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Abstract This paper deals with the damped superlinear oscillator
X' +a(t) go(X) +b(t) @y(X) + w?x =0,

wherea(t) andb(t) are continuous and nonnegative far 0; p andq are real numbers
greater than or equal to 2 (X') = |X'|"~?X. This equation is a generalization of nonlinear

ship rolling motion with Froude’s expression, which is very familiar in marine engineering,
ocean engineering and so on. Our concern is to establish a necessary and sufficient condition
for the equilibrium to be globally asymptotically stable. In particular, the effect of the damp-
ing coefficientsa(t), b(t) and the nonlinear functiorg,(X'), @ (x’) on the global asymptotic
stability is discussed. The obtained criterion is judged by whether the integral of a particular
solution of the first-order nonlinear differential equation

U + wP2a(t) gp(u) + i 2b(t) @y(u) +1=0

is divergent or convergent. In addition, explicit sufficient conditions and explicit necessary
conditions are given for the equilibrium of the damped superlinear oscillator to be globally
attractive. Moreover, some examples are included to illustrate our results. Finally, our results
are extended to be applied to a more complicated model.
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1 Introduction

It is well-known that the resistance of free rolling motion of a small fishing vessel is mainly
classified into three types. The first is frictional resistance produced when the surrounding
water of a ship rubs the surface of a hull. The second is eddy-making resistance produced
by vortices formed when the flow of water exfoliates from a hull. This is also called vis-
cous pressure resistance. The third is wave-making resistance caused when a bow or a stern
generates the propagating waves. In the latter half of the 19th century, William Froude who
was an English engineer thought that frictional resistance and eddy-making resistance are
proportional to the square of the angular velodfyt), where6(t) is the roll angle at > 0
and the prime denotel/dt, and that wave-making resistance is proportional to the angular
velocity 8'(t). To verify his assertion, he repeated many experiments. Afterwards, by ex-
periments, a lot of engineers examined causes that influence the extinction of free rolling
motion (for example, see [4,5, 9, 14, 18, 25, 31, 42)).

Let the initial timetg be zero and let us assume the inclination of a hull at the initial time
to be6y; that is,8(0) = 6 and6’(0) = 0. Denote byd, the absolute value of roll angl(t)
at the time of then-th extreme value. The valu#y can be measured in an experiment of free
rolling motion of a ship. LetA8 and8,, be the difference and the averagegaf; and 6y,
respectively; namely,

A6=6,1—6, and 6,= %(Gn_lJr 6n)
with n € N. As a relation between 8 and8,,, Froude proposed
A8 = aB, +bb?,

wherea andb are real positive numbers. This is Froude’s expression which is famous in
marine engineering. The numbexrsindb are called extinction coefficients. The extinction
coefficientsaandb are presumed from experimental data by using the least squares method.
Hence, we have to suppose the extinction coefficients to be positive fixed numbers.

According to the above-mentioned idea of Froude, the equation of rolling motion of a
vessel on still water can be written as:

0" +a6 +p|6'|6 +w?8=0

with the initial condition(6(0),6’(0)) = (6o,0), wherea and 3 are the damping coeffi-
cients per unit of the virtual moment of inertia, ands the restoring coefficient per unit of
the virtual moment of inertia. The relation between the damping coefficeenfsand the
extinction coefficients, b can be derived as follows: L&t be the time of then-th extreme
value of roll anglef(t). The time lag ot,_1 andt, is called the natural period of roll by a
technical term. Researchers of ocean engineering assun{é.thetan arithmetic sequence
with common difference &/ w; namely,t,1 —th—1 = 271/ w for arbitraryn € N. Such an
approximation has validity when the damping coefficiemtand 3 are relatively smaller
thanw. Multiplying 8’(t) in the both sides of the above equation of motion and integrating
from 0 to 11/ w, we obtain

/n/we”(t)e’(t)dt+ a/n/w(e’(t))zdtJrB/n/w|6’(t)\(9’(t))2dt+ w2/n/w9(t)e'(t)dt:o.
0 0 0 0

The first term of this integral equation means the kinetic energy of a hull. $ifég= 0
and@’(m/w) = 0'(t1) = 0, we see that the kinetic energy is zero. The total of the second
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and third terms means an energy dissipated by the damping force. Using the approximation
formula8(t) ~ 8, coswt, we get

m/w _ /W _
/ (6'(t))2dt ~ gweﬁ and / 16/(1)](6'(t))2dt ~ ngeﬁ.
0 0

The last term means the potential energy of a hull. We can estimate that

/e / "6n 1.2 el
/ 0(1)0' (t)dt :/ 66 = 5 (62— 62 1) = — 8,46,
0 On-1

Arranging these evaluations, we obtain
n - 4 o
AO=_—ab,+ =B6,.
20000 3B n

Hence, the damping coefficiendsand are given from the extinction coefficierdsandb
by a simple expression of relations

2w 3
af?a and szb.

We can refer to Himeno [25] for the details of how to derive the damping coefficaents
andp. In this paper, however, we are not concerned with finding the relationship between
the damping coefficients and the extinction coefficients. From a mathematical viewpoint, we
intend to consider merely Froude-type equations with damping coefficients.

Clearly, the above-mentioned equation proposed by Froude is a second-order nonlinear
differential equation with two constants coefficients. Here, some simple doubts arise: Will
the damping force be really proportional to the square of the angular velocity or the angular
velocity? Can the damping force always be expressed by only the linear or quadratic form
of the angular velocity? Actually, some models where the damping force is shown by the
cubic form of the angular velocity have already been researched in free rolling motion (for
example, see [4, 8,9, 12, 14, 18, 35, 42]). Then, may we think that the damping force has the
polynomial expression of the angular velocity? However, it was reported that the damping
force of an air spring model is proportional to a velocity exponent of 1.7 or 1.8 though
it was a different equation of motion (see [6, 36]). The damping coefficierasid 3 of
the classic Froude-type equation are constants, but may we really assume that the damping
coefficientis a constant? Do not the damping coefficients change with time under some kind
of influence? We will be able to cite aging deterioration of a vessel as an example. If a ship
has not gone into dock for a long time, then seaweed, shellfishes, and others will adhere,
and if the surface of the hull loses smoothness, then frictional resistance becomes large
rapidly. Let us consider a submarine instead of a vessel. Wave-making resistance acts when
the submarine surfaces, but it is lost when the submarine dives. It is well-known that eddy-
making resistance changes depending on the density of fluid and the form of the object. The
density of fluid is influenced by temperature and atmospheric pressure, which change with
time. From this point of view, it would be reasonable to deal with Froude-type equations
with time-varying damping terms.

Hereafter, we consider the following second-order differential equation:

X' +a(t) gp(x) + b(t) gy(X) + wPx =0, (1)
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where the damping coefficiendt) andb(t) are continuous and nonnegative for O, the
restoring coefficiento is positive, and the functiong,(z) andgy(z) are defined by

®(2=12P 2%z and @(2)=|2%%z for zeR

with p > 2 andq > 2, respectively. It is clear that the only equilibrium of (1.1) is the origin
(x,X) = (0,0). In the special case in whick(t) = a, b(t) = B, p=2 andq = 3, equation
(1.1) coincides with the Froude’s expression above. Spee2 andq > 2, we call equation
(1.1) a damped superlinekroude-type oscillatarThe global existence and uniqueness of
solutions of (1.1) are guaranteed for the initial value problem becaise- 0 andb(t) > 0
fort > 0.

The purpose of this paper is to present a necessary and sufficient condition for the equi-
librium of (1.1) to be globally asymptotically stable. It is well-known that the damping co-
efficients changes according to the form and the design of a ship; namely, they are affected
by the shapes of hull and the design of the antiroll apparatus (bilge keels, fins, or antiroll
tanks, and so on). The result that the stability of a ship was very sensitive to the change in
the damping coefficients was often reported. For example, see [17]. Therefore, it is safe to
say that research of the stability of a ship is extremely important in determining the form
and the design of the ship.

To begin with, we give a set of definitions concerning stability. @) = (x(t),x (t))
andxo € R?, and let|| - || be any suitable norm. We denote the solution of (1.1) through
(to,Xo0) by Xx(t;to,Xo). The equilibrium is said to bstableif, for any € > 0 and anytp > 0,
there exists &(¢&,tp) > 0 such that|xo|| < o implies ||x(t;to,%0)|| < € for all t > to. The
equilibrium is said to b@lobally attractiveif, for anyty > 0, anyn > 0, and anyxg € R?,
there is aT (tg,n,X%o) > 0 such that|x(t;to,Xo)|| < n for all t > tg+ T (to, n,Xo). Roughly
speaking, ifijx(t; to,Xo)|| — 0 ast — o for anyty > 0 and anyo € R?, then the equilibrium
is globally attractive. The equilibrium iglobally asymptotically stablé it is stable and
globally attractive. With respect to the various definitions of stability, the reader may refer
to the books [2, 7, 10, 13, 19, 20, 30, 34, 44] for example.

The study of global asymptotic stability is one of main themes in the qualitative theory
of differential equations. Many efforts have been poured to find sufficient conditions and/or
necessary conditions which guarantee that the equilibrium (or the zero solution) of nonlinear
differential equations (or systems) is globally asymptotically stable (for example, see [1,
3,15,21-24,27,29, 32, 33,37, 38,40, 41]). The historical development of this research is
concisely summarized in Sugie [38, Section 1].

Recently, the present authors [41] have discussed the stability problem for the damped
superlinear oscillator

X' +a(t) gp(X) + w’x =0, 1.2)

and reported the following result.

Theorem A Suppose that there existgawith 0 < y3 < 11/ such that

Y L
liminf a(s)ds> 0. (1.3)
t—oo t

Then the equilibrium of1.2)is globally asymptotically stable if and only if

/wu(t)dt = — oo, (1.4)
0
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where t) is the solution of
U+ wP2a(t) gp(u) +1=0

satisfying §0) = 0.

Theorem A is a generalization of the results given to the damped linear oscillator
X' +a(t)X + w’x=0.

by Smith [37, Theorems 1 and 2] and Hatvani and Totik [24, Theorem 3.1]. In the special
case in whichp = 2, condition (1.4) coincides with

o€ ®ds
/0 TAU dt = oo,
where .
At) :/ a(s)ds
Jo

Even if intervals wherea(t) is zero appear repeatedly many times, condition (1.3) may be
satisfied if the lengths of intervals are less thgfw. Hatvani and Totik [24, Example 3.2]
pointed out that the requirement thakOy, < 1/w was best possible for the linear case
(p = 2) in the meaning that it cannot be changedghte- 17/ w.

Unfortunately, however, Theorem A cannot be applied to the superlinear Froude-type
oscillator (1.1), because it has two different kinds of damping terms. Of course, the method
which was used to obtain Theorem A might give a resolution to the questions below, but a
detailed analysis often will be required.

What conditions should the two coefficients satisfy in order to guarantee that all solu-
tions of (1.1) converge to zero as time increases? From Theorem A, we see that all solutions
of (1.1) withb(t) = 0 approach the origin agends tow if conditions (1.3) and (1.4) are sat-
isfied. Then, do all solutions of (1.1) approach the origih &ds too whenevemb(t) > 0
fort > 0? The answer is no (for example, see Example 5.1). From Theorem A, we also see
that under the assumption that

t+yo
liminf [ b(s)ds>0 (1.5)

t—oo  Jt
for somey, with 0 < y» < 11/ w, all solutions of (1.1) witha(t) = 0 approach the origin ds
tends towo if

/ u(t)dt = — o,
0
whereu(t) is the solution of
U+ 2b(t)gy(u)+1=0

satisfyingu(0) = 0. Then, cannot we say that all solutions of (1.1) approach the origin as
tends too whenever neither condition (1.3) nor condition (1.5) is satisfied? The answer is
also no. There are cases that all solutions of (1.1) approach the origiarads too even if
both conditions are not necessarily satisfied (for example, see Example 4.2).

Our main theorem is as follows:
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Theorem 1.1 Suppose that there existgg@with 0 < yp < 1/ such that

t+yo
liminf (a(s)+b(s))ds> 0. (1.6)

t—o i

Then the equilibrium of1.1)is globally asymptotically stable if and only if

./:u(t)dt o,
where yt) is the solution of
U+ wP2a(t) gp(u) + i 2b(t) @y(u) +1=0 1.7)
satisfying 0) = 0.

Note that condition (1.6) is weaker than conditions (1.3) and (1.5). In faettlet s(t)
andb(t) = s(t + 11/ w), where

2(n—1)7T<t - 2n—-1

sirf(wt) for m,

s(t) = -

0 for

2n
n<t<—m

w
with n € N. Then,a(t) +b(t) = sir?(wt) fort > 0 and

/t‘two(a(s) +Db(s))ds= /t‘twosinz(ws)dsz % (yo— Sin(:;%)) >0,

and therefore, condition (1.6) is satisfied. However, neither condition (1.3) nor condition
(1.5) is satisfied (see Figure 1).

2 Equivalence relation

Let u(t) be any solution of (1.7). Sinca(t) > 0 andb(t) > 0 fort > 0, it is clear that
U (t) < —1 as long au(t) > 0. Hence, there exists B > 0 such thatw(T) = 0. Since
u(T) = —1, we see thati(t) < 0 in a right-hand neighborhood df. Suppose that there
exists a; > T such thau(t;) = 0 and

ut) <0 for T <t<ts.

Fromu(t;) = 0 it follows thatu/(t;) = —1. Sinceu'(t) is continuous as long as it exists,
there exists a smafl > 0 such that/(t) < 0 fort € [t; — J,t1]. This means thai(t; — d) >
u(t1) = 0, which contradicts the definition tf. Henceu(t) is negative fot > T as long as
it exists. It is also clear that (t) > —1 as long asi(t) < 0. We therefore conclude thaft)
exists in the future and

ut)<0o fort>T.

In addition, sincegp > 2 andq > 2, the uniqueness of solutions of (1.7) is guaranteed for the
initial value problem.

Let T be a nonnegative number. We denote the solutiohof (1.7) satisfyingu(T) =0
by u(t; T). Then, we have the following equivalence relation, which plays an important role
in this paper.
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1,
/
0 m/w  2T/w  3rfw  Amjw  Swjw  6r/w
@
1,
t
0 m/w  2T/w  3r/w  Amjw  ST/w  6m/w
(b)
1,
t
0 m/w  2T/w  3r/w  Amjw  ST/w  6m/w

(©
Fig. 1. (a) The graph o&(t); (b) The graph ob(t); (c) The graph of
a(t) +b(t).
Lemma 2.1 Forany T > 0,
/ u(t; T)dt = — oo
-
if and only if

/Owu(t; 0)dt = — 0.

To prove Lemma 2.1, we need the following comparison results concerning the scalar
differential equation
u = f(t,u), (2.1)

where f(t,u) is continuous orf0,) x R and satisfies locally a Lipschitz condition with
respect tai (for example, see [28, pp. 30—31] and [44, p. 5]).

Lemma 2.2 Let ut) be a solution of(2.1) on an interval[a,b]. Suppose thaf(t) is con-
tinuous onfa, b] and satisfies the inequality

n'(t) > f(t,n(t)) fora<t<hb
If n(a) >u(a), thenn(t) > u(t) fora<t <h.

Lemma 2.3 Let ut) be a solution of(2.1) on an interval[a,b]. Suppose thaf(t) is con-
tinuous onfa, b] and satisfies the inequality

n'(t) < f(t,n(t)) fora<t<hb
If n(a) <u(a),thenn(t) <u(t)fora<t<h.
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3 Global asymptotic stability

Lety=X/w as a new variable. Then, Eq. (1.1) becomes the planar system
X = wy,
o2 2 (3.2)
Y = —wx— P %a(t) gh(y) — 0T bt gy(y).

The equilibrium of (1.1) corresponds to the zero solution of (3.1). Hence, in order to verify
Theorem 1.1, we have only to discuss whether the zero solution of (3.1) is stable and globally
attractive or not. For convenience’s sake, we divide the wkgiplane into four quadrants:

Q1= {(xy):x>0 andy> 0},
Q2={(xy):x<0 andy> 0},
Qz={(xy):x<0 andy< 0},
Qs = {(xy):x>0 andy < 0}.

We call the projection of a positive semitrajectory of (3.1) ontoxtyeplane apositive orbit
and we denote by " (to,Xo) the positive orbit of (3.1) starting from a poirg = (Xo,Yo) €
RR? at the initial timeto > 0.

As a suitable Lyapunov function for system (3.1), we choose the total energy

1
Vxy) = 5 (€ +y).
Then, we obtain
Vit y) =xx +yy = — P 2a(t)|y|’ — 0¥ ?b(t)ly|" < 0

on[0,) x R2, This means the derivative ¥f(x,y) along any solution of (3.1). Sind&(x,y)
is positive definite anil(z 1)(t,X,y) is nonpositive, we obtain the following result by means
of a basic Lyapunov’s direct method.

Proposition 3.1 The zero solution 0f3.1)is stable

Note that Proposition 3.1 can be led only under the assumptioa(that 0 andb(t) >0
fort > 0. To be precise, the zero solution of (3.1) is uniformly stable.

Next, we discuss the global attractivity of the zero solution of (3.1). We first prove ‘only
if'-part of Theorem 1.1.
Theorem 3.2 If the zero solution 0f3.1) is attractive then

/ u(t)dt = — oo, (3.2)
0

where ut) is the solution of(1.7) satisfying ¢0) = 0.

Proof. The proof is by contradiction. Suppose that (3.2) does not hold&. £ahax{1, w}.
Then, there exists @ > 0 such that

o 1
/T uvdt> - o=
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Since
ut)=ut;0) <ut;T)<0 fort>T

as shown in the proof of Lemma 2.1, we see that

./T.mu(t;T)dt > ﬁ (3.3)

Consider the positive orbit * (tg, o), Whereto = T andxg = (1,0). Let (x(t),y(t)) be the
solution of (3.1) corresponding to the positive orbit. The(T,) = 1 andy(T) = 0. Taking
the vector field of (3.1) into account, we see that the positive orbit goeQintdterwards
and it does not ent&d; passing through the positiveaxis. If

X(t) > % for t > T, 3.4)

then naturally the solutiofx(t),y(t)) does not approach the origin; namely, the zero solution
of (3.1) is not attractive. This completes the proof.

Hereafter, we will show that (3.4) holds. If (3.4) is not satisfied, we can fifida T
such thax(Ty) = 1/2 and %2 < x(t) < 1 for T <t < T;. Since the positive orbit does not
enterQ; passing through the positiveaxis, we see that

yt) <0 for T<t<T.

Letn(t) =y(t)/L. We compare) (t) with the solutioru(t; T) of (1.7) satisfyinqu(T;T) =0.
From the second equation of (3.1) it follows that

2 2
10 =~ 2x0 - L an gyt - - bo@v)

> 1= w28 a0, 00) - o2 B b gn 1)

> —1-wPat) @ (n(t) — 0 2b(t) @ (n(t)
for T <t <Ty. Let f(t,u) = — 1— wP2a(t) gy(u) — w9=2b(t)gy(u). Then, we have

n'(t) > f(t,nt)) for T<t<T.
Sincen(T) =y(T)/L =0, it follows from Lemma 2.2 that
Lut;T) <Ln(t) =y(t) <0
for T <t < T;. Hence, we have
X () = wy(t) > wlu(t;T) for T<t<T.

From this inequality and (3.3) it turns out that
Tl 00 1
x(T1) = X(T) +wL/ u(t; T)dt > 1+ wL/ U(ET)dt > - = X(Ty)
T T

This is a contradiction.
We have thus proved the theorem. a
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To examine the motion of positive orbits of (3.1), we transform system (3.1) into polar
coordinates by
x=rcosf and y=rsinf.

Then, we have
r' = — P 2a(t) gy (r)| sinB|P — w2b(t) @y (r)|sinb|, 5)
3.5
8 = — w— wP 2a(t)rP2@y(sinB) cosd — w’2b(t)r9 2¢,(sinG) cosh.

Consider the positive orbit * (to, Xo) starting from a poinko € Q; UQs at a timetp > 0. Let
(r(t),0(t)) be the solution of (3.5) corresponding/id (to, Xo). The positive orbif” * (to, Xo)
moves clockwise around the origin as long as it iQinJ Qs. In fact,

r?0’ = — w(x* +y?) — wP2a(t)xyly|P % — w¥?b(t)xyly|" % < 0
if (x,y) € Q1UQs. Suppose thaff *(to,xo) keeps staying iQ; UQs. Then,
sinf(t)cosO(t) >0 fort > to.
Hence, we obtain
0'(t) = —w— wP2a(t)(r(t))P2@y(sinB(t)) cosh(t)
— w12h(t)(r (t))% 2@y (sind(t)) cosh(t)
= —w—a(t)(wr(t)|sing(t))P~2sinB(t) cosh(t)

—b(t)(wr(t)|sind(t)|)92sind(t) cosB(t)
<-—w

fort > tg, and therefore,
(t) < B(to) — w(t —to),

which tends to- o ast — o, This is a contradiction. Thus, we have the following result.
Lemma 3.3 No positive orbit of(3.1) can continue staying in {QJ Qs ultimately.

Judging from Lemma 3.3, system (3.1) has three types of positive orbits. Positive orbits
of the first type keep rotating around the origin. Those of the second type rem&i in
(resp.,Q2) and approach the origin througdy (resp.,Qz). Those of the third type stay in
Q4 (resp.,Q2) and tend to an interior point iQ4 (resp.,Q2).

We are now ready to prove ‘if’-part of Theorem 1.1.

Theorem 3.4 Assuméd1.6)and(3.2). Then the zero solution dB.1)is globally attractive

Proof. Let (x(t),y(t)) be any solution of (3.1) with the initial timg > 0. Define
v(t) =V (x(t),y(t)) fort>to.
To prove the theorem, we have only to show that
v(t) >0 ast— co.

Since _
V(1) =Vt X(t),y(1) = — 0P 2a(t)[y(t)[P — w2b(t)|y(t)|? < 0
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for t > to, the functionv(t) has the limitvg > 0. If vg = 0O, then the proof is complete. We
will show that the case ofy > 0 does not occur provided (1.6) and (3.2) hold.

Suppose thaty > 0. Consider the closed curve givenyx,y) = vp. This closed curve
is the circumference of a circle whose center is at the origin and whose radit®vgs
Hence, this circle crosses with theaxis only at two point$+/2vp,0) and(—+/2vp,0). Let
X0 = (X(to),¥(to)) and letl” *(tg,Xo) be the positive orbit of (3.1), which corresponds to the
solution(x(t), y(t)).

As already mentioned, all positive orbits of (3.1) are classified into three types. Here-
after, we will complete the proof in three steps as followsT{(i)(tp,%0) does not belong
to the first type; (i)l * (to,Xo) does not belong to the second type; (fii) (to,Xo) does not
belong to the third type. This contradiction is caused from the assumptiomttal.

Step(i): Suppose thal ' (tg,Xg) belongs to the first type; namely, it keeps rotating

around the origin. Let be so small that
O<e< 77—72(0%)’ (3.6)
wherey is the number given in assumption (1.6). Consider the straight Yiregtans)x
andy = (tan(rt— €))x. Naturally,” ™ (to,Xo) crosses the two lines and tieaxis infinitely
many times. Letr(t), 0(t)) be the solution of (3.5) correspondingftd (tp,Xp). Then, we
can find four divergent sequencég,}, {tn}, {on} and{sy} withto < 1, <th < Oh < &
such thatf(1,) = 3m/2, B(t,) = m—¢, 6(0,) = /2 and B(sy) = €. The positive orbit
I" ™ (to, X0) moves clockwise around the origin when it passes thrq@hu Qz). However,
I " (to,%0) does not always move clockwise when it is (i@, U Q4), becaused’(t) may
change the sign. Hencé," (tg,Xg) might advance temporarily anti-clockwise. In such a
case, we should select the supremum of all(1,, gn) for which 6(t) > m— € as the point
th. Then, we have
e<Ot)y<m—e forth<t<s.

Sincev(t) \,vo > 0 ast — o, the positive orbit” *(to,xo) does not enter in the circle
{(xy): X2 +y? < 2 }. The circumference of the circle intersects with the half-he &
at only one point. Leh(¢) be they-coordinate of the intersection. Then, it turns out that
y(t) =r(t)sinf(t) > h>0fort, <t < s, Letyu = min{wP~2hP, w9=2h9}. Then, we obtain
V(t) = — P %a(t) ly(t)[P — ™ 2b(t) [y (t)|4
< — wP?hPa(t) — wi?hb(t) < — p(a(t) +b(t)) (3.7)
for tn <t < s,. Needless to say, (t) is nonpositive fot > to.

Suppose that there exists Ane N such thats, —t, > y for n > N. Then, it follows
from (3.7) that

Sh th+Yo
V(sh) —V(th) < —p [ (a(t)+b(t))dt < —p (a(t) +b(t))dt

th th
for n > N. Sincev(thi1) — V(sh) < 0 forn € N, we obtain
th+Yo
V(tns1) — V(tn) < — H / (a(t) +b{t))dt for n> N,
tn

and therefore,

N rli+yw
o Vitn) < Vitn1) ~v(t) < it 3 [ (@) +bi0)at
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However, from (1.6) it turns out that

[

n; /t:”VO(a(t) +b(t))dt = eo.

This is a contradiction. Thus, there exists a sequéngewith ng € N andny — o ask — o
such that

Snk_tnk < Yo (3.8)
Sincer’(t) = — wP~2a(t) @ (r (t))| sinB(t)|P — w=2b(t)gy(r (t))| sinB(t)|9 < 0 fort > to,
we see that(t) <r(to) fort > to. Hence,
0'(t) > —w—a(t)(wr(t)|sind(t)|)P~?|sinb(t)|| cosB(t)|
—b(t)(wr(t)|sinB(t))* ?[sinB(t)|| cosB(t)|
w— (wr(to))P%a(t) — (wr(to))* 2b(t)
—v(a(t) +b(t))

for t > to, wherev = max{ (wr (to))P~2 (wr(to))4~2}. From (3.8) it follows that
e—(m—¢g)= e(s"lk) - e(tﬂk)
> — (S —th) — v/fk(a(t) 1 b(t))dt

Nk

> — Wy — v/snk(a(t) +b(t))dt

Jtn,

==
>

for eachk € N; namely,

Sh
v/ k(a(t)—kb(t))dt >m—wyp—2¢ for ke N.
tnk

Using this estimation and (3.7), we obtain

V(Sn) —V(tn,) < — H ‘ka(a(t) +b(t))dt < — %(n— Wy — 2¢)

Ty
for k € N. Sincev(ty,,,) —V(s,) < 0fork € N, we see that
V(tn,,) —V(tn) < — %(nf wy—2¢) for ke N.

Taking (3.6) into consideration, we can conclude that

(V(tnk+1) - V(tnk)> =—-%,

M s

Vo — V(to) <

k=1

which is a contradiction. Thug, ™ (to,Xo) does not belong to the first type.

Step(ii): Suppose that” *(to,Xo) belongs to the second type; namely, it remains in
Q4 (resp.,Q2) and approaches the origin through (resp.,Qz). Then, there exist a point
X1 € Q4 (resp.,Q2) and a timeT > tg so thatl™ ™ (tg, Xo) passes througky atT and remains
in Qg (resp.,Q,) afterwards. We consider only the case in whith(tg, Xg) remains inQq
ultimately, because the other case is carried out in the same way.



Global dynamics of Froude-type oscillators with superlinear damping terms 13

Since(x(t),y(t)) € Q4 fort > T, we see that'(t) = wy(t) < 0 fort > T. Hence, there
exists amx > 0 such thak(t) — a ast — o, and therefore, it follows that

1 1
Eyz(t) —Vo— Ear2 >0 ast— oo

From the assumption of step (i), the solutipxit),y(t)) has to approack0,0) ast — co.
Hence,a = vp — a?/2 = 0. This is impossible becausg > 0. Thus,I * (o, xo) does not
belong to the second type.

If vo > a2/2, then we can choosela > T so large that

1
yA(t) >v0—§a2>0 for t > T.

Hence, we have
V(t) = — P Za(t)[y(t)|P — w0 ?b(t) |y(t)[*
< — wP2(vo— a2/2)”2a(t) — w2 (vo — a2/2)Vbit)
< —A(a(t)+b(t))

fort > T;, where
A= min{w"‘z(vo —a?/2)"? w2 (v — az/Z)Q/Z} :

Integrating this inequality frori; tot, we obtain
t
Vo—V(T1) < V(t) —v(T1) < —A 2 (a(s)+b(s))ds
1

However, it follows from (1.6) that
/ (a(t) +b(t))dt = o.
T

This is a contradiction. Thus, we see tlat +/2vp. We therefore conclude that" (tg, Xo)
approaches the poifit/2vp, 0) which is an intersection of the closed culwéx,y) = vp and
thex-axis.

Step(iii): Suppose thaf * (to, Xo) belongs to the third type; namely, it staysQa (resp.,
Q2) and tends to an interior point iQ4 (resp.,Q). Then, as shown above, the interior

point is (1/2vo,0) (resp.,(—v/2Vp,0)). Let &g = min{1, w\/2vp}. Then, @ (&) < & and
@ (&) < & because > 2 andq > 2. Taking into account that

V2V < x(t) <x(T) and y(t) <0

fort > T, we can estimate that

<y<t>) _ o ox(t)  wPPat)gp(y(t) w2t gy(y(t))

& &0 & &
w2 wPPalt)g(y(t) @ 2h(t) gy(y(t)
€ ®(€o0) ®y(€0)
<—1-wP 2a(t)(pp<&:))) - wq’zb(t)qh(%)
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fort > T.Letn(t) =y(t)/& fort > to and define
f(t,u) = —1— wP2a(t) gp(u) — wi2b(t) @(u).

Then,n’(t) < f(t,n(t)) fort > T. We compareq (t) with the solutionu(t; T) of (1.7) satis-
fying u(T;T) =0. Sincen(T) =y(T)/& < 0, it follows from Lemma 2.3 that

y(t)

=n()<ut;T)<O0
&

fort > T. Hence, we have
X(t) <weut;T) fort>T.

Integrate both sides of this inequality fromto t to obtain
't
—X(T) <x(t)—x(T) < weo/ u(s;T)ds
T
By (3.2) and Lemma 2.1, however,

t
/u(s;T)ds—>—oo ast — oo,
-

This is a contradiction. Thug, ™ (tp, Xo) does not belong to the third type.
The proof of the theorem is now complete. a

We can obtain Theorem 1.1 by combining Theorems 3.2 and 3.4 with Proposition 3.1.

4 Sufficient conditions for global attractivity

In the special case in whigh= 2 andg = 2, we can seek the solutiat) of (1.7) satisfying
u(0) = 0 concretely. In fact,

ult) = — /O.texp{/tis(a(u) + b(u))du} ds

In general, however, it is difficult to confirm whether condition (3.2) is satisfied or not. For
this reason, it is safe to say that Theorem 1.1 gives an implicit necessary and sufficient
condition for global asymptotic stability. In this section, we give some explicit sufficient
conditions for the equilibrium of (1.1) to be globally attractive.

Let p* be the conjugate number pf namely,

1 1

_l_i
pp

Since it is assumed throughout this paper fhat 2, the conjugate numbgr* satisfies that

1< p* < 2. Define
ur-1 if u>o0,
W= g(u) =

—(-uwPt if u<o.



Global dynamics of Froude-type oscillators with superlinear damping terms 15

Then,w has the same sign asandu = @, (w). In fact, since
wt/ (P~1) if w>0,
" {—(—w)l/(p‘l) f weo
it follows from (p—1)(p*— 1) = 1 thatw® (P~Y = wP~1 = |w|P" 2w = g (W) if w> 0 and
—(—wW)Y P = — (—w)P" L = (—w)P" 2w = [w|P" 2w = ¢+ (W) if w< 0. Henceggy: is the

inverse function ofg,. Similarly, @ is the inverse function ofy, whereq* is the number
satisfying ¥gq+1/q* = 1.

Corollary 4.1 Suppose that assumpti¢h.6) holds Suppose also that there exist a>T0
and differentiable functions(t) and d(t) such that

c(t)+d(t) >0, a(t)<c(t) and HQt)<d(t) (4.2)
fort > T. If, in addition c(t) and d(t) are increasing for t> T and
© 1
/T P (c(t)) + @y (d(1))

then the equilibrium of1.1)is globally attractive

dt = o, (4.2)

Proof. We divide the infinite interva)0, «) as follows:
I ={t>T:c(t)=0},
J={t>T:d(t) =0},
K=[T,»)\(1UJ).
From (4.1) it follows that the union dfandJ is the empty set, and therefore,
c(t)=0 and d(t)>0 fortel,
c(t)>0 and d(t)=0 fortel,

c(t)>0 and d(t)>0 forteKkK.

Define 1
0 =" g (elt) + @ (A1)
fort > T. Then, itis clear thag(t) < 0,
c)@p(g(t)) > -1 and dt)@y(9(t)) > -1 (4.3)

fort > T. We can rewritg(t) as
1

—m iftel,

1 .
git) = fw if tel,
— 1 if teKkK.

P (c(t)) + @ (d(t))
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Sincec(t) andd(t) are differentiable and increasing fop T, we see that
(q°—d®)T2d'(t)
@ (d(1))?

(P = L)c(t)*2c'(t)
@ (c(t))?

(P = 1)e(t)P 3¢/ (1) + (9"~ Dd(O) T *d'(1)
(9 (c(t)) + @y (1))

In brief, g(t) is negative, differentiable and increasing for T.

Consider the solution(t; T) of (1.7) satisfyingu(T;T) = 0. Sinceu/ (T;T) = — 1, there
exists ad > 0 such that

gt) = >0 fortel,

git)= >0 forted,

gt)= >0 fortek.

ut;T) <0 forT<t<T+0.
Taking into account thad(T) < 0= u(T; T), we can choosetd € (T,T + J) so that

g(t") <u(t*;T) <.

Let us comparei(t; T) with n(t) = A g(t), where

A= min{ ug(*t;*'l)')7 ‘Pp*<2wlpfz)’ %<T%1*2) }

Note that 0< wP~2@y(A) < 1/2 and 0< w9 2¢y(A) < 1/2. Using (4.3), we obtain

%

WP 2e(t) gp(n (1) = WP 2@p(A )e(t) gh(g(t)) > — wP2@p(A)
and

W2t @(n (1) = T 2@(A)d(O) @(g(t) > — 0¥ @A)

fort > T. From these estimations it follows that

Y
NP N

WP 2e(t)@p(n (1) + w2 @(n(1) > 1 fort>T.
Hence, by (4.1) and the fact thaft) = A g(t) < O fort > T, we have
n't)=Ad(t)>0>-1-wP 2ct)gp(n(t)) — i 2d(t)@(n(t))
> —1- P 2a(t)gp(n(t) — 0¥ 2b(t) @(n ()

for t > T. Let f(t,u) = — 1 — wP2a(t) gp(u) — w92b(t) @(u). Then, it is continuous on
[0,0) x R. Sincep > 2 andg > 2, we see thaf (t,u) satisfies locally a Lipschitz condition
with respect tau. In addition, we see that

n'(t)y > f(t,n(t)) fort>T.
Moreover, it follows from the definitions af(t) andA that
n(t") =Ag(t") = ut’;T).
Hence, by means of Lemma 2.2, we have

nt)>ut;T) fort>t"
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and therefore,
t t
/n(s)dsz/u(s;T)ds for t >t*
J t*

It follows from this inequality and (4.2) that

00 t*
/u(t;T)dt:/ u(t; T)dt+ “u(t; T)dt
JT

JT

t*
/ u(t:T) dt+/ n(t
t* ©
_/ u(t:T) dt—/ dt+/ n(t)dt
t*
_/ ut;T) dt+)\/ g(t

ot 1
Ay *”(t))dt”/T o (1) + ()

Hence, by Theorem 3.4 and Lemma 2.1, we conclude that the equilibrium of (1.1) is globally
attractive. O

In Corollary 4.1, the functions(t) andd(t) are assumed to be increasing. However, the
increase properties aft) andd(t) are not always necessary for the equilibrium of (1.1) to
be globally attractive. As shown by the following result, another condition(tnandd(t)
can substitute for the increase properties.

Corollary 4.2 Suppose that assumpti¢h.6) holds Suppose also that there exist a0
and differentiable functions(t) and d(t) satisfying conditiong4.1) and (4.2).If, in addi-
tion,

) 1 !
Jm((pp*(c(t))+qqq*(d(t))) . “4)

then the equilibrium of1.1)is globally attractive

Proof. As in the proof of Corollary 4.1, we define
1
gt) =— <0
= g ) + @ (@)

fort > T. Then, it satisfies (4.3). From (4.4) it follows that

gt)—0 ast— oo,

Hence, we can choosela> T so that

gt)> - i fort>Ti, (4.5)

p=minf g (s ) o gz )

where
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From the definition ofu it turns out that

0< wP2gy(p) < % and 0< w9 ?qy(u) < % (4.6)

Consider the solution(t; Ty) of (1.7) satisfyingu(T1; Tp) = 0. Sinceu'(Ty;T1) = — 1,
we can find & > 0 such that

ut;T) <0 for Ti<t<Ti+0.
Taking into account thai(T1) < 0= u(Ty; T1)/H, we can chooset € (Tq, T1 + d) so that
uts;T)
i

<0.

g(t) <

Let

Ut T)
()
Then, we see that < p andn(t) < 0fort > T. Hence, using (4.3) and (4.6), we obtain
WP 2e(t) @y (N (1)) = WP 2@ (v)c(t) gp(g(t))
> WP 2gp()c(t) By(g(t)) > — P2 gp(p) > —

and n(t) =vg(t).

NN

and
WP 2d(t) @ (n (1) = 0¥ 2@ (v)d(t) @ (g(t))
> o 2 ()dt)@(a(t) > — " 2y(u) >~

[EY

fort > T. From these estimations it follows that
WP 2e(t) (1) + o 2 @(n(0) > — 5 for t=T.

Hence, by (4.5), we have

70 =vg) > 5 >~ 5 >~ 1= L p(n(t) - o FdOR(N)

>~ 1- 0P 2at) (1) ~ o 2O @(N(D) = F(LN (V)

fort > Ty, wheref (t,u) = — 1 — wP~2a(t) @y(u) — wI~2b(t) @(u). Note thatf (t,u) is con-
tinuous on[0,») x R and satisfies locally a Lipschitz condition with respecutdt also
follows from the definitions of} (t) andv that

nt*) =vg(t") =u(t*; T).
Hence, from Lemma 2.2 it turns out that
n(t) >u(t;Ty) for t >t~

Using this inequality and following the same process as in the proof of Corollary 4.1, we
can estimate that

/ u(t; T)dt = — o,
T1
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Hence, from Theorem 3.4 and Lemma 2.1, we see that the equilibrium of (1.1) is globally
attractive. O

In Corollary 4.2, we assumed that there exidt & 0 and differentiable functions(t)
andd(t) such that
c(t)>0, d(t)>0 and c(t)+d(t)>0
for t > T. When we strengthen this assumption somewhat, we can change condition (4.4)
into a simple one.

Proposition 4.3 Supose that there exist numbers>T0 and e> 0 and differentiable func-
tions dt) and d(t) such that

c(t)>0, d(t)>0 and dt)+d(t)>e 4.7)
fort > T.If
- c(t) - d(1)
tlmﬁ =0 and tlm a0 =0, (4.8)

then condition(4.4)is satisfied

Proof. From (4.7) it turns out that there exists@p O satisfying
@ (c(t)) + @ (d(t)) >€ for t >Ts. (4.9)
Actually, otherwise we can choose the different sequétgesuch that
@ (C(th)) + @ (d(th)) = 0 asn— oo

Sincegy: (c(tn)) > 0 andgy: (d(tn)) > 0 forn e N, we see thagy: (c(tn)) andgy-(d(ty)) tend
to 0 ast — «, and therefore,

c(tn) +d(tn) -0 asn— .
This contradicts (4.7). From (4.8) it follows that for any> 0 there exists d1(€) > 0 such

that
c’(t)‘ - ee d'(t) ee
ct)| 2(p*—1) dt) | = 2(g*—1)
fort > T;. Let T, = max{T, T1}. Then, by (4.7), (4.9) and (4.10), we have

(4.10)

‘ < 1 ) _ ’ (p*— L)c(t)”~2c/(t) + (g — ()T 2d(t)
@ (c(t)) + @y (d(1)) (@ (c(t) + @y (d(t)))?
(p"— 1)@ (c()) d(t)’
(@ (c(t)) + @y (d(1)))* | ©(V)
(p"— 1)@ (d(1) d/(t)\
(@ (c(D)) + @y (d(1)))? | (V)
(p"— 1)@ (c(t)) d(t)\
= &(@ (c(t) + @y (d(1))) | c(t)
(P - D@ (d(t)  |d'(t)

& (g (c(t)) + @ (d(t)) | (1) ‘ =f
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fort > T,; namely, condition (4.4). O
By Corollary 4.2 and Proposition 4.3, we obtain the following result.

Corollary 4.4 Suppose that assumptiofis6), (4.2)and (4.8) hold. If there exist numbers
T > 0and e> 0 and differentiable functions(t) and d(t) such that

c(t) >0, d(t)>0, c(t)+d(t)>e a(t)<c(t) and HKt)<dt) (4.11)

fort > T, then the equilibrium of1.1)is globally attractive
To compare Corollary 4.2 with Corollary 4.4, we give an example. Let
ft)=1+ %sin3t +max{0, vt sin’t}
1+ zllsin3t+\ﬁsin3t if 2(n—m<t< (2n-1)m,
1+lesin3t if 2n—1)m<t<2nm

with n € N. Then, it is clear thaf (t) > 3/4 fort > 0 andf(t) <1 fort € [(2n— 1), 2n71].
Since

sin’t
o) fsmztcost+ NG

21sinztcost if (2n—1)m<t<2nm,

+3yisirftcog if 2(n—1)m<t< (2n—1)m,

the functionf (t) is continuously differentiable far> 0.

Exampled.1 Consider equation (1.1) with
a(t) = gp(t') and b(t) = g(t'Y)

for any p > 2 andq > 2. Then the equilibrium is globally attractive.
It is obvious that assumption (1.6) is satisfied. Tet 1. We definec(t) = gy(tV)) and
d(t) = g(t"®) fort > T. Then, condition (4.1) holds. We also see that

o 1
Aqﬂm»+wmmﬂ mmd+/th
L
T 2tf®

anm 1\f® @n+yms 1\
dt / =)t
22{/2n1<) +2mr (t>

©  22nNTT ]_
2tf(t z /Zn Hn f

dt

m 1 ©
= I+ 2tr® dH— z Iog
™1 1 246 2n
dt+ - lim log

T 2tf0) 2nsw ©°135 2n—1
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Foranyme N, let
/2
Im:/ sin™x dx
0

Then, it is well-known that

145 2n-1m ) AL
=246 2 A Vil Ton
Hence o, tends 0 as — o, and therefore, we get
/w 1 dt = oo;
T @ () + @y (d(t))
namely condition (4.2). Moreover, we see that
@ (c(t)) >34 for t>T. (4.12)
Since loge(t) = (p—1) f(t) logt for t > T, it turns out that
c(t / /
0| = ltoge(t)| = |ip- 1 gt + (- )11
f(t
< (p-1)| ') logt] + (p-1) "
3 5
S(p—1)<4+ﬁ+3\/>Iogt+(p—1)(z+ﬁ>
fort > T. Using this estimation and (4.12), we obtain
Gremrtarem) |~ |(ztem) |- e 46
@ (c(t)) + @y (d(t)) 2@y (c(t)) 2qp (c(t)) | c(t)
(p'—1)(p—1) 3/4+1/(2v1) +3Vt
< 5 34 logt
L (P=D(p-1)5/4+ Vi
2 t3/4

_ 3 1 3 loat 5 1
T\ 8t3/4 + At5/4 + 2t1/4 9l+ o3 8t3/4 T 5 2t1/4°

which tends to 0 as— . Thus, condition (4.4) is also satisfied. Hence, by Corollary 4.2,
we conclude that the equilibrium is globally attractive (see Figure 2).

However, condition (4.8) is not satisfied wheft) = gy(tf®) andd(t) = g (t'®). In
fact, lett, = (2n—1/4)rrfor n€ N. Then,

e 3V2 V2
f(tn)_ﬁ and f(tn)_l—ﬁ,
and therefore,
c(tn) _ 3\f 1 1-/2/16

which diverges to infinity as — . It is difficult to find suitable upper functiongt) and
d(t) satisfying condition (4.8) in Example 4.1, because the damping coeffiaértand
b(t) fluctuate intensely.
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Fig. 2. The positive orbit ofx =y, y = —x—t'Oy —t2®}yy starting
from the point(xo,Yyo) = (6,—7) at the initial timeto = 0.

Although condition (4.4) looks more complicated than condition (4.2), as shown in Ex-
ample 4.1, it may be easy to check condition (4.4).

It is convenient to use the following result when the damping coefficiftjsandb(t)
are polynomial.

Corollary 4.5 Suppose that assumpti¢h.6) holds Suppose also that there exist numbers
Yy, 0, {1, f2 and T > 0 such that

0<at)</tY and 0<b(t)</(t? fort>T. (4.13)
If 0<y<p-—1and0< o <q—1, thenthe equilibrium of1.1)is globally attractive

Proof. Letc(t) = ¢1tY andd(t) = ¢»t9. Then, condition (4.1) is clearly satisfied. It is also
clear that(t) andd(t) are increasing far> T becausg > 0 ando > 0. LetTy = max{1, T}

and/z = max{élp*_l, ég*_l}. Since 6K y< p—1and 0< o <g-1, we see that
1 1 1 1

- >
@ (C(t)) + @ (d(t))  cOPT+dO)TT P y/(p-1) 4 g3 Mo/(a-1) T 2(3t
fort > T1. From this inequality, we can verify that
© 1 T1 1 1 o 1
dtZ/ dt-i-i/ —dt =o0;
f @ (o) + @ (d) @ (clt) + @y (d(t) 265 t

namely, condition (4.2). Hence, by Corollary 4.1, we conclude that the equilibrium of (1.1)
is globally attractive. ad

In the proof of Corollary 4.5, we can also confirm condition (4.4). In fact, since

p-1 -1)-1 q-1 —1)-1
pfvlgl ty/(p-1) +q%152 to/(a-1)

1 /
( o (C(t)) + @y (d(1)) ) - (6P~ 2y/(p-1) 4 (2o /(a-1))
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fort > Ty, ittends to 0 a$ — o because X y< p—1and 0< o < g— 1. Hence, we can
also lead Corollary 4.5 from Corollary 4.2.

Recall that we defined the functia(t) in Section 1. Then, we can give the following
example.

Exampled4.2 Consider equation (1.1) with
alt)=tst) and b(t) =ts(t+m/w)

for any p > 2 andq > 2. Then the equilibrium is globally attractive.

Sincea(t) +b(t) = t sir?(wt) fort > 0, assumption (1.6) is satisfied. Condition (4.13)
is also satisfied witly = 0 = /1 = ¢, = 1. Sincep > 2 andqg > 2, itis clear that

0<y<p-1 and 0Ko<qg-1

Hence, from Corollary 4.5, we see that the equilibrium is globally attractive (see Figure 3).
Note that neither condition (1.3) nor condition (1.5) is satisfied.

Fig. 3. The positive orbitofx' =y, y = —x—ts(t)y—ts(t+m)|y|y starting
from the point(xo,Yyo) = (5,0) at the initial timetp = 0.

5 Necessary conditions for attractivity

In this section, we give some explicit necessary conditions for the equilibrium of (1.1) to be
attractive. We judge that the equilibrium of (1.1) is not attractive by using lower functions
instead of the damping coefficierdé&) andb(t).

Corollary 5.1 Suppose that there exist a-¥ 0 and differentiable functions(t) and d(t)
satisfying conditior{4.4) and

c(t)+d(t) >0, 0<c(t)<a(t) and 0<d(t) <b(t) (5.1)
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fort >T.If
1

/T P (c(t)) + @ (d(t))

then the equilibrium of1.1)is not attractive

dt < o, (5.2)

Proof. Let
1

P ((t)) + @y (d(1))
fort > T. Then, we can easily confirm thgft) < 0 and
@ (C(t)Pp(9(1)) + @ (d(O) @(9(1) = @ (c())9(t) + @ (d(t))g(t) = -1 (5.3)

fort > T. From (5.3) it turns out that there existpa> 0 such that

gt) =—

WP~ 2c(t) gn(g(t)) + Wi 2d(t)@y(g(t)) < —p for t>T. (5.4)
Actually, otherwise we can find a divergent sequeftgé such that
WP 2C(t) @p(Q(th) + T 2d(t) y(gltn) - 0 asn - .
Sincec(t) > 0,d(t) > 0 andg(t) < O fort > T, we see that

WP Ze(t) @p(g(t)) + W 2d(t) @y(g(t)) < WP e(t)@(g(t)) <O
and

WP~ Ze(t) gp(g(t)) + T Zd(t)gy(g(t)) < ¥ Zd(t)gy(g(t)) <O.

Hence, bothwP~2c(tn) @(9(tn)) and w¥=2d(tn) @ (9(t)) tend to 0 as1 — eo. This contra-
dicts (5.3). Lety = max{1, 2/p}. From (4.4) it follows that

gt)—0 ast— .

Hence, there exists® > T such that
1
dgt) < X for t > Ty. (5.5)

Letn(t) = xo(t). Sincep>2,q> 2 andy > 1, we see that < ¢ (x) andx < @(x).
Hence, by (5.4), we have

WP 2c(t) @p(n (1) + W 2d () @ (N (1))
= 0P Zc(t) (X)) Bp(a(1)) + ¥ 2d (1) @y (X) @y (a(t))
< (WP et)@(9(t) + w2t gy(a(t))) X < —px

fort > T. Sincex > 2/p, it follows that
WP 2c(t) (N (1) + I 2d(t)@y(n(t) < —2 fort>T.
Using this inequality and (5.5), we obtain

n'(t)=xd(t) <1< —1-wP%ct)g(n(t)) — w2d(t)@(n (1))
< —1-wPZat)@p(n(t)) — W™ 2b(t) @ (n(t))
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fort > Ty. Let f(t,u) = — 1— wP~2a(t) @y (u) — w92b(t) @ (u). Then,n’(t) < f(t,n(t)) for
t > T;. Consider the solution(t; T1) of (1.7) satisfyingu(T1; T1) = 0. Then, it is clear that

N(T) =x9(T1) <0=u(Ty; Th).
Hence, Lemma 2.3 shows that
f](t) < U(t;Tl) for t > T

Integrating both sides of this inequality frofa to t, we obtain

t t
n(s)dsg/ u(ssTa)ds fort > Ty,
T1 T

1

which yields that

/rjU(t;Tl)dt Z/Tjn (t)dt= X/Tjg(t)dt
= *X/TTlg(t)dthx/wg(t)dt

= x [ svatx | o g

From (5.2) it follows that .
/ u(t; T1)dt > — oo,
JT

Hence, by Theorem 3.2 and Lemma 2.1, we conclude that the equilibrium of (1.1) is not
attractive. O

Let us give an example which is applicable to Corollary 5.1. For this purpose, we define
g(t) = 2(1+ fzsint) and h(t) = 2(1— fzsint)
fort > 0. Note that

2(1-v2) <h(t) <2<g(t) <2(1+V2) if 2(n—n<t<(2n-1m,
(5.6)
2(1-v2) <g(t) <2<h(t) <2(1+V2) if 2n—1)m<t<2nm

withne N.

Example5.1 Consider equation (1.1) with
a(t) = gp(t9Y) and bit) = @(t"V)
for any p > 2 andq > 2. Then the equilibrium is not attractive.
Let T = 11/4. Definec(t) = @, (t9Y) andd(t) = @ (t"V) fort > T. Then,c(t) andd(t)

are differentiable fot > T. It is obvious that condition (5.1) is satisfied. Condition (4.4) is
also satisfied. In fact, using the estimation (5.6), we obtain

(tg(t) +th(t))2

. 2
_ t),h(t)}— t),h(t
thaX{g}w,(lﬂmm{gm (t)} -max{g(t) <>}) o1 ast s oo
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and

‘ (2v2coglogt +2(1+ v/2sint) /t)t9) + (—2y/2cog logt +2(1— v/2sint) /t)t"® ‘
t2max{g(t).h(t)}

4\/2logt 2(2+v2)

< [maien.h0] | (maigu )i 0 ast— e

Hence, we have

‘(g(t) logt)'t9 + (h(t) Iogt)’th“)‘
(t9(®) 4 th(t))?

1 !
B ‘ <tg<t) Hh(r)) -

|(2v/2coslogt +2(1+ v2sint) /1)t99 + (— 2v2costlogt -+ 2(1 — v2sint) /1)t
(t9®) 4 tht))?

’(%*(C(t))i%*(d(t))>,

which tends to 0 as— . Noticing that
max{g(t), h(t)} >2 fort>0,

we obtain

00 1 n00 1
/T o (C0) + o (@) O /T o0 o Ut

= ) : dt< oo:Ldt 00"
—/Tm —/Trz < 0o;

namely, condition (5.2). Thus, from Corollary 5.1, we see that the equilibrium is not attrac-
tive (see Figure 4).

—1.5F

Fig. 4. The positive orbit ofx =y, y = —x—t90y —t2®}yy starting
from the point(xo, yo) = (5,0) at the initial timeto = 11/4.
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As shown in Example 5.1, the equilibrium of
X'+ @) gy (X) + @ (") @y (X)) + wPx =0 (5.7)

is not attractive for anyw > 0. To compare with (5.7), we consider the superlinear oscillators
with a single damping term:

X'+ @o(t99) 9o (X) + w?x = 0, (5.8)
X'+ @y(t"V) @y (X) + w?x = 0. (5.9)

Since
g(t):2(1+fzsint) <0 if (2n—3/4)m<t<(2n—1/4)m

with n € N, we obtain

« 1 9 ©  c(2n-1/4)m °
—dt= / ——dt > / z
/n/4<Pp* (c(t)) n/a 19O Zl (2n-3/4ym t90) Z 2

Similarly, we can estimate that

| @ 1
— -~ __dt= / ——_dt=
/71/4%*(0'(0) n/a th®)

Hence, Corollary 5.1 is inapplicable to equations (5.8) and (5.9). To tell the truth, both
equilibria of (5.8) and (5.9) witlw = 1 are globally asymptotically stable (see Figures 5
and 6).

Fig.5. The positive orbit ofx =y, y = —x—t90y starting from the poinfxg, yo) =
(5,0) at the initial timetp = /4.

The following result is a direct consequence of Corollary 5.1.
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Fig.6. The positive orbit ofX =y, y = —x —t%Uyly starting from the point
(%0,¥0) = (5,0) at the initial timetp = 17/4.
Corollary 5.2 Suppose that there exist numbgre, ¢1, /> and T > 0 such that
0ty <a(t) and /t°<b(t) fort>T.

If p—1<yorq—1< o,then the equilibrium of1.1)is not attractive

Proof. We may assume without loss of generality that- 1. Letc(t) = ¢1t¥ andd(t) =
¢2t9. Then, it is clear that(t) + d(t) > 1TV + £, T9 > 0, c(t) < a(t) andd(t) < b(t) for
t > T; that is, condition (5.1) is satisfied. Condition (4.4) is also satisfied. In fact,

—_ 1 l
AN e A N R (O

V(P =D P4 o(qr - 1) ol

N (P Lytr-) 4 g3 Mol -1)? ’

’(%*(C(t))i%*(d(t))>,

which tends to 0 as— . If p— 1 < y, then we can choose &n > 0 so that

Y .
< — = — .
1+& < o1 y(p'—1)

Hence, we obtain
/ 1 dt_/ 1. 1 1 dt
T @ (c(t)) + @ (d(t)) LA VA I T{C

1 e\
<[ () dt<e.
‘e;’l/T (t) =
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Similarly, if g— 1 < g, then we obtain

- e
/T %*(C(t))-ﬁl-%*(d(t)) dt<€g}1/T (%) dt < o

for somee, > 0. Thus, condition (5.2) holds. Consequently, by means of Corollary 5.1, we
can conclude that the equilibrium of (1.1) is not attractive. a

6 Final comment
Combining Corollary 4.5 and Corollary 5.2, we obtain the following result.

Corollary 6.1 Suppose that there exist numbegrs, ¢;, /> and T > 0 such that
alt)=/0tY and Kt)=1/»t7 fort>T.
Then the equilibrium of(1.1)is attractive if and only if
0<y<p-1 and 0<o<qg-1 (6.1)

Proof. Whena(t) = ¢1tY andb(t) = ¢>t° for t > T, assumption (1.6) is clearly satisfied
for any yp > 0. Hence, by virtue of Corollaries 4.5 and 5.2, we can conclude that (6.1) is a
necessary and sufficient condition for the equilibrium of (1.1) to be globally asymptotically
stable. O

Although William Froude paid his attention to two kinds of damping terms, three or
more damping terms may act on a certain phenomenon. We can easily find models with
the damping force has the cubic polynomial expression with respect to the angular velocity
(for example. see [4, 8,9, 12, 14, 18, 35, 42]). Himeno [25] proposed even the damping force
with a power series expansion of the angular velocity (see also [16, 26, 43]). Such a model
is described as follows:

n
X'+ Zai(t)(ppi (X) + w’x=0, (6.2)
1=
where the damping coefficientg(t), ax(t), ..., an(t) are continuous and nonnegative for
t > 0, the restoring coefficienb is positive, and the parametgrs> 2, p2 > 2, ...,pn > 2.
Our method in the present paper can be used even for this model. The following results are
obtained (the proof is left to readers).

Theorem 6.2 Suppose that there existggwith 0 < yo < 1/ such that
t+y N
Iiminf/ (9)ds> 0. 6.3
minf | i;a( ) (6.3)

Then the equilibrium o{6.2)is globally asymptotically stable if and only if

/Omu(t)dt: o,

where yt) is the solution of

u’+_iwpi2ai(t)(ppi(u) +1=0
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satisfying 0) = 0.

Let p' be the conjugate number pf; namely,

1 1

— + "
Pi B

)

wherei is any integer satisfying £ i < n. Then, we obtain explicit sufficient conditions and
necessary conditions for the equilibrium of (6.2) to be globally attractive.

Corollary 6.3 Suppose that assumpti@¢®.3) holds Suppose also that there exist a>T0
and differentiable functionsylt), b(t), ..., bh(t) such that

n
Zbi (t)>0 and a(t)<h(t) (1<i<n) (6.4)
=

fort > T. If, in addition by (t), by(t), ..., Ih(t) are increasing for £ T and

« 1
/T PRET NI A (6.5)

then the equilibrium of6.2)is globally attractive
Corollary 6.4 Suppose that assumpti@¢®.3) holds Suppose also that there exist a>T0

and differentiable functionsyft), by(t), ..., by(t) satisfying condition$6.4) and (6.5). If,
in addition,

. 1 /
t'm<zi”1<pp¢<bi<t>>) =0 ©6)

then the equilibrium of6.2)is globally attractive

Corollary 6.5 Suppose that there exist a=¥ 0 and differentiable functionssfft), by(t),
..., n(t) satisfying conditior{6.6) and

_ibi(t)>0 and 0<bhi(t)<a(t) (1<i<n) (6.7)

fort>T.If

dt < oo,

/°° 1
T il @y (bi ()

then the equilibrium 0f6.2) is not attractive
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