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Abstract

The present paper is devoted to an investigation on the uniform asymptotic stability for
the linear differential equation with a damping term,

2" + h(t)r +wir =0
and its generalization

(pr(x/))/ + h(t) (/bp(x/) + wPl,(z) =0,

wherew > 0 and¢,(z) = |z[’~?z with p > 1. Sufficient conditions are obtained for

the equilibrium(z, ') = (0,0) to be uniformly asymptotically stable under the assump-
tion that the damping coefficier(t) is integrally positive. The obtained condition for

the damped linear differential equation is given by the form of a certain uniform growth
condition onh(t). Another representation which is equivalent to this uniform growth
condition is also given. Our results assert that the equilibrium can be uniformly asymp-
totically stable even if.(t) is unbounded. An example is attached to show this fact. In
addition, easy-to-use conditions are given to guarantee that the uniform growth condition
is satisfied. Moreover, a sufficient condition expressed by an infinite series is presented.
The relation between the representation of an infinite series and the uniform growth con-
dition is also clarified. Finally, our results are extended to be able to apply to the above-
mentioned nonlinear differential equation.
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1. Introduction

The equations considered in this paper are
2"+ h(t)r +wir =0, (1.1)

and its generalization, where the prime deneté#, the coefficienti(t) is continuous
and nonnegative for > 0, and the numbew is positive. Equation (1.1) is called the
damped linear oscillatar The only equilibrium of (1.1) is the origifz, 2’) = (0,0).
Our objective is to establish sufficient conditions on the damping coeffigighfor the
equilibrium to be uniformly asymptotically stable.

As is well known, the concept of uniform asymptotic stability is greatly different from
the concept of (merely) asymptotic stability; that is,

lim z(t) = lim 2/(t) = 0
t—o00 t—o00
for every solutionz(t) of (1.1). To verify that the equilibrium is asymptotically stable,
we have only to show that each solution of (1.1) and its derivative tend to zero as time
increases. It is not necessary to care about the asymptotic speed of edafitpair () ).
On the other hand, we have to confirm that each @4ir), 2/(¢)) approaches the origin at
the speed of the same level in order to prove that the equilibrium is uniformly asymptoti-
cally stable (see Section 2 about the strict definitions of asymptotic stability and uniform
asymptotic stability). Here is the difficulty of the research of uniform asymptotic stability.
Uniform asymptotic stability concerning nonlinear differential equations has been in-
vestigated by many authors in relation to Lyapunov’s direct method. Here, to explain an
importance of the research of uniform asymptotic stability briefly, we consider the linear
time-varying system given by
x' = A(t)x (1.2)

with A(¢) being ann x n continuous matrix. System (1.2) has the zero solution, which

is equivalent to the equilibrium of the correspondingrder linear differential equation.

Let ||x|| be the Euclidean norm of a vectar We denote the solution of (1.2) passing
through a pointx, € R? at a timet, > 0 by x(¢;t9,%g). It is well-known that the

zero solution of (1.2) is uniformly asymptotically stable if and only if it is exponentially
asymptotically stable (or exponentially stable); namely, there exists-& and, for any

e > 0, there exists @a(¢) > 0 such that, > 0 and||xo|| < d(¢) iImply ||x(¢; o, x0)|| <
eexp(—kr(t—tp)) forall t > t,. Thanks to this characteristic of solutions of (1.2), we can
obtain converse theorems on uniform asymptotic stability that guarantee the existence of
a good Lyapunov function. The good Lyapunov functioft, x): [0, 00) x R™ satisfies

@) a(lx]) < V(t,x) <b([x]),
(i) Vaa(t,x) < —c([x]) or Vay(t,x) < —dV(tx),
(i) [V(t,x1) = V(t,x2)| < f(t)[|x1 — %2,



wherea(-), b(-) andc(-) are continuous increasing and positive definite functidris,a
positive constant and(¢) is a positive suitable function. In general, however, (merely)
asymptotic stability of the zero solution of a time-varying system does not ensure the
existence of any good Lyapunov function (see [24, Example 2]). This point is a big dif-
ference with uniform asymptotic stability and asymptotic stability. A function satisfying
the above properties (i) and (ii) is often callegtact Lyapunov function in control the-

ory (for example, see [3, pp. 101-103]). We can solve perturbation problems by utilizing
such a good Lyapunov function. For example, if the zero solution of (1.2) is uniformly
asymptotically stable and (¢, x) and A(¢) satisfy that||g(¢,x)| < A(¢)||x]|| fort > 0

andx € R?, where

/ A(s)ds < oo,

0

then the zero solution of the quasi-linear system
x' = A(t)x + g(t,x)

is also uniformly asymptotically stable. However, even if the zero solution of (1.2) is
(merely) asymptotically stable, the zero solution of the quasi-linear system is not always
asymptotically stable. Perron [28] has clarified this fact by considerably complicated
analysis. For example, the reader is referred to the classical books [5, pp.42-43], [6,
pp.169-170], [8, p.71]. Itis also known that the zero solution of (1.2) is uniformly
asymptotically stable if and only if it is totally stable which is closely related to robustness.
For the definition of total stability, see [3, pp. 45] and [35, pp. 118-119].

Let X (¢) be a fundamental matrix for a generatlimensional linear system satisfying
X (0) = E, the unit matrixZ. We define the norm ok (¢) to be

X (@) = sup [|X(£)x]]

lIxll=1
It is well-known that the zero solution of (1.2) is asymptotically stable if and only if
| X(#)|]| =0 ast— oo

and that the zero solution of (1.2) is uniformly asymptotically stable if and only if there
exist positive constants” andx such that

I X ()X (s)|| < K exp(—r(t —s)) for 0<s<t< oo

(for the proof, see the books [8, p.54] or [17, p. 84]). If we can get a concrete expression
of a fundamental matrix, we may be able to judge whether the zero solution is uniformly
asymptotically stable (or asymptotically stable) by using the above-mentioned criterion.
Unfortunately, however, we are almost unable to find a fundamental matrix. Therefore,
these criteria are not useful for practical use though they are sharp.

Before going into the main theme, let us look at the results concerning the asymptotic
stability. Many papers have been written to find out sufficient conditions and necessary
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conditions for the zero solution (or the equilibrium) to be asymptotically stable without
using the information on a fundamental matrix (for example, see [2, 4, 14, 19, 20, 21,
22, 23, 31]). Historical progress of this research is briefly summarized in Sugie [32,
Section 1]. Here, we will describe some results of not having written to the summary.

For this purpose, we need to introduce two families of functions as follows. The
damping coefficienk(t) is said to bentegrally positiveif

i / ")yt = oo
n=1"YTn

for every pair of sequencds,, } and{o, } satisfyingr,, + A < o, < 7,1 for some\ > 0.
For example, the functiosin® ¢ is integrally positive. It is known thak(t) is integrally
positive if and only if

t—o00

t+d
lim inf/ h(s)ds >0
t

for everyd > 0. Let{I,} be a sequence of disjoint intervals and suppose the widi of
is larger than a positive number for alle N. As can be seen from the definition above,
if h(t) is integrally positive, then the sum fromequalsl to oo of the integral ofh(t) on

I,, diverges to infinity even if intervalg, and/,,; gradually part as increases. Hence,
the integral positivity is considerably strong restriction than

tll>no1o H(t) = oo,

where .
H(t):/oh(s)ds.

Note that any function converging to zero is not integrally positive. Let us define a family
of functions which is wider than the family of integrally positive functions. The damping
coefficienth(t) is said to beveakly integrally positivéf

i / " h)dt = 0o
n=1"YTn

for every pair of sequences,,} and{o,} satisfyingr, + A < 0, < 7,41 < 0, + A
for someX > 0 andA > 0. Here, in order to loosen the restriction of integrally positive
functions, we eliminate the case that interviajs o,,| and[r,,.1, 0,,+1] gradually part as
increases. The typical example of the weakly integrally positive functian(is+ ¢) or
sin?t/(1 + t) (for the proof, see [33, Proposition 2.1]).

Hatvani [18] has considered the two-dimensional linear system with time-varying co-
efficients,

where



and presented some sufficient conditions for the zero solution to be asymptotically stable.
If we apply his results to the damped linear oscillator (1.1), the following results are
obtained.

Theorem A. If h(t) is integrally positive and
oo f(f eH(s)dS B

then the equilibrium of1.1)is asymptotically stable

Theorem B. If h(t) is weakly integrally positive and

t+o fs eH( )dT . .
lim =2 ds=o00 uniformly with respect toc > 0, (1.4)
t—oo [ eH(s)

then the equilibrium of1.1)is asymptotically stable

Needless to say, condition (1.4) is a restriction that is stronger than condition (1.3).
On the other hand, #i(t) is integrally positive, then it is weakly integrally positive. Thus,
Theorems A and B have a good balance. Under the assumptioh(thas integrally
positive, condition (1.3) is also necessary for the equilibrium of (1.1) to be asymptotically
stable. To be precise, the following theorem holds (for the proof, see [32, Theorem 3.5]).

Theorem C. Suppose that one of the following assumptions
(i) A(t) is integrally positive
(i) Ah(t) is uniformly continuous fot > 0 and weakly integrally positive

holds Then the equilibrium of1.1)is asymptotically stable if and only if conditi¢h.3)
holds

It is known that the equilibrium of (1.1) does not become asymptotically stable when
the damping coefficienk(¢) decreases rapidly or when it increases rapidly. Both the
integral positivity and the weak integral positivity prohibit too fast decline of the damping
coefficienth(t). Conversely, conditions (1.3) and (1.4) prohibit too fast growth of the
damping coefficienk(t).

For example, consider the damped linear oscillators:

J}” + 1—_H£U, + xr = 0, (15)

//+ 1 /+ . O (1 6)
T (1+t)2.1‘ r =, .

2+t +x=0, a.7)
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and
" 4+ 22 + 2 =0. (1.8)

Since the functiorni /(1 + t) is weakly integrally positive and condition (1.4) is satisfied
with h(t) = 1/(1 + t), it follows from Theorem B that the equilibrium of (1.5) is asymp-
totically stable. Itis easily check thaf (1 + ¢)? is not weakly integrally positive. To tell
the truth, the equilibrium of (1.6) is not asymptotically stable becéiuse, ., H(t) < co.
Since the function is integrally positive and condition (1.3) is satisfied witft) = ¢, it
follows from Theorem A that the equilibrium of (1.7) is asymptotically stable. Condition
(1.3) is not satisfied wheh(t) = ¢2. Hence, from Theorem C we see that the equilibrium
of (1.8) is not asymptotically stable (also refer to [20, Theorem 1.1]).

Restrictions on the damping coefficielft) for the equilibrium of (1.1) to be uni-
formly asymptotically stable must be more stringent than restrictions for the equilibrium
of (1.1) to be asymptotically stable. Then, are the equilibria of (1.5) and (1.7) uniformly
asymptotically stable? The answer is no. Onitsuka [26] discussed the problem of non-
uniform asymptotic stability for damped linear oscillators and showed that the equilibrium
of the Bessel differential equation
1 (141¢)? —r?

"+ x =0, reR

i
T 1+1

is asymptotically stable, but it is not uniformly asymptotically stable. Applying his result
to equation (1.5), we can judge that the equilibrium is not uniformly asymptotically stable.
On the other hand, fortunately, we can find a fundamental matrix for a system equivalent
to equation (1.7). The fundamental matrix is given by

X(t) _ <$11(t) Jflz(t))’

T21 (t) 92 (t)
where

Note thatX (0) = E. Since

2

t 2 2 t 2
. R juan . _tZ jun
lime 2 [ e2dr=0 and limte 2 [ ezdr =1,
t—o0 0 t—o0 0

it follows that|| X (¢)|| — 0 ast — oo. Hence, the equilibrium of (1.7) is asymptotically
t2
stable. However, it is not uniformly asymptotically stable. In fact, siteteX (¢) = e~z

and
X_l(t) _ e% ( x22(t) - xl?(t>> 7

— T21 (t) Qfll(t)
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we see that

11 t,S 12 t,S
X(t)X1<S):<y (t.5) >>7

yo1(t,s) wyaalt,s)
where

2 2_,2

S s

+2 t 72
yi1(t,s) = €7 (z11(t)z2a(s) — z12(t) w01 (s)) =€ 2 + 86_2/ ez dr,

2 2 [t 2
y1a(t,s) = ez (— x11(t)x12(8) + xlg(t):cn(s)) = 62/ ez dr,

S S

Yo1(t, 8) = €7 (221 (t)T22(s) — T2 (t)T21(s)) = s —te 2z — tse 'z

()
[ V)
|
o
[ V)
u\
o~
D
She
QU
n

N
M

t 2
Yao(t,s) = T (— xo1(t)x12(8) + xgg(t)xn(s)) =1- te‘?/ ez dr.

Let us pay attention to thél, 2)-element ofX (t)X ~!(s). For anyK > 0 andx > 0,
there exists a* = t*(K, k) > 0 such that

2

t 7'2 t
e’“‘t/ ezdr > Ke=z for ¢t >t".
0
Hence, we have
t2 t 7'2
XX O] 2 [na(t. 0 = ¢ [ Fdr > ke
0

fort > t*. This means that the equilibrium of (1.7) is not uniformly asymptotically stable.
Of course, the equilibrium of (1.1) is uniformly asymptotically stablk(if) is a pos-

itive constant. As shown in the above-mentioned concrete examples, the equilibrium of

(1.1) is not uniformly asymptotically stable no longer even when the damping coefficient

h(t) decays relatively slowly liké /(1 + ¢) or even when it grow relatively slowly like

Here, simple questions arise. What kind of growth conditions on the damping coefficient

h(t) guarantee that the equilibrium of (1.1) is uniformly asymptotically stable? Does the

equilibrium of (1.1) become uniformly asymptotically stable even if the damping coeffi-

cienth(t) is unbounded? The following result is an answer to the first question above.

Theorem 1.1. Suppose thak(t) is integrally positive If condition(1.4)is satisfied, then
the equilibrium of(1.1)is uniformly asymptotically stable

Although there is an intimate relation between the statements of Theorems A, B
and 1.1, the proof of Theorem 1.1 greatly differs from those of Theorems A and B,
because the strictness is required more and more in order to demonstrate the uniform
asymptotic stability.

The composition of this paper is as follows. In Section 2, we give the proof of The-
orem 1.1. To this end, we consider the system which is equivalent to the damped linear
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oscillator (1.1) and analyze the asymptotic behavior of solutions of this linear system in
details. The analytical procedure is divided into three parts. The last part is advanced in
four steps. Section 3 is provided in order to reply to the second question mentioned above.
To begin with, we introduce a characteristic equation for the damped linear oscillator (1.1)
and give an equivalent condition to the uniform growth condition (1.4). Next, we present
sufficient conditions for the equilibrium of (1.1) to be uniformly asymptotically stable,
which is easy to check than condition (1.4). Finally, by using the presented result, we
give an example that the equilibrium of (1.1) is uniformly asymptotically stable even if
the damping coefficient(t) is unbounded. To facilitate an understanding of the exam-
ple, we attach two graphs concernih¢) and a phase portrait of orbits. In Section 4,

we give an infinite series representation which guarantees that the equilibrium of (1.1) is
uniformly asymptotically stable. Also, we clarify the relation between the representation
of an infinite series and sufficient conditions for uniform asymptotic stability given in
Sections 2 and 3. In the final section, we extend Theorem 1.1 to be able to apply to a kind
of non-linear equation called half-linear. As understood from the name, this equation is
a natural generalization of the damped linear oscillator (1.1). Because the parameters are
intertwined in a complex, the details of proof may be not easily imaginable though the
proof policy is the same as that of Theorem 1.1. We give only a sketch of the proof.

2. Proof of Theorem 1.1

Lety = 2//w. Then, the damped linear oscillator (1.1) becomes the linear system

r =wy

y = —wzx — h(t)y. (1)

Here, let us give some definitions about the zero solution of (2.1) which is equivalent to
the equilibrium of (1.1). The zero solution of (2.1) is said taipgormly stablef, for any

e > 0, there exists @(¢) > 0 such that, > 0 and||xq|| < d(e) imply ||x(¢; o, X0)|| < &

forall t > t,. The zero solution is said to haiformly attractiveif there exists a, > 0

and, for everyp > 0, there exists &'(n) > 0 such that, > 0 and ||xo|| < do imply
|x(t;t0,%0)|| < nforallt >ty + T(n). The zero solution isiniformly asymptotically
stableif it is uniformly stable and is uniformly attractive. For example, we can refer to
the books [3, 7, 16, 17, 25, 29, 30, 35] for those definitions.

In the definition of uniform asymptotic stability, the numbérsnd7 must not be de-
pendent ort,. Therefore, we have to find positive constantnd? that are independent
of ¢y in the proof of Theorem 1.1. This is an important point.

Before giving the full proof of Theorem 1.1, it is helpful to mention its broad outline.
The proof is divided into three parts. First, we will show that

(a) the zero solution of (2.1) is uniformly stable.

To be precise, we verify that if, > 0 and||x|| < d(¢) = ¢, then||x(t; to, Xo)|| < ¢ for
all t > t,. This part is comparatively easy. We next show that the zero solution of (2.1) is
uniformly attractive. For this purpose,



(b) we determind’(n) > 0 for an arbitraryn > 0,
and we prove that
(©) ||x(t*;to,x0)|| < d(n) for somet* € [to, to + 1.
Letx* = x(t*; ¢, x0). Then, from the conclusion of parts (a) and (c), we see that
|x(t;t",x")|| <n for ¢ >t
wherex(t; t*, x*) is any solution of (2.1) passing through the paititat the timet*.

Part (c) is the core of the proof of Theorem 1.1. We prove part (c) by way of contradiction.

Proof of Theorem 1.1. Part(a): For any > 0 sufficiently small, we choose
i) =e.

Lett, > 0 andx, € R? be given. We will show thaltx,|| < ¢ implies ||x(¢; o, xo)|| <
for t > t,. For convenience, we write:(t), y(t)) = x(¢; to, xo) and define

_221t) ()
2 2
Then'(t) = z(t)2'(t) +y(t)y' (t) = — h(t)y?(t) < 0fort > ty. Sincev(t) is decreasing
fort > t,, we see that

(s to, x0)ll = v/20(8) < v/20(0) = [Ixoll < 5 =

fort > to; namely, the zero solution of (2.1) is uniformly stable. This completes the proof
of part(a).

Part (b): Lety, = 1. For everyn > 0, we decide a numbéF(n) as follows so that
Ix0|| < 1 implies||x(t;to,%0)|| < nforallt > t, +7T. As was mentioned in Section 1,
sinceh(t) is integrally positive, the inequality

1
= §|’X(t%toaxo)||2-

t+d
lim inf/ h(s)ds >0
t

t—o0
holds for everyl > 0. Hence, we can find ah> 0 and af > 0 such that
t+1 R
/ h(s)ds > ¢ for t >t.
t

We define

3 2 2,2 R 1
,u:min{Tn, wlg } and 7 =t+ [m] +1,
where[c] means the greatest integer that is less than or equal to a real nunBiecce
w, ¢ andt are fixed positive constants, the numbgrand, depend only o). From
condition (1.4) it turns out that there existss;adepending only om such that

/ - f; eH—(T)dT ds >

) o for t > — 1. (2.2)
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We may assume without loss of generality that- 1. Let
t+p/(4w)
v = lim inf T h(s)ds.

t—o00 ¢

Note thatv is a positive number and it also depends onlyofrrom the definition of,
we can choose a positive numbegr> 0 depending only om such that

t+p/(4w) Qv
/ h(S)dS Z 7 for ¢ Z 73. (23)
t

Using numbers, 7, 73 andv, we define

ret=ns ([ 1) s

Part (c): Consider a solutiat(t; ¢, xo) of (2.1) witht, > 0 and||x,|| < dp = 1. The
purpose of part(c) is to prove that there exist$ a [t¢, t, + 7] such that

(¢ 0, %0) || <7 (2.4)

for everyn > 0. By way of contradiction, we suppose thgt(t; ¢y, xo)|| > n for ¢ty <
t <to+T. Then, we have

< Lttt xa) [ = 0(t) < ofta) = >l < 5 (2.5)
forty <t <ty + T. Let us pay attention to the behavior%f(¢), which is the second
component ok (t; to, Xo).

Stepl: For any intervala, 3] C [to, to + T, if y*(t) > u/2 for a < t < 8, then the time
width 5 — « is less thar, wherey andr, are numbers given in part (b). To show this,
we suppose that there exists an intefwal 5,] C [to, to + 7] with 5, —a; > 7, such that
y2(t) > p/2for ay <t < By. Sincev'(t) = — h(t)y?(t) < 0for ¢t > ty, by (2.5) we have

AL b B1
%/a h(t)dt < /a h(t)y2(t)dt = —/a V' (t)dt = v(on) — v(B) < % (2.6)

1

On the other hand, sineg = ¢ + [1/(¢u)] + 1, we see that

B1 a1 +71 a1+t a1+
/ h(t)dtZ/ h(t )dt—/ h(t)dt—i—/ h(t)dt

1 1 1+t

a1 +E+H[1/ ()] + (/)] noq itit1
/ t)dt = > / h(t)dt

1+t =0 1+HE+i



This contradicts (2.6). Thus, it turns out that the beginning sentence of this step is true.
Step2: For any intervala, 3] C [to, to + T, if y*(t) < pfor a < ¢ < 3, then the time
width g — « is less thar, wherey andr, are numbers given in part (b). To show this,
we suppose that there exists an intefwal 55] C [to, to + 1] with 5, — ay > 75 such that
y2(t) < pforay <t < f3y. Sincep < 3n?/4, by (2.5) we have

(0] = V2D 0 = Vo >

for as <t < 5. Hence, there are two cases to considét) > n/2 for ay <t < fs;
x(t) < —n/2for ay <t < By We consider only the former, because the latter is carried
out in the same way. In the former, we have

(eH(t)y(t)), = (y/(t) + h(t)y(t)) eV = —wa(t)e"™ < — %eH(t)

for an <t < 5. Hence, we obtain

t
y(t) < ylag)eltele M0 S [ it g,

2

t
N / M)
1%

for ay <t < f,. SinceH (t) is increasing fot > 0, we see that
t t
efl02) < M)t _ ) = eH(O‘Q)/ ds < / ) ds
a2 ag

fort > ay + 1. Recall thatr, > 1. TakingB, > ay + 7 > ap + 1 andu < w?n?/16 into
account, we obtain

2 t
2 (1) = wy(t) < wyele)eHO _ %;mw / ) g

2
¢ 2 ¢
< w<\/ﬁ — %)emﬂ/ 1) ds < — %GH@)/ e ds
a2 a2

foras +1 <t < f3,. From (2.5) it follows that:(a; + 1) < 1. In addition,z (s + 72) >
n/2 > 0. Hence, we have

ag+T2
—l1<—z(aa+1) <z(ag+ ) —z(ag+1) = / o' (t)dt,
as+1

and therefore,

2 a2+T2 t
—1< - v 77/ e_H(t)/ 1) ds dt
4 az+1 ag

2,’] ag+T1o as+1 t
=— / e_H(t){/ e ds +/ eH(S)ds}dt
4 az+1 az az+1

277 az+T2 t
< — —/ eH(t)/ 1) ds dt.
4 az+1 az+1

S

S
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However, from (2.2) withv = a, + 1 andt = , — 1, we see that

2 ag+T2 t
—-1< _Yn eH(t)/ M) dsdt < —1.
4 az+1 az+1

This is a contradiction. Thus, it turns out that the beginning sentence of this step is true.
From the steps 1 and 2, we conclude ti#¥gt) cannot remain in the range fropy2

to 1 and it passes through this range many times. Then, how much frequency*¢iges

go out of this range at?

Step3: To divide the intervalt, + 73,1y + 7] into some small intervals whose width is

T1 + T2, we define

J; = [tg + 73+ (2 — 1)(’7’1 +’7'2), to+713+1 (7'1 + 7’2)}
for any: € N. Then, we can describe
[to + 73, t0 +T] = J1UJoU---UJpjjsr.

Let us examine the behavior gf(¢) in the interval.J; in detail. For this purpose, we
subdivideJ; into the intervalsty + 73, to + 71 + 73] @nd[to + 71 + 73,t0 + 71 + T2 + T3]
Since the width oft, + 73, to + 71 + 73] iS 71, it turns out from the the conclusion of step 1
that there exists a € [ty + 73,9 + 71 + 73] such thaty?(¢) < p/2. Since the width of

[to + 71 + 73, L0 + 71 + T2 + T3] IS T2, it @lSO turns out from the the conclusion of step 2 that
there exists & € [t + 71 + 73, to + 71 + 72 + 73] such that/?(¥) > .. From the continuity

of y2(t), we can find numbers andt, with ¢t < ¢, < t, <t such that?(¢,) = u/2,
y*(t2) = pand

=

<yAt)<p for t; <t <ty (2.7)

Hence, we have

VRS

=2 (ta) — v (h) = / Q(yQ(t))’dt

t1

_ / C(wrOy(t) + AR dE < 20 /t ()t

t1

It follows from (2.5) that
lz(t)| <1 and |y(t)] <1

forty <t <ty +T. Consequently, we obtain

Ko, (2.8)
4w

Using the estimations given in the preceding step, we examine the amount of change
of the total energy ().
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Stepd: From (2.7) and (2.8) it turns out that

to

o) — v(t) :/ o (t)dt = —/Qh(t)yz(t)dt

t1 t1
to t1+p/(4w)
< - ﬂ/ h(t)dt < — ﬂ/ h(t)dt.
2 t1 2 th

Hence, by (2.3) we have
v(te) —v(t)) < —v.

Sincev/(t) = — h(t)y?(t) < 0fort > t,, itis clear that
v(ty) —v(to+73) <0 and v(to+ 7 + 71+ 73) — v(t2) < 0.
We therefore conclude that
/ S (8)dt = vlto + 1+ 7o+ 73) — vlta) + v(ts) — 0(t1) + 0(t1) — v(to + 73)
" < —v.

Repeating the same process as in the proof of step 3, we can estimate that

/U’(t)dt < —v
Ji

fori =2,3,...,[1/v]+1. This means that the loss of the total ener@y in each interval
J; is at least. Hence, we obtain

[1/v]+1 1
v(tg+T) —v(tg+ 13) = Z/ V'(t)dt < —V([—} + 1) < -1,
i=1 i v

and therefore, by (2.5) we have

U(to +T> < U(t() + 7'3) —1<0.
This contradicts the fact tha(t) > 0 for ¢ > t,. Thus, inequality (2.4) was proved. The
proof of Theorem 1.1 is now complete. O

3. Example with unbounded damping

In this section, we intend to give an affirmative answer to the question presented in
Section 1; namely, we show that there is an example in which the equilibrium of (1.1) is
uniformly asymptotically stable even if the damping coefficieftl is not bounded.

To begin with, we define the function

f; ) ds

u(t;o) = ~HE

13



foranyo > 0. Then, we see that(¢; o) is the particular solution of the scalar differential
equation
u+h(t)u+1=0 (3.1)

satisfying the initial condition:(c;0) = 0. It is clear thatu(¢; o) exists in the future.
Using the particular solution(t; o), we can replace condition (1.4) with

t+o
lim / u(s;o)ds = — oo uniformly with respect too > 0. (3.2)

t—o00

Since equation (3.1) bears a close relation with the damped linear oscillator (1.1), we call
it a characteristic equationGenerally, it is difficult to confirm whether the integration

t+o f; eH(T) dr

CHE) ds

o

is divergent or convergent even when we use a personal computer. On the other hand, we
can examine whether the integration

t+o
/ u(s; o)ds

diverges comparatively easily by numerical analysis, because much excellent software
program are already developed for calculating the solutions of a differential equation such
as (3.1). This is a strong point which expresses condition (3.2) by using the characteristic
equation (3.1).

We give a result which is easier to check than Theorem 1.1.

Theorem 3.1. Suppose thak(t) is integrally positive and that
0<h(t) <k(t) for t>0,

wherel/k(t) is bounded and1/k(t))’ is bounded from above. If

t+o
lim / ds = oo uniformly with respect too > 0,
o J, k()

then the equilibrium of1.1)is uniformly asymptotically stable

Remark 3.1. Although the upper functior(t) have to be differentiable, the damping
coefficienth(t) does not necessarily need to be differentiable.

Proof of Theorem 3.1. By assumption, there exist numbefs> 0 andc, > 0 such that

1 /
W <¢ and (—) < e (3.3)



for ¢t > 0. Define
1

Then, itis clear that
—a<g(t) <0 and ¢(t) > —c

fort > 0.
Consider the characteristic equation (3.1) and:.(éto) be the solution of (3.1) satis-
fying the initial conditionu(c; o) = 0. Then, we see that

u(t;o) <0 for t > o. (3.4)

In fact, sinceu(o;0) = 0 andu/(0;0) = — 1, we can find &, > o such that(t; o) < 0
for o < t < t;. Suppose that there exist$,a> ¢; such thatu(¢,; o) = 0 andu(t; o) < 0
for o <t < to. Then, since/(ty;0) = — 1, it follows thatu(t;o) > 0 in a left-hand
neighborhood of,. This contradicts the definition §.

Let us compare(t; o) with g(t). Sinceg(o) < 0 = u(o;0), there are two cases to
consider: (i)g(t) < u(t;o) for t > o and (i) there exists & > o such thaty(t*) =
u(t*;0) andg(t) < u(t;o) for o < t < t*; namely, the graph of(t) intersects the
solution curveu(t; o) att = t* for the first time. Hereafter, we will show that there exists
acs With 0 < ¢3 < 1 such that

c3g(t) > u(t;o) for t >o+1 (3.5)

in both cases.
Case(i): Since0 < h(t) < k(t) fort > 0, we see that

u(t;a)>g<t>=—ﬁz—%

for ¢t > 0. Hence, we have
' (t;0) = —1—h(t)u(t;o) < O0;

that is,u(t; o) is strictly decreasing for > . Let

, { u(o +1;0) 1 }
c3 = min : .
glo+1) " 14c

Then,0 < ¢3 < 1/(1+ ¢2) < 1. For simplicity, let¢(t) = ¢3g(t). Then,
k(t)((t)=—c3>—1 for t >0.
Hence, it turns out from (3.3) that

Ct)y=c3g(t) > —cacs > — 1+ ez =—1—k(t)C(t)

15



fort > 0. Let f(¢t,u) = — 1 — h(t)u. Taking((t) < 0 for ¢ > 0 into account, we obtain
¢(t) = =1 =k(t)C(t) =2 =1 = Rh(t)((t) = f(t,<(1))
fort > 0. Sincecs < u(o + 1;0)/g(c + 1) andg(c + 1) < 0, we see that
C(o+1)=c3g(c+1)>u(o+1;0).

Consequently, we can get (3.5) by virtue of a standard comparison theorem.

Case(ii): We subdivide this case as follows: (&) > o + 1 and (b)o < t* < o+ 1. If

t* > o+1, theng(t) < u(t; o) foro <t < o+ 1. Hence, by the same way as the case (i),
we can get (3.5). It < t* < o + 1, theng(t) < u(t; o) for o <t < t*, and therefore,

ult;o) 2 g(t) = — -~ 2 -~

for o <t < t*. Hence, we have
W (t;o) =—1—=h(t)u(t;o) <0 for o <t <t
Letcs = 1/(1 + ) < 1and((t) = c3g(t). Then, by (3.3) we obtain

(t)=c3g'(t) > —crcs=—14c3
= —1—Fk(t)C(t) > =1 = h(t)C(t) = f(t,C(t))

for ¢ > 0, where f(¢,u) is the function given in the case (i). Sinfe< ¢; < 1 and
u(t*;0) < 0, we see that(t*) = csu(t*;0) > u(t*;0). We therefore conclude that
¢(t) > u(t; o) fort > t*. Sinceo + 1 > t*, we get (3.5).

From (3.3)—(3.5) it turns out that fersufficiently large,

t+o o+1 t+o
/ u(s;o)ds :/ u(s;a)ds+/ u(s;o)ds
o o o+1
o+1 t+o
/ u(s;o)ds + C(s)ds

o+1
o+1 t+o
C3 C3
)ds = ds — d
/< o= / k) / k(s

c
< cie3 — / Wi)ds.

Since

. t+o 1

Y e
uniformly with respect tav > 0, condition (3.2) holds. Thus, by Theorem 1.1, the
equilibrium of (1.1) is uniformly asymptotically stable O

16



We are now ready to present a desired example. Fonany, let

1
I, = {n— nt ,n}

2n

2 1 .
1 j— sin2{ nr (t—n+n+ )} if tel,,
_ n+1 n+1 2n (3.6)

ht) 1 if ¢,

Then, it is easily seen that the width §f becomes gradually narrow and approaches
1/2 asn increases, and the damping coefficiéft) is greater than or equal tband is
continuously differentiable far > 0. Sinceh(t,) = n + 1, where

and

t,=n— ,
4n

we see that(t) is unbounded. We present the graphs of the function(t) andh(t),
respectively (see Figures 1 and 2).

Figure 1: The value of /h(t,,) approaches zero as— cc.

Sinceh(t) > 1 fort > 0, it follows thath(t) is integrally positive. Letk(t) = h(t)
fort > 0. Then,1/k(t) < 1fort > 0and

! — 2n’m sin dnm t—n~|—n+1 if tel
( 1 ) _ (n+1)2 n+1 2n "

0 if ¢,

Hence,(1/k(t))" < 2x fort > 0. For anyn € N, we have

o1 2 1
/—dzﬁ—l—/Lsin2 nr t—n—i—TH_ dt
ne1 k(1) ,n+1 n+1 2n
1 1/”,2 p 3
=1— — [ sin“udu= —.
21 Jo 4
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Figure 2: The value ok(¢,,) diverges to+-oco asn — oo.

fort > 0 sufficiently large, there exists an such thati; —1 <t < n;. Of coursep; isa
large integer. Similarly, for any > 0 there exists an, € N such that, — 1 < 0 < no.
Hencen, < ny +ne — 2 <t+ o < ny; + ny and therefore,

t+o 1 ni+ns—2 1 3 3
— _ds> — ds= (g —2) > —(t—2).
[ wmez) g a2

2

This means that
t+o

ds = 0o

!

S ) K(s)
uniformly with respectta > 0. Thus, by means of Theorem 3.1, we obtain the following
example with unbounded damping coefficiéit).

Example 3.2. Let h(t) be the function defined by (3.6). Then the equilibrium of (1.1) is
uniformly asymptotically stable.

We attach a phase portrait of positive orbits of Example 3.2 with 1 for a deeper
understanding. In Figure 3, we draw four positive orbits starting at pdings1.0),
(—1.0,0.8), (0.3, —1.0) and(1.0, —0.8), respectively. The four positive orbits have the
same initial timety = 0.

As was mentioned in Section 1, Hatvani [18] has first presented condition (1.4). To
be precise, since he dealt with the general form of a two-dimensional linear system with
time-varying coefficients, the obtained condition was a little more complicated than con-
dition (1.4). Because it is hard to check condition (1.4) directly, he also gave easy-to-use
conditions which guarantee that condition (1.4) holds. Using one of those conditions, we
can lead the following result.

Theorem 3.2. Suppose that/h(t) is bounded and1/A(t))’ is bounded from below. If

t+o 1

lim ds = oo uniformly with respect too > 0, (3.7)

e J, )
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1.0

0.5

—1.0 —-0.5

—-0.5

—-1.01

Figure 3: Every positive orbit moves round the origin in a clockwise and a
counter-clockwise direction by turns and approach the origin windingly.

then the equilibrium of1.1)is uniformly asymptotically stable

Remark 3.3. If 1/Ah(t) is bounded, then(t) is integrally positive. Example 3.2 can be
also confirmed by using Theorem 3.2.

4. Discrete condition for uniform asymptotic stability

Sinceh(t) > 0 for ¢t > 0, the integralH (¢) is increasing fot > 0 (needless to say,
H(t) is not necessarily strictly increasing). Define

H™(r) =min{t € R: H(t) > r}.

Then, the inverse functio®/ ~!(r) is also increasing for > 0. Hatvani, Krisztin and
Totik [20] have proved that condition (1.3) is equivalent to

ST (H(n) - H ' (n—1))" = (4.1)

under the assumption thAt(¢) tends toxc ast — co. If h(t) is weakly integrally positive,
then
lim H(t) = oc.

t—o00
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Hence, combining their result and Theorem C, we obtain another criterion for the asymp-
totic stability as follows.
Theorem D. Suppose that one of the following assumptions
(i) A(t) is integrally positive
(i) A(t) is uniformly continuous fot > 0 and weakly integrally positive
holds Then the equilibrium of1.1)is asymptotically stable if and only if conditi¢d.1)
holds

In this section, using their notation, we will give sufficient conditions for the equilib-
rium of (1.1) to be uniformly asymptotically stable. To this end, we prepare the following
result.

Lemma4.1. Leta, = H '(n) — H '(n — 1) for n € N. Suppose thak(t) is integrally
positive Then the sequende.,, } is bounded

Proof. As was shown in the proof of Theorem 1.1, siride) is integrally positive, we
can find arY > 0 and af > 0 such that

t+1
H(t+1)—H(t) :/ h(s)ds > ¢ for t >t (4.2)

By way of contradiction, we suppose th@t, } is unbounded. Then, we can choose a
subsequencéa,, } C {a,} with n, — oo ask — oo such thatlim_, a,, = o0;
namely, for anyK' > 0, there exists av (K') € N such that: > N impliesa,, > K. In
particular, let

l

where[c] means the greatest integer that is less than or equal to a real nunibeen,
there exists atv, = N(K,) € N such that

1
K*—{—]JrleN,

H*ng) — H *(np — 1) =a,, > K, for k> N,. (4.3)

SinceH (t) tends taxc ast — oo, the inverse functio/ ! (r) also tends tec asr — oo.
Hence,H '(n;) — oo ask — oo. We therefore conclude that there exists@h> N,
such that: > N* implies H~!(n;, — 1) > t. From this and (4.2), we see that

HH Y —1)+1)— HH *(np — 1)) > ¢,
HH Ynp—1)+2)— HH *(npg — 1)+ 1) > ¢,
HH Ynp—1)+3)— HH *(ng — 1) +2) > ¢,



for £ > N*. Adding these inequalities, we obtain
HH (g — 1)+ K,) > HH Y(ny — 1)) + K./
etk =m ([H 1)
>ny, = H(H Y (nyg))

for k > N*. SinceH(t) is increasing fort > 0, it follows that H(n;, — 1) + K, >
H~'(n); namely,

an, = H *(ny) — H '(np — 1) < K, for k> N* > N,.
This contradicts (4.3). O
By virtue of Lemma 4.1, it turns out that there existsaan 0 such that
0<a,<a for neN.

We are now ready to state the following sufficient condition expressed by an infinite
series, which guarantee uniform asymptotic stability for the damped linear oscillator (1.1)
under the assumption thatt) is integrally positive.

Theorem 4.2. Suppose thak(t) is integrally positive If

n+N
lim Z (H (i) — H (i — 1))2 = oo uniformly with respecttoN € N,  (4.4)
n—oo

=N

then the equilibrium of1.1)is uniformly asymptotically stable

Proof. It follows from (4.4) that for anyl. > 0 there exists ai/(L) € N such that

M+N
» al>L for NeN. (4.5)

n=N
ForanyK > 0, let L = 2eK. Then, there exists all, = M (2¢K) € N such that

My+N
Y ap>2eK for NeN. (4.6)

n=N

From the integral positivity of.(¢) and Lemma 4.1, we see that the the sequéngé
has the upper bound > 0. LetT = T(K) = a(M. + 2) = a(M(2eK) + 2) and let
o > 0 be fixed arbitrarily. Define the domains

Dz{(s,7‘):0§7‘§s§a+T}
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N

o+T

S

e ;
,-/—l——l I
A |
AR |
M s
H (1)1 0 H(ny H(n*-1)i0+T H™(n"
l—p! l«—>!
(07% Qp*

Figure 4: The triangle domaiP contains small right isosceles trianglBs,
forn=n,+1,n,+2,...,n*—1.

and
D,={(s,7):H'(n—1)<7<s<H '(n)} for neN

in the plane (see Figure 4). Note thatand D,, are right isosceles triangles whose legs
areT anda,, respectively. Sincd > 3a and H'(n) tends toco asn — oo, we can
choose two integers, andn* so that

H'n,—1)<o<H'n)<H*'n"—1)<o+T<H'Yn).
From these inequalities it follows that
H'n)—-oc<H'n)—H'n,—1)=a, <a

and
o+T—H'n*—1)<H'(n")—H'(n*—1)=a, <a.
Hence, we obtain

n*—1

Z an = H '(n* —1) — H *(n,)

n=nsx+1

>c+T—-a—(oc+a)=a(M,+2)—2a=all,.
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We also obtain

n*—1

Zan<a(n—l—(n*+1)+1) a(n" —n,—1).

n=nsx+1

We therefore conclude thatl, < n* — n, — 1. SincelM,, n* andn, are integers,
M, <n"—n,—2. 4.7)

This means that the number of small trianglgswhich are included in the domaib is
at least)M, — 1 pieces.
LetU =D, 1UD,, »U---UD,-_4. Taking into account of

Dn*-f-lCDa Dn*+2CD7 """ ; Dn*—ICD7

we see that/ ¢ D. Hence, we have

TH+o H(r) T+o prs
/+fe(d78_/+/ —H(s)+H(T) 47 ]s
—// e H(s +H(T)d7ds>// e HEHH ) g1 ds.
D U

For any(s, ) € U, there exists an € N with n, + 1 <n < n* — 1 such that
n—1<H(t)<H(s)<n
Hence, we see that
0>—H(s)+H(r)>—n+n—1=-1,

and therefore,
1 e <
e

for (s,7) € U. Let S(U) be the area ot/, which is the union of the right isosceles
trianglesD,, (n = n, + 1,n, +2,...,n* — 1). Then, from (4.7) it turns out that

1 n*—1 1 M+ns+1
H(s)+H(T) g7 g > S > — a’.
/\/U :Z 2e n;—&-l

Consequently, using (4.6) witN = n, + 1, we obtain

T+o fs eH ) r 1 My+ni+1 1
o - 2 o - —
/ CH) ds > 5 ZH a, > 5 2eK = K.

We therefore obtain

t+"f H(T) dr THo [*eHT)qr
ds > 2 ds>K

C eH() eH(s)
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fort > T. SinceK does not depend an > 0, condition (1.4) holds. Thus, by means of
Theorem 1.1, the equilibrium of (1.1) is uniformly asymptotically stable O

We consider the case that the functibfhi(¢) is integrable on any bounded interval.
Then, using the method of Hatvani, Krisztin and Totik [20, p. 215], we obtain the follow-
ing relation.

Theorem 4.3. If h(t) is integrally positive and /h(t) is integrable on any bounded in-
terval, then condition4.4) implies condition(3.7).

Proof. From (4.4) it turns out that for any. > 0 there exists an/(L) € N satisfy-
ing (4.5). Sinceh(t) is integrally positive, Lemma 4.1 is available. LBt= T'(L) =
a(M(L) + 2) > 3a, wherea is the upper bound of the sequeneg,}. For anys > 0,
we can choose two integers andn* so that

H'n,—1)<o<H'n)<H ' —1)<o+T<H'Y(n". (4.8)
By the same manner as in the proof of Theorem 4.2, we obtain
M=M(L)<n"—n,—2. (4.9)

Sincel/h(t) is integrable on the intervald ~'(n — 1), H~*(n)] with n € N, it follows
from the Cauchy-Bunyakovski-Schwarz inequality that

H )\
a2 =(H'(n)—H '(n-1))" = (/ )dt)

H-1(n—1

/H1<n> o H )
< h(t dt/ ——dt
H-1(n-1) H-1(n-1) h(t)

H~*(n)

= (H(H™'(n)) = H(H " (n — 1)) / Lo

H-1(n—1) P (?)
H=Y(n) 1
_ —_at
/H—l(n1) h(t)

for n € N. Consequently, using (4.5) with = n, + 1, we get

M+n,+1 M+n.+1  H~1(n) 1 H=Y(M+n.+1) 1
L< a2 < / ——dt = / ——dt.
n=n2*+1 n=nZ*+1 H=1(n-1) h(t) H=1(n«) h<t)

Since H~*(n) is increasing with respect to € N, it turns out from (4.8) and (4.9) that

/T+a 1 ; /Hl(n*—l) 1 ; /Hl(lbf+n*+1) 1 ;
——dt > ——dt > ——dt > L.
o h(t) o h(t) H-1(n.) h(t)

Hence, we obtain

t+o
dt > L for t>1T.
/(,. e =

SinceT does not depend an > 0, we see that condition (3.7) holds. OJ
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5. Extension to the damped half-linear oscillator

In this section, we consider the nonlinear second-order differential equation
(0p()" + h(t) Pp(z") + WPy (z) = 0, (5.1)
the functiong,(z) is defined by
op(2) = |2[P722, z€eR

with p > 1. The only equilibrium of (5.1) is the origiz, ') = (0,0). Equation (5.1) is
often calledhalf-linear, because it has only one of the two characteristics of the solution
space of linear differential equations. To be precise;(i)) is a solution of (5.1), then
the functioncz(t) is also a solution of (5.1) for an arbitrary constaré R. However,
the sum of two solutions is not a solution in general. Since equation (5.1) is a natural
generalization of the damped linear oscillator (1.1), we will call itdaenped half-linear
oscillator.

We can rewrite (5.1) to the equation of self-adjoint type,

(eH(t)qbp(m'))/ +wPelWe (1) = 0. (5.2)

It is known that the global existence and uniqueness of solutions of (5.2) are guaranteed
for the initial value problem. For details, see $0[9, p. 170] or D&ly and Rehak [13,
pp. 8-10]. Many important studies on the half-linear differential equations have been per-
formed over about forty years. Especially, there are good articles concerning oscillation
theory. Especially, a lot of efforts were devoted to obtain good articles concerning oscil-
lation theory. We can find those results in the books [1, 9, 13] and the references cited
therein. Even after these books are published, the equation (5.2) is continuing being stud-
ied actively (for example, see [10, 11, 12, 15, 27, 34]). However, there is little research of
stability theory of half-linear differential equations such as (5.1).

Let p* be the conjugate number pf namely,

thenp* is also greater thah. Since the functionv = ¢,(2) is strictly increasing, there
exists the inverse function which is describedby- ¢,-(w). As a new variable, let us
introducey = ¢, (z'/w). Then, equation (5.1) becomes the planar system

v’ = wop(y)
y = —waoy(z) — h(t)y.

System (5.3) has the zero solution which corresponds to the equilibrium of (5.1). We
can define uniform asymptotic stability of the zero solution of (5.3) as well as (2.1). The
following result is a generalization to Theorem 1.1.

(5.3)
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Theorem 5.1. Suppose thak(t) is integrally positive If

lim t+g¢ (f;LW) ds = oo uniformly with respecttoo > 0 (5.4)
p* GH(S) - y p — Y .

t—o00 o

is satisfied, then the equilibrium @5.1) is uniformly asymptotically stable

Since the proofis carried out in the same way as the proof of Theorem 1.1, we describe
only an outline of the proof to focus on the differences.

Outline of the proof of Theorem 5.1. Part(a): Lep = max{p, p*} andp = min{p, p*}.
For anye € (0,1), we choose
_ 1/p
pe’ -
0e) = (m) :

Then, it follows thati(¢) < e < 1. Letty > 0 andxy = (g, o) € R? be given. We will
show thatl|x,|| < d(e) implies||x(¢; to, xo)|| < € fort > t,. Define

oy = 0P 1y

D p*

*

p

Y

where(z(t), y(t)) = xo = (z0,y0). Then,'(t) = — h(t)|y(t)|P” < 0fort > t,. Hence,
we obtain

(|$0|p + |?J0|p*),

fort > ty. Sinced < 1, we see that

0 + o < 2 () + 6e)?) = () for 1zt

From this estimation it turns out that

(1) < (ﬁ)/s = and (0] < (ﬁ)ws =

for t > t,. Hence, we obtain

|1x(t;t0, %0)|| = V22(t) + y2(t) < e for t > to;
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namely, the zero solution of (5.3) is uniformly stable. This completes the proof of part (a).
Part (b): Lety, = 1/p and

for everyn € (0,1), whered(-) is the number given in part(a). Note that(n) <
(6(n)” < nP < 1. Sinceh(t) is integrally positive, there exist numbets- 0 andi > 0
such that

t+1 )
/ h(s)ds > ¢ for t >t.
¢

We define

_ [ p) pw(n) [
u—mm{ 5 ot and 7 =t+ m +1,

where[c] means the greatest integer that is less than or equal to a real numbem
condition (5.4) it turns out that there existssasuch that

o ([FeHar\ _wrig o\

We may assume without loss of generality that- 1. Let

t+u/(2p'w)

v = htrgg)lf 1) h(s)ds.
Then, we can choosera > 0 so that
t+p/(2p'w) 2
/ h(s)ds > — for t > 3. (5.6)
¢ K

From the definitions of, v, 7, 7 andz, we see that these numbers depends only.on
This is important in the proof. We define

T=m1+ ({H +1)(n+72).

Then, the numbef also depends only on
Part (c): Consider a solutiax(t; ¢y, xo) of (5.3) witht, > 0 and||xq|| < dy = 1/p.
To complete the proof, we have only to show that there exists=a[t,, t, + 7] such that

o)+ e < 0L 50 (5.7)

for everyn > 0, because this inequality implies that

et to, o)l = V/a2(t*) + y2(t*) < n.
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By way of contradiction, we suppose that
()" + ly@)" > py(n) for to <t <to+T.

Sincey/a3 + y2 = [|xo]| < do = 1/p, we see that

2(n) < %(rx@)rp P < o)
B 1 e A T N |
slb) ==t <3 (p " p*) P &8

forty <t < t,+T. Let us examine the behavior pf(t)|"" in four steps that were used
to prove Theorem 1.1.

Stepl: For any intervala, 3] C [to,to + T}, if |y(¢)|P" > /2 for a < t < 3, then the
time width 3 — « is less tham,. Using|y(¢)|P” instead ofy?(t) and repeating the step 1 of
Theorem 1.1, we can prove this to be correct.

Ste2: For any intervale, 8] C [to,to + T1, if |y(t)|P” < pfor a < t < 3, then the
time width 8 — « is less thanr,. To show this, we suppose that there exists an interval
(v, Bo] C [to, to + T] With 8y — as > 75 such thaty(t)|P” < ufor ap < t < ;. Since
1< p*y(n)/2, by (5.8) we have

() = p(v(t) - M) > p(v(n) _ ﬁ) . p72(77)

P* "

for ay < t < B,. Hence, there are two cases to consideft) > (p~(n)/2)"/? for
ag <t < By a(t) < —(py(n)/2)/P for ay < t < B,. We consider only the former,
because the latter is carried out in the same way. In the former, we have

(BH(t)y(t))’ _ (y/(t) + h(t)y(t))eH(t)

1/p
— —wqbp(x(t))eH(t) < _w(pVQ(n)) 6H(t)

for ay <t < f3,. Integrating this inequality from, tot < 35, we obtain

1/p* t
y(t) < y(OCQ)eH(az)efH(t) _ w(lwz(??)) GH(t)/ oH6) g

2

1/p* t
< ,ul/p*eH(ag)efH(t) . W<P72(77)> eH(t)/ ) gg

2

Taking into account of

t
H(a2) S/ e®ds for t > ay + 1,

2
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B2 > an+ 70 > ap+ 1andu < pwPy(n) /217", we can estimate that

: pym 7" '*
2'(t) = Wy (y(t)) < wpe| p!Pe MO~ — w(—) e~ H® / HO) g

2 2
. /p* t

< wo| (1 —H( / ) g
ol
(_Up

. >”>¢p*< fr
sl

for ap + 1 < t < f,. From (5.8) it follows thate(ay + 1) < 1. Sincez(ay + ) >
(py(n)/2)/? > 0, we conclude that

Qg+T2
—l<—z(aw+1)<z(aa+ 1) —z(ag+1)= / o' (t)dt
az+1

p* 1/p pas+ro t
S (m(n)) / %*( _H / eH(s)dS)dt
2p 2 az+1 [e%)
p* 1/p pas+mo as+1 ¢
_ 2;’71 <p72(’7)) / ¢p*( —H(t){ / M) s+ / eH<5>ds})dt
az+1 Qg az+1
p 1/p a2+T2 t
< — f_l (IW(TI)) / ¢p*(e_H(t)/ eH(s)ds>dt.
2P 2 aztl as+1

However, from (5.5) withv = a5 + 1 andt = , — 1, we see that

p* 1/p poag+ms t
IR (m(n)) / %*(6_1{@) / eH(S)ds) dt < —1.
2P 2 az+1 as+1

This is a contradiction. Thus, it turns out that the beginning sentence of this step is true.
Step3: We can proceed the argument in the same way as the proof of Theorem 1.1 by
using|y(t)|P" instead ofy?(¢). As a result, we obtain

W
2 p*w

< tQ - t17 (5.9)

wheret; andt, are numbers satisfying (¢,)["" = /2, |y(t2)|P” = p and

LSyl <p for ty<t<ty. (5.10)

Stepd: Using (5.6), (5.9) and (5.10), we obtain

/v'(t)dt < -—v
Ji
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where
Ji=[to+m+(i—1)(11+7), to+73+i(n+7)]

fori =2,3,...,[1/v] + 1. We leave the detailed analysis to the reader.
This means that the loss of the total energs) in each interval/; is at least. Hence,
we obtain

[1/v]+1
0t +75) < v(to + T) — v(to + 75) = Z/v’(t)dt
i=1 7 Ji

S—V(H +1) <-1,

which contradicts (5.8). Thus, inequality (5.7) was proved. The proof of Theorem 5.1 is
now complete. O
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