.

Hence, bothω p−2c(tn)φp(g(tn)) andωq−2d(tn)φq(g(tn)) tend to 0 asn → ∞. This contra-
dicts (5.3). Letχ = max{1, 2/ρ}. From (4.4) it follows that

g′(t)→ 0 as t → ∞.

Hence, there exists aT1 ≥ T such that

g′(t)<
1
χ

for t ≥ T1. (5.5)

Let η(t) = χg(t). Sincep≥ 2, q≥ 2 andχ ≥ 1, we see thatχ ≤ φp(χ) andχ ≤ φq(χ).
Hence, by (5.4), we have

ω p−2c(t)φp(η(t))+ωq−2d(t)φq(η(t))

= ω p−2c(t)φp(χ)φp(g(t))+ωq−2d(t)φq(χ)φq(g(t))

≤
(
ω p−2c(t)φp(g(t))+ωq−2d(t)φq(g(t))

)
χ ≤−ρ χ

for t ≥ T. Sinceχ ≥ 2/ρ, it follows that

ω p−2c(t)φp(η(t))+ωq−2d(t)φq(η(t))≤−2 for t ≥ T.

Using this inequality and (5.5), we obtain

η ′(t) = χg′(t)< 1≤−1−ω p−2c(t)φp(η(t))−ωq−2d(t)φq(η(t))

≤−1−ω p−2a(t)φp(η(t))−ωq−2b(t)φq(η(t))
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for t ≥ T1. Let f (t,u) =−1−ω p−2a(t)φp(u)−ωq−2b(t)φq(u). Then,η ′(t)< f (t,η(t)) for
t ≥ T1. Consider the solutionu(t;T1) of (1.7) satisfyingu(T1;T1) = 0. Then, it is clear that

η(T1) = χg(T1)< 0= u(T1;T1).

Hence, Lemma 2.3 shows that

η(t)≤ u(t;T1) for t ≥ T1.

Integrating both sides of this inequality fromT1 to t, we obtain∫ t

T1

η(s)ds≤
∫ t

T1

u(s;T1)ds for t ≥ T1,

which yields that∫ ∞

T1

u(t;T1)dt ≥
∫ ∞

T1

η(t)dt = χ
∫ ∞

T1

g(t)dt

=−χ
∫ T1

T
g(t)dt+χ

∫ ∞

T
g(t)dt

=−χ
∫ T1

T
g(t)dt−χ

∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt.

From (5.2) it follows that ∫ ∞

T1

u(t;T1)dt >−∞.

Hence, by Theorem 3.2 and Lemma 2.1, we conclude that the equilibrium of (1.1) is not
attractive. ⊓⊔

Let us give an example which is applicable to Corollary 5.1. For this purpose, we define

g(t) = 2
(
1+

√
2sint

)
and h(t) = 2

(
1−

√
2sint

)
for t ≥ 0. Note that

2(1−
√

2)≤ h(t)≤ 2≤ g(t)≤ 2(1+
√

2) if 2(n−1)π ≤ t < (2n−1)π,

2(1−
√

2)≤ g(t)≤ 2≤ h(t)≤ 2(1+
√

2) if (2n−1)π ≤ t < 2nπ
(5.6)

with n∈ N.

Example5.1 Consider equation (1.1) with

a(t) = φp(t
g(t)) and b(t) = φq(t

h(t))

for any p≥ 2 andq≥ 2. Then the equilibrium is not attractive.

Let T = π/4. Definec(t) = φp(tg(t)) andd(t) = φq(th(t)) for t ≥ T. Then,c(t) andd(t)
are differentiable fort ≥ T. It is obvious that condition (5.1) is satisfied. Condition (4.4) is
also satisfied. In fact, using the estimation (5.6), we obtain(

tg(t)+ th(t)
)2

t 2max{g(t),h(t)} =
(

1+ t min{g(t),h(t)}−max{g(t),h(t)}
)2

→ 1 as t → ∞
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and∣∣∣(2√2cost logt +2
(
1+

√
2sint

)/
t
)
tg(t)+

(
−2

√
2cost logt +2

(
1−

√
2sint

)/
t
)
th(t)
∣∣∣

t 2max{g(t),h(t)}

≤ 4
√

2logt

t max{g(t),h(t)} +
2
(
2+

√
2
)

t max{g(t),h(t)}+1
→ 0 as t → ∞.

Hence, we have

∣∣∣∣( 1
φp∗(c(t))+φq∗(d(t))

)′∣∣∣∣= ∣∣∣∣( 1

tg(t)+ th(t)

)′∣∣∣∣=
∣∣∣(g(t) logt)′tg(t)+(h(t) logt)′th(t)

∣∣∣(
tg(t)+ th(t)

)2
=

∣∣∣(2√2cost logt +2
(
1+

√
2sint

)/
t
)
tg(t)+

(
−2

√
2cost logt +2

(
1−

√
2sint

)/
t
)
th(t)
∣∣∣(

tg(t)+ th(t)
)2

which tends to 0 ast → ∞. Noticing that

max{g(t), h(t)} ≥ 2 for t ≥ 0,

we obtain ∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt =
∫ ∞

T

1

tg(t)+ th(t)
dt

≤
∫ ∞

T

1

t max{g(t),h(t)} dt ≤
∫ ∞

T

1
t2 dt < ∞;

namely, condition (5.2). Thus, from Corollary 5.1, we see that the equilibrium is not attrac-
tive (see Figure 4).
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Fig. 4. The positive orbit ofx′ = y, y′ = −x− tg(t)y− t2h(t)|y|y starting
from the point(x0,y0) = (5,0) at the initial timet0 = π/4.
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As shown in Example 5.1, the equilibrium of

x′′+φp(t
g(t))φp(x

′)+φq(t
h(t))φq(x

′)+ω2x= 0 (5.7)

is not attractive for anyω > 0. To compare with (5.7), we consider the superlinear oscillators
with a single damping term:

x′′+φp(t
g(t))φp(x

′)+ω2x= 0, (5.8)

x′′+φq(t
h(t))φq(x

′)+ω2x= 0. (5.9)

Since

g(t) = 2
(
1+

√
2sint

)
≤ 0 if (2n−3/4)π ≤ t ≤ (2n−1/4)π

with n∈ N, we obtain∫ ∞

π/4

1
φp∗(c(t))

dt =
∫ ∞

π/4

1

tg(t)
dt >

∞

∑
n=1

∫ (2n−1/4)π

(2n−3/4)π

1

tg(t)
dt >

∞

∑
n=1

π
2
= ∞.

Similarly, we can estimate that∫ ∞

π/4

1
φq∗(d(t))

dt =
∫ ∞

π/4

1

th(t)
dt = ∞.

Hence, Corollary 5.1 is inapplicable to equations (5.8) and (5.9). To tell the truth, both
equilibria of (5.8) and (5.9) withω = 1 are globally asymptotically stable (see Figures 5
and 6).
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Fig. 5. The positive orbit ofx′ = y, y′ =−x− tg(t)y starting from the point(x0,y0) =
(5,0) at the initial timet0 = π/4.

The following result is a direct consequence of Corollary 5.1.
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Fig. 6. The positive orbit ofx′ = y, y′ = −x − t2h(t)|y|y starting from the point
(x0,y0) = (5,0) at the initial timet0 = π/4.

Corollary 5.2 Suppose that there exist numbersγ , σ , ℓ1, ℓ2 and T> 0 such that

ℓ1tγ ≤ a(t) and ℓ2 tσ ≤ b(t) for t ≥ T.

If p−1< γ or q−1< σ , then the equilibrium of(1.1) is not attractive.

Proof. We may assume without loss of generality thatT > 1. Let c(t) = ℓ1tγ andd(t) =
ℓ2 tσ . Then, it is clear thatc(t)+d(t) ≥ ℓ1Tγ + ℓ2 Tσ > 0, c(t) ≤ a(t) andd(t) ≤ b(t) for
t ≥ T; that is, condition (5.1) is satisfied. Condition (4.4) is also satisfied. In fact,∣∣∣∣( 1

φp∗(c(t))+φq∗(d(t))

)′∣∣∣∣=
∣∣∣∣∣
(

1

ℓp∗−1
1 tγ(p∗−1)+ ℓq∗−1

2 tσ(q∗−1)

)′∣∣∣∣∣
=

γ(p∗−1)ℓp∗−1
1 tγ(p∗−1)−1+σ(q∗−1)ℓq∗−1

2 tσ(q∗−1)−1(
ℓp∗−1

1 tγ(p∗−1)+ ℓq∗−1
2 tσ(q∗−1)

)2 ,

which tends to 0 ast → ∞. If p−1< γ, then we can choose anε1 > 0 so that

1+ ε1 ≤
γ

p−1
= γ (p∗−1).

Hence, we obtain∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt =
∫ ∞

T

1

ℓp∗−1
1 tγ(p∗−1)+ ℓq∗−1

2 tσ(q∗−1)
dt

≤ 1

ℓp∗−1
1

∫ ∞

T

(
1
t

)1+ε1

dt < ∞.



Global dynamics of Froude-type oscillators with superlinear damping terms 29

Similarly, if q−1< σ , then we obtain∫ ∞

T

1
φp∗(c(t))+φq∗(d(t))

dt ≤ 1

ℓq∗−1
2

∫ ∞

T

(
1
t

)1+ε2

dt < ∞

for someε2 > 0. Thus, condition (5.2) holds. Consequently, by means of Corollary 5.1, we
can conclude that the equilibrium of (1.1) is not attractive. ⊓⊔

6 Final comment

Combining Corollary 4.5 and Corollary 5.2, we obtain the following result.

Corollary 6.1 Suppose that there exist numbersγ , σ , ℓ1, ℓ2 and T> 0 such that

a(t) = ℓ1tγ and b(t) = ℓ2 tσ for t ≥ T.

Then, the equilibrium of(1.1) is attractive if and only if

0≤ γ ≤ p−1 and 0≤ σ ≤ q−1. (6.1)

Proof. Whena(t) = ℓ1tγ andb(t) = ℓ2 tσ for t ≥ T, assumption (1.6) is clearly satisfied
for anyγ0 > 0. Hence, by virtue of Corollaries 4.5 and 5.2, we can conclude that (6.1) is a
necessary and sufficient condition for the equilibrium of (1.1) to be globally asymptotically
stable. ⊓⊔

Although William Froude paid his attention to two kinds of damping terms, three or
more damping terms may act on a certain phenomenon. We can easily find models with
the damping force has the cubic polynomial expression with respect to the angular velocity
(for example. see [4, 8, 9, 12, 14, 18, 35, 42]). Himeno [25] proposed even the damping force
with a power series expansion of the angular velocity (see also [16, 26, 43]). Such a model
is described as follows:

x′′+
n

∑
i=1

ai(t)φpi (x
′)+ω2x= 0, (6.2)

where the damping coefficientsa1(t), a2(t), . . . , an(t) are continuous and nonnegative for
t ≥ 0, the restoring coefficientω is positive, and the parametersp1 ≥ 2, p2 ≥ 2, . . . ,pn ≥ 2.
Our method in the present paper can be used even for this model. The following results are
obtained (the proof is left to readers).

Theorem 6.2 Suppose that there exists aγ0 with 0< γ0 < π/ω such that

liminf
t→∞

∫ t+γ0

t

n

∑
i=1

ai(s)ds> 0. (6.3)

Then the equilibrium of(6.2) is globally asymptotically stable if and only if∫ ∞

0
u(t)dt =−∞,

where u(t) is the solution of

u′+
n

∑
i=1

ω pi−2ai(t)φpi (u)+1= 0
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satisfying u(0) = 0.

Let p∗i be the conjugate number ofpi ; namely,

1
pi

+
1
p∗i

= 1,

wherei is any integer satisfying 1≤ i ≤ n. Then, we obtain explicit sufficient conditions and
necessary conditions for the equilibrium of (6.2) to be globally attractive.

Corollary 6.3 Suppose that assumption(6.3) holds. Suppose also that there exist a T> 0
and differentiable functions b1(t), b2(t), . . . , bn(t) such that

n

∑
i=1

bi(t)> 0 and ai(t)≤ bi(t) (1≤ i ≤ n) (6.4)

for t ≥ T. If , in addition, b1(t), b2(t), . . . , bn(t) are increasing for t≥ T and∫ ∞

T

1

∑n
i=1 φp∗i

(bi(t))
dt = ∞, (6.5)

then the equilibrium of(6.2) is globally attractive.

Corollary 6.4 Suppose that assumption(6.3) holds. Suppose also that there exist a T> 0
and differentiable functions b1(t), b2(t), . . . , bn(t) satisfying conditions(6.4) and (6.5). If ,
in addition,

lim
t→∞

(
1

∑n
i=1 φp∗i

(bi(t))

)′

= 0, (6.6)

then the equilibrium of(6.2) is globally attractive.

Corollary 6.5 Suppose that there exist a T> 0 and differentiable functions b1(t), b2(t),
. . . , bn(t) satisfying condition(6.6)and

n

∑
i=1

bi(t)> 0 and 0≤ bi(t)≤ ai(t) (1≤ i ≤ n) (6.7)

for t ≥ T. If ∫ ∞

T

1

∑n
i=1 φp∗i

(bi(t))
dt < ∞,

then the equilibrium of(6.2) is not attractive.
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