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Abstract

The present paper is devoted to an investigation on the uniform asymptotic stability for
the linear differential equation with a damping term,

x′′ + h(t)x′ + ω2x = 0

and its generalization

(ϕp(x
′))′ + h(t)ϕp(x

′) + ωpϕp(x) = 0,

whereω > 0 andϕp(z) = |z|p−2z with p > 1. Sufficient conditions are obtained for
the equilibrium(x, x′) = (0, 0) to be uniformly asymptotically stable under the assump-
tion that the damping coefficienth(t) is integrally positive. The obtained condition for
the damped linear differential equation is given by the form of a certain uniform growth
condition onh(t). Another representation which is equivalent to this uniform growth
condition is also given. Our results assert that the equilibrium can be uniformly asymp-
totically stable even ifh(t) is unbounded. An example is attached to show this fact. In
addition, easy-to-use conditions are given to guarantee that the uniform growth condition
is satisfied. Moreover, a sufficient condition expressed by an infinite series is presented.
The relation between the representation of an infinite series and the uniform growth con-
dition is also clarified. Finally, our results are extended to be able to apply to the above-
mentioned nonlinear differential equation.
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1. Introduction

The equations considered in this paper are

x′′ + h(t)x′ + ω2x = 0, (1.1)

and its generalization, where the prime denotesd/dt, the coefficienth(t) is continuous
and nonnegative fort ≥ 0, and the numberω is positive. Equation (1.1) is called the
damped linear oscillator. The only equilibrium of (1.1) is the origin(x, x′) = (0, 0).
Our objective is to establish sufficient conditions on the damping coefficienth(t) for the
equilibrium to be uniformly asymptotically stable.

As is well known, the concept of uniform asymptotic stability is greatly different from
the concept of (merely) asymptotic stability; that is,

lim
t→∞

x(t) = lim
t→∞

x′(t) = 0

for every solutionx(t) of (1.1). To verify that the equilibrium is asymptotically stable,
we have only to show that each solution of (1.1) and its derivative tend to zero as timet
increases. It is not necessary to care about the asymptotic speed of each pair(x(t), x′(t)).
On the other hand, we have to confirm that each pair(x(t), x′(t)) approaches the origin at
the speed of the same level in order to prove that the equilibrium is uniformly asymptoti-
cally stable (see Section 2 about the strict definitions of asymptotic stability and uniform
asymptotic stability). Here is the difficulty of the research of uniform asymptotic stability.

Uniform asymptotic stability concerning nonlinear differential equations has been in-
vestigated by many authors in relation to Lyapunov’s direct method. Here, to explain an
importance of the research of uniform asymptotic stability briefly, we consider the linear
time-varying system given by

x′ = A(t)x (1.2)

with A(t) being ann × n continuous matrix. System (1.2) has the zero solution, which
is equivalent to the equilibrium of the correspondingn-order linear differential equation.
Let ∥x∥ be the Euclidean norm of a vectorx. We denote the solution of (1.2) passing
through a pointx0 ∈ R2 at a timet0 ≥ 0 by x(t; t0,x0). It is well-known that the
zero solution of (1.2) is uniformly asymptotically stable if and only if it is exponentially
asymptotically stable (or exponentially stable); namely, there exists aκ > 0 and, for any
ε > 0, there exists aδ(ε) > 0 such thatt0 ≥ 0 and∥x0∥ < δ(ε) imply ∥x(t; t0,x0)∥ <
ε exp(−κ(t− t0)) for all t ≥ t0. Thanks to this characteristic of solutions of (1.2), we can
obtain converse theorems on uniform asymptotic stability that guarantee the existence of
a good Lyapunov function. The good Lyapunov functionV (t,x) : [0,∞)× Rn satisfies

(i) a(∥x∥) ≤ V (t,x) ≤ b(∥x∥),

(ii) V̇(1.2)(t,x) ≤ − c(∥x∥) or V̇(1.2)(t,x) ≤ − d V (t,x),

(iii) |V (t,x1)− V (t,x2)| ≤ f(t)∥x1 − x2∥,
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wherea(·), b(·) andc(·) are continuous increasing and positive definite functions,d is a
positive constant andf(t) is a positive suitable function. In general, however, (merely)
asymptotic stability of the zero solution of a time-varying system does not ensure the
existence of any good Lyapunov function (see [24, Example 2]). This point is a big dif-
ference with uniform asymptotic stability and asymptotic stability. A function satisfying
the above properties (i) and (ii) is often called astrict Lyapunov function in control the-
ory (for example, see [3, pp. 101–103]). We can solve perturbation problems by utilizing
such a good Lyapunov function. For example, if the zero solution of (1.2) is uniformly
asymptotically stable and ifg(t,x) andλ(t) satisfy that∥g(t,x)∥ ≤ λ(t)∥x∥ for t ≥ 0
andx ∈ R2, where ∫ ∞

0

λ(s)ds < ∞,

then the zero solution of the quasi-linear system

x′ = A(t)x+ g(t,x)

is also uniformly asymptotically stable. However, even if the zero solution of (1.2) is
(merely) asymptotically stable, the zero solution of the quasi-linear system is not always
asymptotically stable. Perron [28] has clarified this fact by considerably complicated
analysis. For example, the reader is referred to the classical books [5, pp. 42–43], [6,
pp. 169–170], [8, p. 71]. It is also known that the zero solution of (1.2) is uniformly
asymptotically stable if and only if it is totally stable which is closely related to robustness.
For the definition of total stability, see [3, pp. 45] and [35, pp. 118–119].

LetX(t) be a fundamental matrix for a generaln-dimensional linear system satisfying
X(0) = E, the unit matrixE. We define the norm ofX(t) to be

∥X(t)∥ = sup
∥x∥=1

∥X(t)x∥.

It is well-known that the zero solution of (1.2) is asymptotically stable if and only if

∥X(t)∥ → 0 as t → ∞

and that the zero solution of (1.2) is uniformly asymptotically stable if and only if there
exist positive constantsK andκ such that

∥X(t)X−1(s)∥ ≤ K exp(−κ(t− s)) for 0 ≤ s ≤ t < ∞

(for the proof, see the books [8, p. 54] or [17, p. 84]). If we can get a concrete expression
of a fundamental matrix, we may be able to judge whether the zero solution is uniformly
asymptotically stable (or asymptotically stable) by using the above-mentioned criterion.
Unfortunately, however, we are almost unable to find a fundamental matrix. Therefore,
these criteria are not useful for practical use though they are sharp.

Before going into the main theme, let us look at the results concerning the asymptotic
stability. Many papers have been written to find out sufficient conditions and necessary
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conditions for the zero solution (or the equilibrium) to be asymptotically stable without
using the information on a fundamental matrix (for example, see [2, 4, 14, 19, 20, 21,
22, 23, 31]). Historical progress of this research is briefly summarized in Sugie [32,
Section 1]. Here, we will describe some results of not having written to the summary.

For this purpose, we need to introduce two families of functions as follows. The
damping coefficienth(t) is said to beintegrally positiveif

∞∑
n=1

∫ σn

τn

h(t)dt = ∞

for every pair of sequences{τn} and{σn} satisfyingτn+λ < σn ≤ τn+1 for someλ > 0.
For example, the functionsin2 t is integrally positive. It is known thath(t) is integrally
positive if and only if

lim inf
t→∞

∫ t+d

t

h(s)ds > 0

for everyd > 0. Let {In} be a sequence of disjoint intervals and suppose the width ofIn
is larger than a positive number for alln ∈ N. As can be seen from the definition above,
if h(t) is integrally positive, then the sum fromn equals1 to ∞ of the integral ofh(t) on
In diverges to infinity even if intervalsIn andIn+1 gradually part asn increases. Hence,
the integral positivity is considerably strong restriction than

lim
t→∞

H(t) = ∞,

where

H(t) =

∫ t

0

h(s)ds.

Note that any function converging to zero is not integrally positive. Let us define a family
of functions which is wider than the family of integrally positive functions. The damping
coefficienth(t) is said to beweakly integrally positiveif

∞∑
n=1

∫ σn

τn

h(t)dt = ∞

for every pair of sequences{τn} and{σn} satisfyingτn + λ < σn ≤ τn+1 ≤ σn + Λ
for someλ > 0 andΛ > 0. Here, in order to loosen the restriction of integrally positive
functions, we eliminate the case that intervals[τn, σn] and[τn+1, σn+1] gradually part asn
increases. The typical example of the weakly integrally positive function is1/(1 + t) or
sin2t/(1 + t) (for the proof, see [33, Proposition 2.1]).

Hatvani [18] has considered the two-dimensional linear system with time-varying co-
efficients,

x′ = B(t)x,

where

B(t) =

(
− r(t) q(t)

− q(t) − p(t)

)
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and presented some sufficient conditions for the zero solution to be asymptotically stable.
If we apply his results to the damped linear oscillator (1.1), the following results are
obtained.

Theorem A. If h(t) is integrally positive and∫ ∞

0

∫ t

0
eH(s)ds

eH(t)
dt = ∞, (1.3)

then the equilibrium of(1.1) is asymptotically stable.

Theorem B. If h(t) is weakly integrally positive and

lim
t→∞

∫ t+σ

σ

∫ s

σ
eH(τ)dτ

eH(s)
ds = ∞ uniformly with respect toσ ≥ 0, (1.4)

then the equilibrium of(1.1) is asymptotically stable.

Needless to say, condition (1.4) is a restriction that is stronger than condition (1.3).
On the other hand, ifh(t) is integrally positive, then it is weakly integrally positive. Thus,
Theorems A and B have a good balance. Under the assumption thath(t) is integrally
positive, condition (1.3) is also necessary for the equilibrium of (1.1) to be asymptotically
stable. To be precise, the following theorem holds (for the proof, see [32, Theorem 3.5]).

Theorem C. Suppose that one of the following assumptions

(i) h(t) is integrally positive,

(ii) h(t) is uniformly continuous fort ≥ 0 and weakly integrally positive

holds. Then the equilibrium of(1.1) is asymptotically stable if and only if condition(1.3)
holds.

It is known that the equilibrium of (1.1) does not become asymptotically stable when
the damping coefficienth(t) decreases rapidly or when it increases rapidly. Both the
integral positivity and the weak integral positivity prohibit too fast decline of the damping
coefficienth(t). Conversely, conditions (1.3) and (1.4) prohibit too fast growth of the
damping coefficienth(t).

For example, consider the damped linear oscillators:

x′′ +
1

1 + t
x′ + x = 0, (1.5)

x′′ +
1

(1 + t)2
x′ + x = 0, (1.6)

x′′ + tx′ + x = 0, (1.7)

5



and

x′′ + t2x′ + x = 0. (1.8)

Since the function1/(1 + t) is weakly integrally positive and condition (1.4) is satisfied
with h(t) = 1/(1 + t), it follows from Theorem B that the equilibrium of (1.5) is asymp-
totically stable. It is easily check that1/(1 + t)2 is not weakly integrally positive. To tell
the truth, the equilibrium of (1.6) is not asymptotically stable becauselimt→∞ H(t) < ∞.
Since the functiont is integrally positive and condition (1.3) is satisfied withh(t) = t, it
follows from Theorem A that the equilibrium of (1.7) is asymptotically stable. Condition
(1.3) is not satisfied whenh(t) = t2. Hence, from Theorem C we see that the equilibrium
of (1.8) is not asymptotically stable (also refer to [20, Theorem 1.1]).

Restrictions on the damping coefficienth(t) for the equilibrium of (1.1) to be uni-
formly asymptotically stable must be more stringent than restrictions for the equilibrium
of (1.1) to be asymptotically stable. Then, are the equilibria of (1.5) and (1.7) uniformly
asymptotically stable? The answer is no. Onitsuka [26] discussed the problem of non-
uniform asymptotic stability for damped linear oscillators and showed that the equilibrium
of the Bessel differential equation

x′′ +
1

1 + t
x′ +

(1 + t)2 − r2

1 + t
x = 0, r ∈ R

is asymptotically stable, but it is not uniformly asymptotically stable. Applying his result
to equation (1.5), we can judge that the equilibrium is not uniformly asymptotically stable.
On the other hand, fortunately, we can find a fundamental matrix for a system equivalent
to equation (1.7). The fundamental matrix is given by

X(t) =

(
x11(t) x12(t)

x21(t) x22(t)

)
,

where

x11(t) = e−
t2

2 , x12(t) = e−
t2

2

∫ t

0

e
τ2

2 dτ,

x21(t) = − te−
t2

2 , x22(t) = 1− te−
t2

2

∫ t

0

e
τ2

2 dτ.

Note thatX(0) = E. Since

lim
t→∞

e−
t2

2

∫ t

0

e
τ2

2 dτ = 0 and lim
t→∞

te−
t2

2

∫ t

0

e
τ2

2 dτ = 1,

it follows that∥X(t)∥ → 0 ast → ∞. Hence, the equilibrium of (1.7) is asymptotically

stable. However, it is not uniformly asymptotically stable. In fact, sincedetX(t) = e−
t2

2

and

X−1(t) = e
t2

2

(
x22(t) −x12(t)

−x21(t) x11(t)

)
,

6



we see that

X(t)X−1(s) =

(
y11(t, s) y12(t, s)

y21(t, s) y22(t, s)

)
,

where

y11(t, s) = e
s2

2

(
x11(t)x22(s)− x12(t)x21(s)

)
= e

s2−t2

2 + se−
t2

2

∫ t

s

e
τ2

2 dτ,

y12(t, s) = e
s2

2

(
− x11(t)x12(s) + x12(t)x11(s)

)
= e−

t2

2

∫ t

s

e
τ2

2 dτ,

y21(t, s) = e
s2

2

(
x21(t)x22(s)− x22(t)x21(s)

)
= s− te

s2−t2

2 − tse−
t2

2

∫ t

s

e
τ2

2 dτ,

y22(t, s) = e
s2

2

(
− x21(t)x12(s) + x22(t)x11(s)

)
= 1− te−

t2

2

∫ t

s

e
τ2

2 dτ.

Let us pay attention to the(1, 2)-element ofX(t)X−1(s). For anyK > 0 andκ > 0,
there exists at∗ = t∗(K,κ) > 0 such that

eκt
∫ t

0

e
τ2

2 dτ > K e
t2

2 for t ≥ t∗.

Hence, we have

∥X(t)X−1(0)∥ ≥ |y12(t, 0)| = e−
t2

2

∫ t

0

e
τ2

2 dτ > K e−κt

for t ≥ t∗. This means that the equilibrium of (1.7) is not uniformly asymptotically stable.
Of course, the equilibrium of (1.1) is uniformly asymptotically stable ifh(t) is a pos-

itive constant. As shown in the above-mentioned concrete examples, the equilibrium of
(1.1) is not uniformly asymptotically stable no longer even when the damping coefficient
h(t) decays relatively slowly like1/(1 + t) or even when it grow relatively slowly liket.
Here, simple questions arise. What kind of growth conditions on the damping coefficient
h(t) guarantee that the equilibrium of (1.1) is uniformly asymptotically stable? Does the
equilibrium of (1.1) become uniformly asymptotically stable even if the damping coeffi-
cienth(t) is unbounded? The following result is an answer to the first question above.

Theorem 1.1. Suppose thath(t) is integrally positive. If condition(1.4) is satisfied, then
the equilibrium of(1.1) is uniformly asymptotically stable.

Although there is an intimate relation between the statements of Theorems A, B
and 1.1, the proof of Theorem 1.1 greatly differs from those of Theorems A and B,
because the strictness is required more and more in order to demonstrate the uniform
asymptotic stability.

The composition of this paper is as follows. In Section 2, we give the proof of The-
orem 1.1. To this end, we consider the system which is equivalent to the damped linear
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oscillator (1.1) and analyze the asymptotic behavior of solutions of this linear system in
details. The analytical procedure is divided into three parts. The last part is advanced in
four steps. Section 3 is provided in order to reply to the second question mentioned above.
To begin with, we introduce a characteristic equation for the damped linear oscillator (1.1)
and give an equivalent condition to the uniform growth condition (1.4). Next, we present
sufficient conditions for the equilibrium of (1.1) to be uniformly asymptotically stable,
which is easy to check than condition (1.4). Finally, by using the presented result, we
give an example that the equilibrium of (1.1) is uniformly asymptotically stable even if
the damping coefficienth(t) is unbounded. To facilitate an understanding of the exam-
ple, we attach two graphs concerningh(t) and a phase portrait of orbits. In Section 4,
we give an infinite series representation which guarantees that the equilibrium of (1.1) is
uniformly asymptotically stable. Also, we clarify the relation between the representation
of an infinite series and sufficient conditions for uniform asymptotic stability given in
Sections 2 and 3. In the final section, we extend Theorem 1.1 to be able to apply to a kind
of non-linear equation called half-linear. As understood from the name, this equation is
a natural generalization of the damped linear oscillator (1.1). Because the parameters are
intertwined in a complex, the details of proof may be not easily imaginable though the
proof policy is the same as that of Theorem 1.1. We give only a sketch of the proof.

2. Proof of Theorem 1.1

Let y = x′/ω. Then, the damped linear oscillator (1.1) becomes the linear system

x′ = ωy

y′ = −ωx− h(t)y.
(2.1)

Here, let us give some definitions about the zero solution of (2.1) which is equivalent to
the equilibrium of (1.1). The zero solution of (2.1) is said to beuniformly stableif, for any
ε > 0, there exists aδ(ε) > 0 such thatt0 ≥ 0 and∥x0∥ < δ(ε) imply ∥x(t; t0,x0)∥ < ε
for all t ≥ t0. The zero solution is said to beuniformly attractiveif there exists aδ0 > 0
and, for everyη > 0, there exists aT (η) > 0 such thatt0 ≥ 0 and∥x0∥ < δ0 imply
∥x(t; t0,x0)∥ < η for all t ≥ t0 + T (η). The zero solution isuniformly asymptotically
stableif it is uniformly stable and is uniformly attractive. For example, we can refer to
the books [3, 7, 16, 17, 25, 29, 30, 35] for those definitions.

In the definition of uniform asymptotic stability, the numbersδ andT must not be de-
pendent ont0. Therefore, we have to find positive constantsδ andT that are independent
of t0 in the proof of Theorem 1.1. This is an important point.

Before giving the full proof of Theorem 1.1, it is helpful to mention its broad outline.
The proof is divided into three parts. First, we will show that

(a) the zero solution of (2.1) is uniformly stable.

To be precise, we verify that ift0 ≥ 0 and∥x0∥ < δ(ε) = ε, then∥x(t; t0,x0)∥ < ε for
all t ≥ t0. This part is comparatively easy. We next show that the zero solution of (2.1) is
uniformly attractive. For this purpose,
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(b) we determineT (η) > 0 for an arbitraryη > 0,

and we prove that

(c) ∥x(t∗; t0,x0)∥ < δ(η) for somet∗ ∈ [t0, t0 + T ].

Let x∗ = x(t∗; t0,x0). Then, from the conclusion of parts (a) and (c), we see that

∥x(t; t∗,x∗)∥ < η for t ≥ t∗,

wherex(t; t∗,x∗) is any solution of (2.1) passing through the pointx∗ at the timet∗.
Part (c) is the core of the proof of Theorem 1.1. We prove part (c) by way of contradiction.

Proof of Theorem 1.1. Part (a): For anyε > 0 sufficiently small, we choose

δ(ε) = ε.

Let t0 ≥ 0 andx0 ∈ R2 be given. We will show that∥x0∥ < δ implies∥x(t; t0,x0)∥ < ε
for t ≥ t0. For convenience, we write(x(t), y(t)) = x(t; t0,x0) and define

v(t) =
x2(t)

2
+

y2(t)

2
=

1

2
∥x(t; t0,x0)∥2.

Then,v′(t) = x(t)x′(t)+y(t)y′(t) = −h(t)y2(t) ≤ 0 for t ≥ t0. Sincev(t) is decreasing
for t ≥ t0, we see that

∥x(t; t0,x0)∥ =
√

2v(t) ≤
√

2v(t0) = ∥x0∥ < δ = ε

for t ≥ t0; namely, the zero solution of (2.1) is uniformly stable. This completes the proof
of part (a).

Part (b): Letδ0 = 1. For everyη > 0, we decide a numberT (η) as follows so that
∥x0∥ < 1 implies∥x(t; t0,x0)∥ < η for all t ≥ t0 + T . As was mentioned in Section 1,
sinceh(t) is integrally positive, the inequality

lim inf
t→∞

∫ t+d

t

h(s)ds > 0

holds for everyd > 0. Hence, we can find anℓ > 0 and at̂ > 0 such that∫ t+1

t

h(s)ds ≥ ℓ for t ≥ t̂.

We define

µ = min

{
3η2

4
,
ω2η2

16

}
and τ1 = t̂+

[
1

ℓµ

]
+ 1,

where[c] means the greatest integer that is less than or equal to a real numberc. Since
ω, ℓ and t̂ are fixed positive constants, the numbersµ andτ1 depend only onη. From
condition (1.4) it turns out that there exists aτ2 depending only onη such that∫ t+σ

σ

∫ s

σ
eH(τ)dτ

eH(s)
ds ≥ 4

ω2η
for t ≥ τ2 − 1. (2.2)
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We may assume without loss of generality thatτ2 > 1. Let

ν = lim inf
t→∞

µ

4

∫ t+µ/(4ω)

t

h(s)ds.

Note thatν is a positive number and it also depends only onη. From the definition ofν,
we can choose a positive numberτ3 > 0 depending only onη such that∫ t+µ/(4ω)

t

h(s)ds ≥ 2ν

µ
for t ≥ τ3. (2.3)

Using numbersτ1, τ2, τ3 andν, we define

T = T (η) = τ3 +

([
1

ν

]
+ 1

)
(τ1 + τ2).

Part (c): Consider a solutionx(t; t0,x0) of (2.1) with t0 ≥ 0 and∥x0∥ < δ0 = 1. The
purpose of part (c) is to prove that there exists at∗ ∈ [t0, t0 + T ] such that

∥x(t∗; t0,x0)∥ < η (2.4)

for everyη > 0. By way of contradiction, we suppose that∥x(t; t0,x0)∥ ≥ η for t0 ≤
t ≤ t0 + T . Then, we have

η2

2
≤ 1

2
∥x(t; t0,x0)∥2 = v(t) ≤ v(t0) =

1

2
∥x0∥2 <

1

2
(2.5)

for t0 ≤ t ≤ t0 + T . Let us pay attention to the behavior ofy2(t), which is the second
component ofx(t; t0,x0).
Step1: For any interval[α, β] ⊂ [t0, t0 + T ], if y2(t) ≥ µ/2 for α ≤ t ≤ β, then the time
width β − α is less thanτ1, whereµ andτ1 are numbers given in part (b). To show this,
we suppose that there exists an interval[α1, β1] ⊂ [t0, t0+T ] with β1−α1 ≥ τ1 such that
y2(t) ≥ µ/2 for α1 ≤ t ≤ β1. Sincev′(t) = −h(t)y2(t) ≤ 0 for t ≥ t0, by (2.5) we have

µ

2

∫ β1

α1

h(t)dt ≤
∫ β1

α1

h(t)y2(t)dt = −
∫ β1

α1

v′(t)dt = v(α1)− v(β1) <
1

2
. (2.6)

On the other hand, sinceτ1 = t̂+ [1/(ℓµ)] + 1, we see that∫ β1

α1

h(t)dt ≥
∫ α1+τ1

α1

h(t)dt =

∫ α1+t̂

α1

h(t)dt+

∫ α1+τ1

α1+t̂

h(t)dt

≥
∫ α1+t̂+[1/(ℓµ)]+1

α1+t̂

h(t)dt =

[1/(ℓµ)]∑
i=0

∫ α1+t̂+i+1

α1+t̂+i

h(t)dt

≥
([

1

ℓµ

]
+ 1

)
ℓ ≥ 1

µ
.
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This contradicts (2.6). Thus, it turns out that the beginning sentence of this step is true.
Step2: For any interval[α, β] ⊂ [t0, t0 + T ], if y2(t) ≤ µ for α ≤ t ≤ β, then the time
width β − α is less thanτ2, whereµ andτ2 are numbers given in part (b). To show this,
we suppose that there exists an interval[α2, β2] ⊂ [t0, t0+T ] with β2−α2 ≥ τ2 such that
y2(t) ≤ µ for α2 ≤ t ≤ β2. Sinceµ ≤ 3η2/4, by (2.5) we have

|x(t)| =
√

2v(t)− y2(t) ≥
√

η2 − µ ≥ η

2

for α2 ≤ t ≤ β2. Hence, there are two cases to consider:x(t) ≥ η/2 for α2 ≤ t ≤ β2;
x(t) ≤ − η/2 for α2 ≤ t ≤ β2. We consider only the former, because the latter is carried
out in the same way. In the former, we have(

eH(t)y(t)
)′
=
(
y′(t) + h(t)y(t)

)
eH(t) = −ωx(t)eH(t) ≤ − ωη

2
eH(t)

for α2 ≤ t ≤ β2. Hence, we obtain

y(t) ≤ y(α2)e
H(α2)e−H(t) − ωη

2
e−H(t)

∫ t

α2

eH(s)ds

≤ √
µ eH(α2)e−H(t) − ωη

2
e−H(t)

∫ t

α2

eH(s)ds

for α2 ≤ t ≤ β2. SinceH(t) is increasing fort ≥ 0, we see that

eH(α2) ≤ eH(α2)(t− α2) = eH(α2)

∫ t

α2

ds ≤
∫ t

α2

eH(s)ds

for t ≥ α2 + 1. Recall thatτ2 > 1. Takingβ2 ≥ α2 + τ2 > α2 + 1 andµ ≤ ω2η2/16 into
account, we obtain

x′(t) = ωy(t) ≤ ω
√
µ eH(α2)e−H(t) − ω2η

2
e−H(t)

∫ t

α2

eH(s)ds

≤ ω
(√

µ− ωη

2

)
e−H(t)

∫ t

α2

eH(s)ds ≤ − ω2η

4
e−H(t)

∫ t

α2

eH(s)ds

for α2 + 1 ≤ t ≤ β2. From (2.5) it follows thatx(α2 + 1) < 1. In addition,x(α2 + τ2) ≥
η/2 > 0. Hence, we have

− 1 < −x(α2 + 1) < x(α2 + τ2)− x(α2 + 1) =

∫ α2+τ2

α2+1

x′(t)dt,

and therefore,

− 1 < − ω2η

4

∫ α2+τ2

α2+1

e−H(t)

∫ t

α2

eH(s)ds dt

= − ω2η

4

∫ α2+τ2

α2+1

e−H(t)

{∫ α2+1

α2

eH(s)ds+

∫ t

α2+1

eH(s)ds

}
dt

≤ − ω2η

4

∫ α2+τ2

α2+1

e−H(t)

∫ t

α2+1

eH(s)ds dt.

11



However, from (2.2) withσ = α2 + 1 andt = τ2 − 1, we see that

− 1 < − ω2η

4

∫ α2+τ2

α2+1

e−H(t)

∫ t

α2+1

eH(s)ds dt ≤ − 1.

This is a contradiction. Thus, it turns out that the beginning sentence of this step is true.
From the steps 1 and 2, we conclude thaty2(t) cannot remain in the range fromµ/2

to µ and it passes through this range many times. Then, how much frequency doesy2(t)
go out of this range at?
Step3: To divide the interval[t0 + τ3, t0 + T ] into some small intervals whose width is
τ1 + τ2, we define

Ji =
[
t0 + τ3 + (i− 1)(τ1 + τ2), t0 + τ3 + i (τ1 + τ2)

]
for anyi ∈ N. Then, we can describe

[t0 + τ3, t0 + T ] = J1 ∪ J2 ∪ · · · ∪ J[1/ν]+1.

Let us examine the behavior ofy2(t) in the intervalJ1 in detail. For this purpose, we
subdivideJ1 into the intervals[t0 + τ3, t0 + τ1 + τ3] and[t0 + τ1 + τ3, t0 + τ1 + τ2 + τ3].
Since the width of[t0+ τ3, t0+ τ1+ τ3] is τ1, it turns out from the the conclusion of step 1
that there exists at ∈ [t0 + τ3, t0 + τ1 + τ3] such thaty2

(
t
)
< µ/2. Since the width of

[t0+ τ1+ τ3, t0+ τ1+ τ2+ τ3] is τ2, it also turns out from the the conclusion of step 2 that
there exists at ∈ [t0+ τ1+ τ3, t0+ τ1+ τ2+ τ3] such thaty2

(
t
)
> µ. From the continuity

of y2(t), we can find numberst1 andt2 with t ≤ t1 < t2 ≤ t such thaty2(t1) = µ/2,
y2(t2) = µ and

µ

2
≤ y2(t) ≤ µ for t1 ≤ t ≤ t2. (2.7)

Hence, we have

µ

2
= y2(t2)− y2(t1) =

∫ t2

t1

(
y2(t)

)′
dt

= − 2

∫ t2

t1

(
ωx(t)y(t) + h(t)y2(t)

)
dt ≤ 2ω

∫ t2

t1

|x(t)y(t)|dt.

It follows from (2.5) that
|x(t)| < 1 and |y(t)| < 1

for t0 ≤ t ≤ t0 + T . Consequently, we obtain

µ

4ω
< t2 − t1. (2.8)

Using the estimations given in the preceding step, we examine the amount of change
of the total energyv(t).

12



Step4: From (2.7) and (2.8) it turns out that

v(t2)− v(t1) =

∫ t2

t1

v′(t)dt = −
∫ t2

t1

h(t)y2(t)dt

≤ − µ

2

∫ t2

t1

h(t)dt ≤ − µ

2

∫ t1+µ/(4ω)

t1

h(t)dt.

Hence, by (2.3) we have
v(t2)− v(t1) ≤ − ν.

Sincev′(t) = −h(t)y2(t) ≤ 0 for t ≥ t0, it is clear that

v(t1)− v(t0 + τ3) ≤ 0 and v(t0 + τ1 + τ2 + τ3)− v(t2) ≤ 0.

We therefore conclude that∫
J1

v′(t)dt = v(t0 + τ1 + τ2 + τ3)− v(t2) + v(t2)− v(t1) + v(t1)− v(t0 + τ3)

≤ − ν.

Repeating the same process as in the proof of step 3, we can estimate that∫
Ji

v′(t)dt ≤ − ν

for i = 2, 3, . . . , [1/ν]+1. This means that the loss of the total energyv(t) in each interval
Ji is at leastν. Hence, we obtain

v(t0 + T )− v(t0 + τ3) =

[1/ν]+1∑
i=1

∫
Ji

v′(t)dt ≤ − ν

([
1

ν

]
+ 1

)
< − 1,

and therefore, by (2.5) we have

v(t0 + T ) < v(t0 + τ3)− 1 < 0.

This contradicts the fact thatv(t) ≥ 0 for t ≥ t0. Thus, inequality (2.4) was proved. The
proof of Theorem 1.1 is now complete. □

3. Example with unbounded damping

In this section, we intend to give an affirmative answer to the question presented in
Section 1; namely, we show that there is an example in which the equilibrium of (1.1) is
uniformly asymptotically stable even if the damping coefficienth(t) is not bounded.

To begin with, we define the function

u(t; σ) = −
∫ t

σ
eH(s)ds

eH(t)

13



for anyσ ≥ 0. Then, we see thatu(t;σ) is the particular solution of the scalar differential
equation

u′ + h(t)u+ 1 = 0 (3.1)

satisfying the initial conditionu(σ;σ) = 0. It is clear thatu(t;σ) exists in the future.
Using the particular solutionu(t; σ), we can replace condition (1.4) with

lim
t→∞

∫ t+σ

σ

u(s;σ)ds = −∞ uniformly with respect toσ ≥ 0. (3.2)

Since equation (3.1) bears a close relation with the damped linear oscillator (1.1), we call
it a characteristic equation. Generally, it is difficult to confirm whether the integration∫ t+σ

σ

∫ s

σ
eH(τ)dτ

eH(s)
ds

is divergent or convergent even when we use a personal computer. On the other hand, we
can examine whether the integration∫ t+σ

σ

u(s; σ)ds

diverges comparatively easily by numerical analysis, because much excellent software
program are already developed for calculating the solutions of a differential equation such
as (3.1). This is a strong point which expresses condition (3.2) by using the characteristic
equation (3.1).

We give a result which is easier to check than Theorem 1.1.

Theorem 3.1. Suppose thath(t) is integrally positive and that

0 ≤ h(t) ≤ k(t) for t ≥ 0,

where1/k(t) is bounded and(1/k(t))′ is bounded from above. If

lim
t→∞

∫ t+σ

σ

1

k(s)
ds = ∞ uniformly with respect toσ ≥ 0,

then the equilibrium of(1.1) is uniformly asymptotically stable.

Remark 3.1. Although the upper functionk(t) have to be differentiable, the damping
coefficienth(t) does not necessarily need to be differentiable.

Proof of Theorem 3.1. By assumption, there exist numbersc1 > 0 andc2 > 0 such that

1

k(t)
≤ c1 and

(
1

k(t)

)′

≤ c2 (3.3)

14



for t ≥ 0. Define

g(t) = − 1

k(t)
for t ≥ 0.

Then, it is clear that
− c1 ≤ g(t) < 0 and g′(t) ≥ − c2

for t ≥ 0.
Consider the characteristic equation (3.1) and letu(t; σ) be the solution of (3.1) satis-

fying the initial conditionu(σ;σ) = 0. Then, we see that

u(t;σ) < 0 for t > σ. (3.4)

In fact, sinceu(σ; σ) = 0 andu′(σ;σ) = − 1, we can find at1 > σ such thatu(t; σ) < 0
for σ < t ≤ t1. Suppose that there exists at2 > t1 such thatu(t2;σ) = 0 andu(t; σ) < 0
for σ < t < t2. Then, sinceu′(t2; σ) = − 1, it follows thatu(t;σ) > 0 in a left-hand
neighborhood oft2. This contradicts the definition oft2.

Let us compareu(t;σ) with g(t). Sinceg(σ) < 0 = u(σ;σ), there are two cases to
consider: (i)g(t) < u(t;σ) for t ≥ σ and (ii) there exists at∗ > σ such thatg(t∗) =
u(t∗;σ) and g(t) < u(t; σ) for σ ≤ t < t∗; namely, the graph ofg(t) intersects the
solution curveu(t;σ) at t = t∗ for the first time. Hereafter, we will show that there exists
a c3 with 0 < c3 < 1 such that

c3g(t) ≥ u(t; σ) for t ≥ σ + 1 (3.5)

in both cases.
Case(i): Since0 ≤ h(t) ≤ k(t) for t ≥ 0, we see that

u(t; σ) > g(t) = − 1

k(t)
≥ − 1

h(t)

for t ≥ σ. Hence, we have

u′(t;σ) = − 1− h(t)u(t; σ) < 0;

that is,u(t;σ) is strictly decreasing fort ≥ σ. Let

c3 = min

{
u(σ + 1; σ)

g(σ + 1)
,

1

1 + c2

}
.

Then,0 < c3 ≤ 1/(1 + c2) < 1. For simplicity, letζ(t) = c3g(t). Then,

k(t)ζ(t) = − c3 > − 1 for t ≥ 0.

Hence, it turns out from (3.3) that

ζ ′(t) = c3g
′(t) ≥ − c2 c3 ≥ − 1 + c3 = − 1− k(t)ζ(t)

15



for t ≥ 0. Let f(t, u) = − 1− h(t)u. Takingζ(t) < 0 for t ≥ 0 into account, we obtain

ζ ′(t) ≥ − 1− k(t)ζ(t) ≥ − 1− h(t)ζ(t) = f(t, ζ(t))

for t ≥ 0. Sincec3 ≤ u(σ + 1; σ)/g(σ + 1) andg(σ + 1) < 0, we see that

ζ(σ + 1) = c3g(σ + 1) ≥ u(σ + 1; σ).

Consequently, we can get (3.5) by virtue of a standard comparison theorem.
Case(ii): We subdivide this case as follows: (a)t∗ > σ + 1 and (b)σ < t∗ ≤ σ + 1. If
t∗ > σ+1, theng(t) < u(t;σ) for σ ≤ t ≤ σ+1. Hence, by the same way as the case (i),
we can get (3.5). Ifσ < t∗ ≤ σ + 1, theng(t) < u(t; σ) for σ ≤ t < t∗, and therefore,

u(t;σ) ≥ g(t) = − 1

k(t)
≥ − 1

h(t)

for σ ≤ t ≤ t∗. Hence, we have

u′(t;σ) = − 1− h(t)u(t; σ) ≤ 0 for σ ≤ t ≤ t∗.

Let c3 = 1/(1 + c2) < 1 andζ(t) = c3g(t). Then, by (3.3) we obtain

ζ ′(t) = c3g
′(t) ≥ − c2 c3 = − 1 + c3

= − 1− k(t)ζ(t) ≥ − 1− h(t)ζ(t) = f(t, ζ(t))

for t ≥ 0, wheref(t, u) is the function given in the case (i). Since0 < c3 < 1 and
u(t∗;σ) < 0, we see thatζ(t∗) = c3 u(t

∗;σ) > u(t∗; σ). We therefore conclude that
ζ(t) ≥ u(t; σ) for t ≥ t∗. Sinceσ + 1 ≥ t∗, we get (3.5).

From (3.3)–(3.5) it turns out that fort sufficiently large,∫ t+σ

σ

u(s; σ)ds =

∫ σ+1

σ

u(s;σ)ds+

∫ t+σ

σ+1

u(s; σ)ds

≤
∫ σ+1

σ

u(s; σ)ds+

∫ t+σ

σ+1

ζ(s)ds

<

∫ t+σ

σ+1

ζ(s)ds =

∫ σ+1

σ

c3
k(s)

ds−
∫ t+σ

σ

c3
k(s)

ds

< c1c3 −
∫ t+σ

σ

c3
k(s)

ds.

Since

lim
t→∞

∫ t+σ

σ

1

k(s)
ds = ∞

uniformly with respect toσ ≥ 0, condition (3.2) holds. Thus, by Theorem 1.1, the
equilibrium of (1.1) is uniformly asymptotically stable □
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We are now ready to present a desired example. For anyn ∈ N, let

In =

[
n− n+ 1

2n
, n

]
and

1

h(t)
=


1− n

n+ 1
sin2

{
2nπ

n+ 1

(
t− n+

n+ 1

2n

)}
if t ∈ In,

1 if t ̸∈ In.

(3.6)

Then, it is easily seen that the width ofIn becomes gradually narrow and approaches
1/2 asn increases, and the damping coefficienth(t) is greater than or equal to1 and is
continuously differentiable fort ≥ 0. Sinceh(tn) = n+ 1, where

tn = n− n+ 1

4n
,

we see thath(t) is unbounded. We present the graphs of the function1/h(t) andh(t),
respectively (see Figures 1 and 2).
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Figure 1: The value of1/h(tn) approaches zero asn → ∞.

Sinceh(t) ≥ 1 for t ≥ 0, it follows thath(t) is integrally positive. Letk(t) = h(t)
for t ≥ 0. Then,1/k(t) ≤ 1 for t ≥ 0 and

(
1

k(t)

)′

=


− 2n2π

(n+ 1)2
sin

{
4nπ

n+ 1

(
t− n+

n+ 1

2n

)}
if t ∈ In,

0 if t ̸∈ In.

Hence,(1/k(t))′ < 2π for t ≥ 0. For anyn ∈ N, we have∫ n

n−1

1

k(t)
dt = 1−

∫
In

n

n+ 1
sin2

{
2nπ

n+ 1

(
t− n+

n+ 1

2n

)}
dt

= 1− 1

2π

∫ π

0

sin2u du =
3

4
.
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Figure 2: The value ofh(tn) diverges to+∞ asn → ∞.

for t > 0 sufficiently large, there exists ann1 such thatn1−1 ≤ t ≤ n1. Of course,n1 is a
large integer. Similarly, for anyσ ≥ 0 there exists ann2 ∈ N such thatn2 − 1 ≤ σ ≤ n2.
Hence,n2 < n1 + n2 − 2 ≤ t+ σ ≤ n1 + n2 and therefore,∫ t+σ

σ

1

k(s)
ds ≥

∫ n1+n2−2

n2

1

k(s)
ds =

3

4
(n1 − 2) >

3

4
(t− 2).

This means that

lim
t→∞

∫ t+σ

σ

1

k(s)
ds = ∞

uniformly with respect toσ ≥ 0. Thus, by means of Theorem 3.1, we obtain the following
example with unbounded damping coefficienth(t).

Example 3.2. Let h(t) be the function defined by (3.6). Then the equilibrium of (1.1) is
uniformly asymptotically stable.

We attach a phase portrait of positive orbits of Example 3.2 withω = 1 for a deeper
understanding. In Figure 3, we draw four positive orbits starting at points(0.3, 1.0),
(−1.0, 0.8), (−0.3,−1.0) and(1.0,−0.8), respectively. The four positive orbits have the
same initial timet0 = 0.

As was mentioned in Section 1, Hatvani [18] has first presented condition (1.4). To
be precise, since he dealt with the general form of a two-dimensional linear system with
time-varying coefficients, the obtained condition was a little more complicated than con-
dition (1.4). Because it is hard to check condition (1.4) directly, he also gave easy-to-use
conditions which guarantee that condition (1.4) holds. Using one of those conditions, we
can lead the following result.

Theorem 3.2. Suppose that1/h(t) is bounded and(1/h(t))′ is bounded from below. If

lim
t→∞

∫ t+σ

σ

1

h(s)
ds = ∞ uniformly with respect toσ ≥ 0, (3.7)
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Figure 3: Every positive orbit moves round the origin in a clockwise and a
counter-clockwise direction by turns and approach the origin windingly.

then the equilibrium of(1.1) is uniformly asymptotically stable.

Remark 3.3. If 1/h(t) is bounded, thenh(t) is integrally positive. Example 3.2 can be
also confirmed by using Theorem 3.2.

4. Discrete condition for uniform asymptotic stability

Sinceh(t) ≥ 0 for t ≥ 0, the integralH(t) is increasing fort ≥ 0 (needless to say,
H(t) is not necessarily strictly increasing). Define

H−1(r) = min{t ∈ R : H(t) ≥ r}.

Then, the inverse functionH−1(r) is also increasing forr ≥ 0. Hatvani, Krisztin and
Totik [20] have proved that condition (1.3) is equivalent to

∞∑
n=1

(
H−1(n)−H−1(n− 1)

)2
= ∞ (4.1)

under the assumption thatH(t) tends to∞ ast → ∞. If h(t) is weakly integrally positive,
then

lim
t→∞

H(t) = ∞.
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Hence, combining their result and Theorem C, we obtain another criterion for the asymp-
totic stability as follows.

Theorem D. Suppose that one of the following assumptions

(i) h(t) is integrally positive,

(ii) h(t) is uniformly continuous fort ≥ 0 and weakly integrally positive

holds. Then the equilibrium of(1.1) is asymptotically stable if and only if condition(4.1)
holds.

In this section, using their notation, we will give sufficient conditions for the equilib-
rium of (1.1) to be uniformly asymptotically stable. To this end, we prepare the following
result.

Lemma 4.1. Letan = H−1(n)−H−1(n− 1) for n ∈ N. Suppose thath(t) is integrally
positive. Then the sequence{an} is bounded.

Proof. As was shown in the proof of Theorem 1.1, sinceh(t) is integrally positive, we
can find anℓ > 0 and at̂ > 0 such that

H(t+ 1)−H(t) =

∫ t+1

t

h(s)ds ≥ ℓ for t ≥ t̂. (4.2)

By way of contradiction, we suppose that{an} is unbounded. Then, we can choose a
subsequence{ank

} ⊂ {an} with nk → ∞ ask → ∞ such thatlimk→∞ ank
= ∞;

namely, for anyK > 0, there exists anN(K) ∈ N such thatk ≥ N impliesank
> K. In

particular, let

K∗ =

[
1

ℓ

]
+ 1 ∈ N,

where[c] means the greatest integer that is less than or equal to a real numberc. Then,
there exists anN∗ = N(K∗) ∈ N such that

H−1(nk)−H−1(nk − 1) = ank
> K∗ for k ≥ N∗. (4.3)

SinceH(t) tends to∞ ast → ∞, the inverse functionH−1(r) also tends to∞ asr → ∞.
Hence,H−1(nk) → ∞ ask → ∞. We therefore conclude that there exists anN∗ ≥ N∗
such thatk ≥ N∗ impliesH−1(nk − 1) > t̂. From this and (4.2), we see that

H(H−1(nk − 1) + 1)−H(H−1(nk − 1)) > ℓ,

H(H−1(nk − 1) + 2)−H(H−1(nk − 1) + 1) > ℓ,

H(H−1(nk − 1) + 3)−H(H−1(nk − 1) + 2) > ℓ,

· · · · · · · · · · · · · · · · · · · · ·
H(H−1(nk − 1) +K∗)−H(H−1(nk − 1) +K∗ − 1) > ℓ

20



for k ≥ N∗. Adding these inequalities, we obtain

H(H−1(nk − 1) +K∗) > H(H−1(nk − 1)) +K∗ℓ

= nk − 1 +K∗ℓ = nk − 1 +

([
1

ℓ

]
+ 1

)
ℓ

> nk = H(H−1(nk))

for k ≥ N∗. SinceH(t) is increasing fort ≥ 0, it follows thatH−1(nk − 1) + K∗ >
H−1(nk); namely,

ank
= H−1(nk)−H−1(nk − 1) < K∗ for k ≥ N∗ ≥ N∗.

This contradicts (4.3). □

By virtue of Lemma 4.1, it turns out that there exists ana > 0 such that

0 < an ≤ a for n ∈ N.

We are now ready to state the following sufficient condition expressed by an infinite
series, which guarantee uniform asymptotic stability for the damped linear oscillator (1.1)
under the assumption thath(t) is integrally positive.

Theorem 4.2. Suppose thath(t) is integrally positive. If

lim
n→∞

n+N∑
i=N

(
H−1(i)−H−1(i− 1)

)2
= ∞ uniformly with respect toN ∈ N, (4.4)

then the equilibrium of(1.1) is uniformly asymptotically stable.

Proof. It follows from (4.4) that for anyL > 0 there exists anM(L) ∈ N such that

M+N∑
n=N

a2n > L for N ∈ N. (4.5)

For anyK > 0, letL = 2eK. Then, there exists anM∗ = M(2eK) ∈ N such that

M∗+N∑
n=N

a2n > 2eK for N ∈ N. (4.6)

From the integral positivity ofh(t) and Lemma 4.1, we see that the the sequence{an}
has the upper bounda > 0. Let T = T (K) = a(M∗ + 2) = a(M(2eK) + 2) and let
σ ≥ 0 be fixed arbitrarily. Define the domains

D =
{
(s, τ) : σ ≤ τ ≤ s ≤ σ + T

}
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Figure 4: The triangle domainD contains small right isosceles trianglesDn

for n = n∗ + 1, n∗ + 2, . . . , n∗ − 1.

and
Dn =

{
(s, τ) : H−1(n− 1) ≤ τ ≤ s ≤ H−1(n)

}
for n ∈ N

in the plane (see Figure 4). Note thatD andDn are right isosceles triangles whose legs
areT andan, respectively. SinceT ≥ 3 a andH−1(n) tends to∞ asn → ∞, we can
choose two integersn∗ andn∗ so that

H−1(n∗ − 1) < σ ≤ H−1(n∗) < H−1(n∗ − 1) < σ + T ≤ H−1(n∗).

From these inequalities it follows that

H−1(n∗)− σ < H−1(n∗)−H−1(n∗ − 1) = an∗ ≤ a

and
σ + T −H−1(n∗ − 1) < H−1(n∗)−H−1(n∗ − 1) = an∗ ≤ a.

Hence, we obtain

n∗−1∑
n=n∗+1

an = H−1(n∗ − 1)−H−1(n∗)

> σ + T − a− (σ + a) = a(M∗ + 2)− 2 a = aM∗.
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We also obtain

n∗−1∑
n=n∗+1

an ≤ a
(
n∗ − 1− (n∗ + 1) + 1

)
= a (n∗ − n∗ − 1).

We therefore conclude thatM∗ < n∗ − n∗ − 1. SinceM∗, n∗ andn∗ are integers,

M∗ ≤ n∗ − n∗ − 2. (4.7)

This means that the number of small trianglesDn which are included in the domainD is
at leastM∗ − 1 pieces.

LetU = Dn∗+1 ∪Dn∗+2 ∪ · · · ∪Dn∗−1. Taking into account of

Dn∗+1 ⊂ D, Dn∗+2 ⊂ D, · · · · · · , Dn∗−1 ⊂ D,

we see thatU ⊂ D. Hence, we have∫ T+σ

σ

∫ s

σ
eH(τ)dτ

eH(s)
ds =

∫ T+σ

σ

∫ s

σ

e−H(s)+H(τ)dτ ds

=

∫∫
D

e−H(s)+H(τ)dτ ds ≥
∫∫

U

e−H(s)+H(τ)dτ ds.

For any(s, τ) ∈ U , there exists ann ∈ N with n∗ + 1 ≤ n ≤ n∗ − 1 such that

n− 1 ≤ H(τ) ≤ H(s) ≤ n.

Hence, we see that

0 ≥ −H(s) +H(τ) ≥ −n+ n− 1 = − 1,

and therefore,
1

e
≤ e−H(s)+H(τ) ≤ 1

for (s, τ) ∈ U . Let S(U) be the area ofU , which is the union of the right isosceles
trianglesDn (n = n∗ + 1, n∗ + 2, . . . , n∗ − 1). Then, from (4.7) it turns out that∫∫

U

e−H(s)+H(τ)dτ ds ≥ 1

e
S(U) =

1

2e

n∗−1∑
n=n∗+1

a2n ≥ 1

2e

M∗+n∗+1∑
n=n∗+1

a2n.

Consequently, using (4.6) withN = n∗ + 1, we obtain∫ T+σ

σ

∫ s

σ
eH(τ)dτ

eH(s)
ds ≥ 1

2e

M∗+n∗+1∑
n=n∗+1

a2n >
1

2e
2eK = K.

We therefore obtain∫ t+σ

σ

∫ s

σ
eH(τ)dτ

eH(s)
ds ≥

∫ T+σ

σ

∫ s

σ
eH(τ)dτ

eH(s)
ds > K
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for t ≥ T . SinceK does not depend onσ ≥ 0, condition (1.4) holds. Thus, by means of
Theorem 1.1, the equilibrium of (1.1) is uniformly asymptotically stable □

We consider the case that the function1/h(t) is integrable on any bounded interval.
Then, using the method of Hatvani, Krisztin and Totik [20, p. 215], we obtain the follow-
ing relation.

Theorem 4.3. If h(t) is integrally positive and1/h(t) is integrable on any bounded in-
terval, then condition(4.4) implies condition(3.7).

Proof. From (4.4) it turns out that for anyL > 0 there exists anM(L) ∈ N satisfy-
ing (4.5). Sinceh(t) is integrally positive, Lemma 4.1 is available. LetT = T (L) =
a(M(L) + 2) ≥ 3 a, wherea is the upper bound of the sequence{an}. For anyσ ≥ 0,
we can choose two integersn∗ andn∗ so that

H−1(n∗ − 1) < σ ≤ H−1(n∗) < H−1(n∗ − 1) < σ + T ≤ H−1(n∗). (4.8)

By the same manner as in the proof of Theorem 4.2, we obtain

M = M(L) ≤ n∗ − n∗ − 2. (4.9)

Since1/h(t) is integrable on the interval[H−1(n − 1), H−1(n)] with n ∈ N, it follows
from the Cauchy-Bunyakovski-Schwarz inequality that

a2n =
(
H−1(n)−H−1(n− 1)

)2
=

(∫ H−1(n)

H−1(n−1)

dt

)2

≤
∫ H−1(n)

H−1(n−1)

h(t)dt

∫ H−1(n)

H−1(n−1)

1

h(t)
dt

=
(
H(H−1(n))−H(H−1(n− 1))

)∫ H−1(n)

H−1(n−1)

1

h(t)
dt

=

∫ H−1(n)

H−1(n−1)

1

h(t)
dt

for n ∈ N. Consequently, using (4.5) withN = n∗ + 1, we get

L <

M+n∗+1∑
n=n∗+1

a2n ≤
M+n∗+1∑
n=n∗+1

∫ H−1(n)

H−1(n−1)

1

h(t)
dt =

∫ H−1(M+n∗+1)

H−1(n∗)

1

h(t)
dt.

SinceH−1(n) is increasing with respect ton ∈ N, it turns out from (4.8) and (4.9) that∫ T+σ

σ

1

h(t)
dt ≥

∫ H−1(n∗−1)

σ

1

h(t)
dt ≥

∫ H−1(M+n∗+1)

H−1(n∗)

1

h(t)
dt > L.

Hence, we obtain ∫ t+σ

σ

1

h(t)
dt > L for t ≥ T.

SinceT does not depend onσ ≥ 0, we see that condition (3.7) holds. □
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5. Extension to the damped half-linear oscillator

In this section, we consider the nonlinear second-order differential equation

(ϕp(x
′))′ + h(t)ϕp(x

′) + ωpϕp(x) = 0, (5.1)

the functionϕp(z) is defined by

ϕp(z) = |z|p−2z, z ∈ R

with p > 1. The only equilibrium of (5.1) is the origin(x, x′) = (0, 0). Equation (5.1) is
often calledhalf-linear, because it has only one of the two characteristics of the solution
space of linear differential equations. To be precise, ifx(t) is a solution of (5.1), then
the functioncx(t) is also a solution of (5.1) for an arbitrary constantc ∈ R. However,
the sum of two solutions is not a solution in general. Since equation (5.1) is a natural
generalization of the damped linear oscillator (1.1), we will call it thedamped half-linear
oscillator.

We can rewrite (5.1) to the equation of self-adjoint type,(
eH(t)ϕp(x

′)
)′
+ ωpeH(t)ϕp(x) = 0. (5.2)

It is known that the global existence and uniqueness of solutions of (5.2) are guaranteed
for the initial value problem. For details, see Došlý [9, p. 170] or Dǒslý andŘeh́ak [13,
pp. 8–10]. Many important studies on the half-linear differential equations have been per-
formed over about forty years. Especially, there are good articles concerning oscillation
theory. Especially, a lot of efforts were devoted to obtain good articles concerning oscil-
lation theory. We can find those results in the books [1, 9, 13] and the references cited
therein. Even after these books are published, the equation (5.2) is continuing being stud-
ied actively (for example, see [10, 11, 12, 15, 27, 34]). However, there is little research of
stability theory of half-linear differential equations such as (5.1).

Let p∗ be the conjugate number ofp; namely,

1

p
+

1

p∗
= 1,

thenp∗ is also greater than1. Since the functionw = ϕp(z) is strictly increasing, there
exists the inverse function which is described byz = ϕp∗(w). As a new variable, let us
introducey = ϕp(x

′/ω). Then, equation (5.1) becomes the planar system

x′ = ωϕp∗(y)

y′ = −ωϕp(x)− h(t)y.
(5.3)

System (5.3) has the zero solution which corresponds to the equilibrium of (5.1). We
can define uniform asymptotic stability of the zero solution of (5.3) as well as (2.1). The
following result is a generalization to Theorem 1.1.
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Theorem 5.1. Suppose thath(t) is integrally positive. If

lim
t→∞

∫ t+σ

σ

ϕp∗

(∫ s

σ
eH(τ)dτ

eH(s)

)
ds = ∞ uniformly with respect toσ ≥ 0, (5.4)

is satisfied, then the equilibrium of(5.1) is uniformly asymptotically stable.

Since the proof is carried out in the same way as the proof of Theorem 1.1, we describe
only an outline of the proof to focus on the differences.

Outline of the proof of Theorem 5.1. Part (a): Letp = max{p, p∗} andp = min{p, p∗}.
For anyε ∈ (0, 1), we choose

δ(ε) =

(
p εp

21+p/2 p

)1/p
.

Then, it follows thatδ(ε) < ε < 1. Let t0 ≥ 0 andx0 = (x0, y0) ∈ R2 be given. We will
show that∥x0∥ < δ(ε) implies∥x(t; t0,x0)∥ < ε for t ≥ t0. Define

v(t) =
|x(t)|p

p
+

|y(t)|p∗

p∗
,

where(x(t), y(t)) = x0 = (x0, y0). Then,v′(t) = −h(t)|y(t)|p∗ ≤ 0 for t ≥ t0. Hence,
we obtain

1

p

(
|x(t)|p + |y(t)|p∗

)
≤ v(t) ≤ v(t0) ≤

1

p

(
|x0|p + |y0|p

∗)
,

and therefore,

|x(t)|p + |y(t)|p∗ ≤ p

p

(
|x0|p + |y0|p

∗)
<

p

p

((
δ(ε)

)p
+
(
δ(ε)

)p∗)
for t ≥ t0. Sinceδ < 1, we see that

|x(t)|p + |y(t)|p∗ < p

p

((
δ(ε)

)p
+
(
δ(ε)

)p)
=

(
ε√
2

)p

for t ≥ t0.

From this estimation it turns out that

|x(t)| <
(

ε√
2

)p/p

≤ ε√
2

and |y(t)| <
(

ε√
2

)p/p∗

≤ ε√
2

for t ≥ t0. Hence, we obtain

∥x(t; t0,x0)∥ =
√

x2(t) + y2(t) < ε for t ≥ t0;
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namely, the zero solution of (5.3) is uniformly stable. This completes the proof of part (a).
Part (b): Letδ0 = 1/p and

γ(η) =

(
δ(η)

)p
2p/2 p

for every η ∈ (0, 1), whereδ(·) is the number given in part (a). Note thatp γ(η) <(
δ(η)

)p
< ηp < 1. Sinceh(t) is integrally positive, there exist numbersℓ > 0 andt̂ > 0

such that ∫ t+1

t

h(s)ds ≥ ℓ for t ≥ t̂.

We define

µ = min

{
p∗γ(η)

2
,
p ωp∗γ(η)

21+p∗

}
and τ1 = t̂+

[
1

ℓµ

]
+ 1,

where[c] means the greatest integer that is less than or equal to a real numberc. From
condition (5.4) it turns out that there exists aτ2 such that∫ t+σ

σ

ϕp∗

(∫ s

σ
eH(τ)dτ

eH(s)

)
ds ≥ 2p

∗−1

ωp∗

(
2

pγ(η)

)1/p
for t ≥ τ2 − 1. (5.5)

We may assume without loss of generality thatτ2 > 1. Let

ν = lim inf
t→∞

µ

4

∫ t+µ/(2 p∗ω)

t

h(s)ds.

Then, we can choose aτ3 > 0 so that∫ t+µ/(2 p∗ω)

t

h(s)ds ≥ 2ν

µ
for t ≥ τ3. (5.6)

From the definitions ofµ, ν, τ1, τ2 andτ3, we see that these numbers depends only onη.
This is important in the proof. We define

T = τ3 +

([
1

ν

]
+ 1

)
(τ1 + τ2).

Then, the numberT also depends only onη.
Part (c): Consider a solutionx(t; t0,x0) of (5.3) with t0 ≥ 0 and∥x0∥ < δ0 = 1/p.

To complete the proof, we have only to show that there exists at∗ ∈ [t0, t0 + T ] such that

|x(t∗)|p + |y(t∗)|p∗ <
(
δ(η)

)p
2p/2

= pγ(η) (5.7)

for everyη > 0, because this inequality implies that

∥x(t∗; t0,x0)∥ =
√

x2(t∗) + y2(t∗) < η.
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By way of contradiction, we suppose that

|x(t)|p + |y(t)|p∗ ≥ pγ(η) for t0 ≤ t ≤ t0 + T.

Since
√
x2
0 + y20 = ∥x0∥ < δ0 = 1/p, we see that

γ(η) ≤ 1

p

(
|x(t)|p + |y(t)|p∗

)
≤ v(t)

≤ v(t0) =
|x0|p

p
+

|y0|p
∗

p∗
<

1

p

(
1

p
+

1

p∗

)
=

1

p
(5.8)

for t0 ≤ t ≤ t0 + T . Let us examine the behavior of|y(t)|p∗ in four steps that were used
to prove Theorem 1.1.
Step1: For any interval[α, β] ⊂ [t0, t0 + T ], if |y(t)|p∗ ≥ µ/2 for α ≤ t ≤ β, then the
time widthβ−α is less thanτ1. Using|y(t)|p∗ instead ofy2(t) and repeating the step 1 of
Theorem 1.1, we can prove this to be correct.
Step2: For any interval[α, β] ⊂ [t0, t0 + T ], if |y(t)|p∗ ≤ µ for α ≤ t ≤ β, then the
time widthβ − α is less thanτ2. To show this, we suppose that there exists an interval
[α2, β2] ⊂ [t0, t0 + T ] with β2 − α2 ≥ τ2 such that|y(t)|p∗ ≤ µ for α2 ≤ t ≤ β2. Since
µ ≤ p∗γ(η)/2, by (5.8) we have

|x(t)|p = p

(
v(t)− |y(t)|p∗

p∗

)
≥ p

(
γ(η)− µ

p∗

)
≥ pγ(η)

2

for α2 ≤ t ≤ β2. Hence, there are two cases to consider:x(t) ≥ (pγ(η)/2)1/p for
α2 ≤ t ≤ β2; x(t) ≤ − (pγ(η)/2)1/p for α2 ≤ t ≤ β2. We consider only the former,
because the latter is carried out in the same way. In the former, we have(

eH(t)y(t)
)′
=
(
y′(t) + h(t)y(t)

)
eH(t)

= −ωϕp(x(t))e
H(t) ≤ −ω

(
pγ(η)

2

)1/p∗
eH(t)

for α2 ≤ t ≤ β2. Integrating this inequality fromα2 to t ≤ β2, we obtain

y(t) ≤ y(α2)e
H(α2)e−H(t) − ω

(
pγ(η)

2

)1/p∗
e−H(t)

∫ t

α2

eH(s)ds

≤ µ1/p∗eH(α2)e−H(t) − ω

(
pγ(η)

2

)1/p∗
e−H(t)

∫ t

α2

eH(s)ds.

Taking into account of

eH(α2) ≤
∫ t

α2

eH(s)ds for t ≥ α2 + 1,
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β2 ≥ α2 + τ2 > α2 + 1 andµ ≤ p ωp∗γ(η)/21+p∗, we can estimate that

x′(t) = ωϕp∗(y(t)) ≤ ωϕp∗

(
µ1/p∗eH(α2)e−H(t) − ω

(
pγ(η)

2

)1/p∗
e−H(t)

∫ t

α2

eH(s)ds

)

≤ ωϕp∗

((
µ1/p∗ − ω

(
pγ(η)

2

)1/p∗)
e−H(t)

∫ t

α2

eH(s)ds

)

≤ −ωϕp∗

(
ω

2

(
pγ(η)

2

)1/p∗)
ϕp∗

(
e−H(t)

∫ t

α2

eH(s)ds

)

= − ωp∗

2p∗−1

(
pγ(η)

2

)1/p
ϕp∗

(
e−H(t)

∫ t

α2

eH(s)ds

)
for α2 + 1 ≤ t ≤ β2. From (5.8) it follows thatx(α2 + 1) < 1. Sincex(α2 + τ2) ≥
(pγ(η)/2)1/p > 0, we conclude that

− 1 < −x(α2 + 1) < x(α2 + τ2)− x(α2 + 1) =

∫ α2+τ2

α2+1

x′(t)dt

< − ωp∗

2p∗−1

(
pγ(η)

2

)1/p∫ α2+τ2

α2+1

ϕp∗

(
e−H(t)

∫ t

α2

eH(s)ds

)
dt

= − ωp∗

2p∗−1

(
pγ(η)

2

)1/p∫ α2+τ2

α2+1

ϕp∗

(
e−H(t)

{∫ α2+1

α2

eH(s)ds+

∫ t

α2+1

eH(s)ds

})
dt

≤ − ωp∗

2p∗−1

(
pγ(η)

2

)1/p∫ α2+τ2

α2+1

ϕp∗

(
e−H(t)

∫ t

α2+1

eH(s)ds

)
dt.

However, from (5.5) withσ = α2 + 1 andt = τ2 − 1, we see that

− 1 < − ωp∗

2p∗−1

(
pγ(η)

2

)1/p∫ α2+τ2

α2+1

ϕp∗

(
e−H(t)

∫ t

α2+1

eH(s)ds

)
dt ≤ − 1.

This is a contradiction. Thus, it turns out that the beginning sentence of this step is true.
Step3: We can proceed the argument in the same way as the proof of Theorem 1.1 by
using|y(t)|p∗ instead ofy2(t). As a result, we obtain

µ

2 p∗ω
< t2 − t1, (5.9)

wheret1 andt2 are numbers satisfying|y(t1)|p
∗
= µ/2, |y(t2)|p

∗
= µ and

µ

2
≤ |y(t1)|p

∗ ≤ µ for t1 ≤ t ≤ t2. (5.10)

Step4: Using (5.6), (5.9) and (5.10), we obtain∫
Ji

v′(t)dt ≤ − ν,
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where
Ji =

[
t0 + τ3 + (i− 1)(τ1 + τ2), t0 + τ3 + i (τ1 + τ2)

]
for i = 2, 3, . . . , [1/ν] + 1. We leave the detailed analysis to the reader.

This means that the loss of the total energyv(t) in each intervalJi is at leastν. Hence,
we obtain

− v(t0 + τ3) ≤ v(t0 + T )− v(t0 + τ3) =

[1/ν]+1∑
i=1

∫
Ji

v′(t)dt

≤ − ν

([
1

ν

]
+ 1

)
< − 1,

which contradicts (5.8). Thus, inequality (5.7) was proved. The proof of Theorem 5.1 is
now complete. □
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[13] O. Dǒslý, P.Řeh́ak, Half-linear Differential Equations, North-Holland Math. Stud.,
vol. 202, Amsterdam, 2005.

[14] L.H. Duc, A. Ilchmann, S. Siegmund, P. Taraba, On stability of linear time-varying
second-order differential equations, Quart. Appl. Math. 64 (2006) 137–151.

[15] S. Fǐsnarov́a, R. Mǎrı́k, Half-linear ODE and modified Riccati equation: Compar-
ison theorems, integral characterization of principal solution, Nonlinear Anal. 74
(2011) 6427–6433.

[16] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic
Press, New York, London, 1966.

[17] J.K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, London,
Sydney, 1969; (revised) Krieger, Malabar, 1980.

[18] L. Hatvani, On the asymptotic stability for a two-dimensional linear nonautonomous
differential system, Nonlinear Anal. 25 (1995) 991–1002.

[19] L. Hatvani, Integral conditions on the asymptotic stability for the damped linear
oscillator with small damping, Proc. Amer. Math. Soc. 124 (1996) 415–422.

[20] L. Hatvani, T. Krisztin, V. Totik, A necessary and sufficient condition for the asymp-
totic stability of the damped oscillator, J. Differential Equations 119 (1995) 209–
223.

[21] L. Hatvani, V. Totik, Asymptotic stability of the equilibrium of the damped oscilla-
tor, Diff. Integral Eqns. 6 (1993) 835–848.

[22] A.O. Ignatyev, Stability of a linear oscillator with variable parameters, Electron. J.
Differential Equations 1997 (1997) No. 17, pp. 1–6.

31



[23] J.J. Levin, J.A. Nohel, Global asymptotic stability for nonlinear systems of differ-
ential equations and applications to reactor dynamics, Arch. Rational Mech. Anal. 5
(1960) 194–211.

[24] J.L. Massera, On Lyapounoff’s conditions of stability, Ann. Math. 50 (1949) 705–
721.

[25] A.N. Michel, L. Hou, D. Liu, Stability Dynamical Systems: Continuous, Discontin-
uous, and Discrete Systems, Birkhäuser, Boston, Basel, Berlin, 2008.
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