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broken spontaneously as its order parameter stays nonzero for the whole region of the cou-

pling constant. Coincidence of the result with the unitary one-matrix model suggests that
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1 Introduction

Spontaneous supersymmetry (SUSY) breaking in superstring theory is one of crucial phe-

nomena for superstrings to describe our real world. Although various matrix models have

been investigated as nonperturbative formulations of superstring/M theory [1–6], it is still

difficult to elucidate whether these models do break SUSY and derive our four-dimensional

world. In this situation, a simple double-well SUSY matrix model had been recently con-

sidered in [7, 8], and its connection to two-dimensional type IIA superstring theory [9] on

a nontrivial Ramond-Ramond background had been explored from the viewpoint of sym-

metries [10] and from direct comparison of scattering amplitudes at the tree and one-loop

orders [11]. Interestingly, in a double scaling limit that realizes the type IIA superstring the-

ory, instanton effects of the matrix model survive and break the SUSY spontaneously [12].

This suggests that the corresponding type IIA superstring theory nonperturbatively breaks

its target-space SUSY. Further investigation along this direction is expected to give insights

to nonperturbative SUSY breaking in realistic superstring theory.
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In this paper, the nonperturbative computation of the free energy of the SUSY matrix

model is completed by drawing upon the result of Tracy and Widom [13, 14] on the dis-

tribution of the largest eigenvalue in random matrix theory.1 Consequently we shall find

that the full nonperturbative free energy is expressed in terms of a Painlevé II transcen-

dent, in coincidence with the unitary one-matrix model [24, 25]. It suggests correspondence

between two-dimensional U(N) gauge theory and some sector of the two-dimensional IIA

superstring theory, as well as partial equivalence of the IIA superstrings to one-dimensional

type 0 strings. The expression is regular for the whole region of the coupling constant, and

allows expansions in both regions of weak and strong string coupling constants. In par-

ticular, the third-order phase transition between the SUSY phase and the SUSY-broken

phase previously found in a simple large-N limit (planar limit) disappears in the double

scaling limit. As a bonus of our method, the free energy or the partition function is natu-

rally generalized by introducing instanton fugacity ξ. The original free energy or partition

function is reproduced as ξ → 1.

This paper is organized as follows. Our SUSY matrix model is briefly reviewed in

the next section, and relevant random matrix techniques are summarized in section 3. By

combining contents in the above two sections, we present the nonperturbative free energy

in section 4. In section 5, the generalized free energy is shown to exhibit a phase transition

due to condensation of instantons at an arbitrarily small string coupling constant. Section 6

is devoted to summarize the results obtained so far and present some of future directions.

In appendix A, we present some technical steps to the result of Tracy and Widom relevant

to the text.

2 SUSY double-well matrix model

The SUSY double-well matrix model is defined by the zero-dimensional reduction of a

Wess-Zumino type action with superpotential W (φ) = 1
3φ

3 − µ2φ:

S = Ntr

[

1

2
B2 + iB(φ2 − µ2) + ψ̄(φψ + ψφ)

]

, (2.1)

where B and φ are N × N hermitian matrices, and ψ and ψ̄ are N × N Grassmann-odd

matrices. S is invariant under SUSY transformations generated by Q and Q̄:

Qφ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0, (2.2)

Q̄φ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB, Q̄B = 0, (2.3)

which leads to the nilpotency: Q2 = Q̄2 = {Q, Q̄} = 0. In the planar limit (large-N limit

with µ2 fixed), the theory has two phases — (I) SUSY phase for µ2 > 2 and (II) SUSY-

broken phase for µ2 < 2. The phase (I) has infinitely degenerate minima parametrized

1 Besides those quoted in the main text, the Tracy-Widom distributions at Dyson indices β = 2, 1, 4

have appeared repeatedly in the disguise of various combinatorial and statistical problems (see [15–17]

for reviews), e.g. as a distribution of the length of the longest increasing subsequence in random permu-

tations [18], as a distribution of particles in the asymmetric simple exclusion process [19, 20], and as a

one-dimensional surface growth process in the Karder-Parisi-Zhang universality class [21–23].
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by filling fraction (ν+, ν−),2 and transition between the phases (I) and (II) is of the third

order [7, 8]. As discussed in [10–12], various correlation functions of the two-dimensional

type IIA superstring theory compactified on R× S1 at the selfdual radius, with the string

coupling gs and the Liouville coupling ω (multiplied by the tachyon operator), coincide

with their counterparts in this matrix model through the identification gs = N−1 and

4ω = µ2 − 2, in the double scaling limit

N → ∞ and µ2 → 2 + 0 with s = N2/3(µ2 − 2) = g−2/3
s · 4ω fixed (2.4)

from the phase (I). Thus, the weakly and strongly coupled regions of the IIA superstrings

correspond to s ≫ 1 and 0 < s ≪ 1, respectively. The strength of the Ramond-Ramond

background is expressed in terms of ν+ − ν−. After integrating out the auxiliary field B

and the fermionic fields ψ and ψ̄, the partition function of the matrix model can be recast

as integrals with respect to N eigenvalues {λ} = {λ1, . . . , λN} of φ:

Z(µ2) = C̃N

∫ ∞

−∞

N
∏

i=1

(

dλi e
−NV (λi)

)

△N ({λ})2
N
∏

j,k=1

(λj + λk), (2.5)

where △N ({λ}) :=∏N
i>j(λi − λj), V (λ) = 1

2(λ
2 − µ2)2, and 1/C̃N = (2π)

N
2 N−N2

2

∏N
k=0 k!.

The integration region of each eigenvalue is divided into the positive and negative real

axes, and the partition function associated with the filling fraction (ν+, ν−), denoted by

Z(ν+,ν−)(µ
2), is defined by integrations over the positive real axis for the first ν+N eigen-

values and over the negative real axis for the remaining ν−N . Then, it is easy to see the

relation Z(ν+,ν−)(µ
2) = (−1)ν−N Z(1,0)(µ

2), where

Z(1,0)(µ
2) = C̃N

∫ ∞

0

N
∏

i=1

(

dλi e
−NV (λi)

)

△N ({λ})2
N
∏

j,k=1

(λj + λk). (2.6)

The total partition function with a regularization parameter α is defined by

Zα(µ
2) =

N
∑

ν−N=0

N !

(ν+N)!(ν−N)!
e−iαν−NZ(ν+,ν−)(µ

2) = (1− e−iα)N Z(1,0)(µ
2). (2.7)

The one-point function 〈 1
N tr(iB)〉α normalized by Zα(µ

2) coincides with 〈 1
N tr(φ2−µ2)〉(1,0)

normalized by Z(1,0)(µ
2). This is well-defined in the limit α → 0 and serves as an order

parameter of spontaneous SUSY breaking.

The partition function in the (1, 0) sector (2.6) can be cast in an alternative form by

a change of variables λi 7→ xi = µ2 − λ2i :

Z(1,0)(µ
2) = C̃N

∫ µ2

−∞

N
∏

i=1

(

dxi e
−N

2
x2
i

)

△N ({x})2 (2.8)

2 ν± are nonnegative fractional numbers such that ν++ν− = 1, corresponding to ν+N (ν−N) eigenvalues

of φ located around the minimum x = +µ (x = −µ) of the double-well potential V (x) = 1

2
(x2 − µ2)2.

– 3 –
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Using this expression, one- and two-instanton effects to the one-point function and

Z(1,0)(µ
2) are analytically obtained in [12], from which spontaneous breaking of SUSY

by instantons is concluded. Full nonperturbative contributions are also numerically com-

puted up to N = 106, and these results are extrapolated to N = ∞. One of the aims of

this article is to present an analytic form of full nonperturbative contributions to Z(1,0)(µ
2)

by recalling results in random matrix theory.

3 Gap probability of GUE

Here we collect some basic facts related to the celebrated result of Tracy and Widom [13, 14]

for completeness. For an ensemble of sets of N real numbers {x} = {x1, . . . , xN}, we

consider a joint probability distribution (j.p.d.) P ({x}) which is totally symmetric under

the exchange of any two entries and normalized by
∫

R

∏N
i=1 dxi P ({x}) = 1. Let us also

introduce a function associated with an interval I ⊂ R by

τ(ξ; I) :=

∫

R

N
∏

i=1

dxi(1− ξχI(xi))P ({x}). (3.1)

Here the characteristic function of I is denoted by χI(·), i.e. χI(x) = 1 for x ∈ I, and

χI(x) = 0 otherwise. In power series expansion of (3.1) with respect to (−ξ), the coefficient

of (−ξ)k represents a probability in which any k elements of {x} are in I and the remaining

(N−k) unrestricted (namely, at least k elements are in I). On the other hand, in expansion

with respect to (1− ξ), the coefficient of (1− ξ)k gives a probability of exactly k elements

belonging in I, due to 1 − ξχI(x) = χR\I(x) + (1 − ξ)χI(x). These are expressed by the

formula:

τ(ξ; I) = 1 +
N
∑

k=1

(−ξ)k
k!

∫

I
dx1 · · · dxkRk(x1, . . . , xk) =

N
∑

k=0

(1− ξ)kEk(I), (3.2)

where

Rk(x1, . . . , xk) =
N !

(N − k)!

∫

R

dxk+1 · · · dxN P ({x}) (3.3)

is the k-point correlation function, and

Ek(I) =

(

N

k

)
∫

I
dx1 · · · dxk

∫

R\I
dxk+1 · · · dxN P ({x}) (3.4)

is the probability distribution of k elements exclusively in I. In particular, at ξ = 1 it is

equal to the ‘gap probability’ that the all xi’s lie outside the interval I,

τ(1; I) = E0(I) =

∫

R\I

N
∏

i=1

dxi P ({x}). (3.5)

– 4 –
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3.1 Hermitian random matrices

For an ensemble of N ×N Hermitian random matricesM defined by the partition function

of the one-matrix model

Z1MM =

∫

dN
2

M e−trU(M) = C̃N

∫

R

N
∏

i=1

(

dxi e
−U(xi)

)

△N ({x})2, (3.6)

the corresponding j.p.d. is

P ({x}) = C̃N

Z1MM

N
∏

i=1

e−U(xi)△N ({x})2. (3.7)

This j.p.d. and the k-point correlation function Rk(x1, . . . , xk) are known to be expressed

as a determinant

P ({x}) = det[K(xi, xj)]
N
i,j=1, Rk(x1, . . . , xk) = det[K(xi, xj)]

k
i,j=1 (3.8)

consisting of a kernel

K(x, y) = e−
1

2
(U(x)+U(y))

N−1
∑

n=0

1

hn
pn(x)pn(y)

= e−
1

2
(U(x)+U(y)) 1

hN−1

pN (x)pN−1(y)− pN−1(x)pN (y)

x− y
. (3.9)

Here {pn(x)}n=0,1,2,··· are monic polynomials of the degree n, orthogonalized with respect

to the measure e−U(x)dx:
∫

R

dx e−U(x) pn(x) pm(x) = hnδnm. (3.10)

Furthermore, in terms of the orthonormal functions

ψn(x) :=
1

h
1/2
n

e−
1

2
U(x) pn(x), (3.11)

the kernel can be cast into a concise form:

K(x, y) =
N−1
∑

n=0

ψn(x)ψn(y). (3.12)

Let K̂|I be an integration operator associated with the kernel K(x, y)χI(y) acting

on the space of L2 functions on R. Although we would like to consider the kernel on

the functional space on I, it is convenient to treat it as an operator on R by putting the

characteristic function [13]. Det and Tr represent the functional determinant and trace

over this space, respectively. By noting

Tr (K̂|I)k =

∫

I
dx1 · · · dxkK(x1, x2)K(x2, x3) · · ·K(xk, x1), (3.13)

– 5 –
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we can see that the Fredholm determinant Det(1− ξK̂|I) has an expansion

Det(1− ξK̂|I) = exp
[

Tr log(1− ξK̂|I)
]

= exp

[

−
∞
∑

k=1

ξk

k
Tr (K̂|I)k

]

= 1 +
∞
∑

k=1

(−ξ)k
k!

∫

I
dx1 · · · dxk det[K(xi, xj)]

k
i,j=1. (3.14)

Here the k×k matrix (K(xi, xj))i,j=1,··· ,k is a Gram matrix composed by the N -dimensional

real vectors ~Ψ(x1), . . . , ~Ψ(xk) with ~Ψ(x) = (ψ0(x), · · · , ψN−1(x))
T ∈ R

N . For k > N , since

the vectors cannot be linearly independent, the Gram determinant vanishes. Thus, the

infinite series in the r.h.s. of (3.14) terminates at k = N and coincides with (3.2). This

proves the identity

τ(ξ; I) = Det(1− ξK̂|I). (3.15)

3.2 GUE and soft edge scaling limit

Now we concentrate on the Gaussian Unitary Ensemble (GUE) defined by the j.p.d. (3.7)

with the harmonic oscillator potential U(x) = N
2 x

2, for which the orthogonal polynomials

coincide with the Hermite polynomials:

pn(x) =
1

(2N)n/2
Hn

(

√

N

2
x

)

with Hn(x) = (−1)n ex
2 dn

dxn
e−x2

, (3.16)

and the orthonormal functions (3.11) become the wave functions of a particle under a one-

dimensional harmonic oscillator potential. In a simple large-N limit (planar limit), the

eigenvalue density becomes

ρ̄(x) := lim
N→∞

1

N
K(x, x) =

1

2π

√

4− x2. (3.17)

Let us consider another large-N limit with s = N2/3(x−2) fixed (the soft-edge scaling limit)

which unfolds the spectrum near the edge (x = 2) of the eigenvalue density (3.17). Note

that because the edge is nothing but one of the classical turning points of the harmonic

oscillator, the corresponding kernel (the Hermite kernel) K in (3.9) reduces to the Airy

kernel:

lim
N→∞

N−2/3K(2 +N−2/3s, 2 +N−2/3t) =
Ai(s)Ai′(t)−Ai′(s)Ai(t)

s− t
=: KAi(s, t), (3.18)

which can be explicitly checked by using the formula [26]3

e−x2/2Hn(x) = π
1

4 2
n
2
+ 1

4n−
1

12

√
n!
[

Ai(s) +O(n−2/3)
]

(3.19)

for large n with

x =
√
2n+ 1 +

s√
2n1/6

. (3.20)

3 For an alternative derivation of (3.19), see for example appendix C in [12].
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Setting I = [2 + N−2/3s,∞), the scaling limit of τ(ξ; I) is thus given by the Fredholm

determinant of the Airy kernel, Det(1 − ξK̂Ai|[s,∞)). Tracy and Widom have shown that

this quantity is expressed as [13]:

F (ξ, s) := − logDet(1− ξK̂Ai|[s,∞)) =

∫ ∞

s
(t− s)q(t)2dt. (3.21)

Here, q(s) is a solution to a Painlevé II differential equation:

q′′(s) = s q(s) + 2q(s)3, (3.22)

and is uniquely specified by the boundary condition

q(s) ∼
√

ξAi(s) (s→ +∞). (3.23)

In appendix A, we summarize technical points in the derivation of (3.21)–(3.23). From the

above follows the ‘specific heat’

∂2sF (ξ, s) = q(s)2 ∼ ξAi(s)2. (3.24)

Due to (3.5), the distribution of the (scaled) largest eigenvalue is given by ∂se
−F (1,s).

It is known that τ(ξ; I) = Det(1− ξK̂|I) in general is a τ function for the Toda lattice

hierarchy associated with a Painlevé system. In our case, τ(ξ; I) for the Airy kernel is

the one associated with Painlevé II [27]. For a derivation of (3.21)–(3.23) based on the

τ -function theory, see the above reference.

Before closing this section, we comment on a spectrum of the kernel (3.12) or its scaling

limit (3.18). The kernel (3.12) is a projection operator acting on L2 functions on R, so

that every eigenvalue of K̂|R is either 0 or 1. However, considered as an operator acting on

L2 functions on an interval I ⊂ R, eigenvalues {Λn} = Spec(K̂|I) are distributed between

0 and 1 in general. For the eigenvalue Λn and the corresponding normalized eigenfunction

fn(x), the aforementioned upper and lower bounds can be seen from

Λn =

∫

I
dx dy fn(x)K(x, y) fn(y) =

N−1
∑

m=0

(
∫

I
dx fn(x)ψm(x)

)2

≥ 0 (3.25)

and

1− Λn =

∫

I
dx dy fn(x) (δ(x− y)−K(x, y)) fn(y) =

∞
∑

m=N

(
∫

I
dx fn(x)ψm(x)

)2

≥ 0.

(3.26)

These bounds remain valid for the Airy kernel after taking the soft edge scaling limit.

4 Free energy and instanton sum

Our prime ‘observation’ is that the partition function of the SUSY double-well matrix

model (2.8) is identical to the gap probability of GUE (3.5) for I = [µ2,∞), already at

– 7 –
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finite N . Accordingly, the double-scaling limit in the former (2.4) is just the soft-edge

scaling limit in the latter, given by (3.21), (3.22) and (3.23) at ξ = 1:

F (1, s) = − lim
N→∞

logZ(1,0)(2 +N−2/3s). (4.1)

Notice that the result here is valid for s < 0 as well as for s ≥ 0. Properties of this

solution to the Painlevé II equation (3.22), called the Hastings-McLeod solution qHM(s) [28],

are extensively studied in the literature (see e.g. [29]). Thus we readily have the full

nonperturbative free energy of the SUSY double-well matrix model in the form of (3.21)

with ξ = 1. The free energy is a smooth and positive function of s for the whole range

(−∞,∞).4

4.1 Strong coupling expansion

With the help of (3.22), s-derivatives of F (1, s) at the origin are expressed in terms of q(0)

and q′(0) of the Hastings-McLeod solution as:

F ′(1, 0) = −
∫ ∞

0
dx q(x)2, F ′′(1, 0) = q(0)2, F ′′′(1, 0) = 2q(0)q′(0),

F (4)(1, 0) = 2q′(0)2 + 4q(0)4, F (5)(1, 0) = 2q(0)2 + 24q(0)3q′(0),

F (6)(1, 0) = 12q(0)q′(0) + 72q(0)2q′(0)2 + 48q(0)6,

F (7)(1, 0) = 20q′(0)2 + 64q(0)4 + 144q(0)q′(0)3 + 576q(0)5q′(0), · · · , (4.2)

which give a small-s expansion of the free energy. Numerically, we have5

F (1, s) = 0.0311059853− 0.0690913807s+ 0.0673670913s2 − 0.0361399144s3

+0.0102959400s4 − 0.000675999388s5 − 0.000468453645s6

+0.0000815342772s7 − · · · . (4.3)

Interestingly, the series (4.3) provides strong coupling expansion of the IIA superstring

theory. Smoothness of the free energy shows that

• While the third-order phase transition is found in the planar limit for this model [8],

it turns into a crossover in the double scaling limit and the phases (I) and (II) are

smoothly connected without any phase transition.

As its interpretation in the type IIA superstring theory, the planar limit corresponds

to extracting the string theory at the tree level, where the SUSY breaking at the

classical level occurring in the phase (II) is distinct from the breaking due to the

nonperturbative effects in the phase (I). However, in the double scaling limit giving

a nonperturbative construction of the string theory, the difference of the two phases

4 Note that ξ = 1 is the largest value of ξ for these to hold [28], as exhibited in the left panel of figure 2.
5This can be obtained either by numerical computation of the Hastings-McLeod solution or by the

Nyström-type method explained in the next section.

– 8 –
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cannot be seen in the free energy F (1, s), and expressions of the free energy for both

regions are analytically connected.6

• The above situation is identical with what was seen in the unitary one-matrix model of

two-dimensional U(N) lattice gauge theory [24, 25] or of one-dimensional type 0 string

theories [30]. The unitary matrix model has two phases in the planar limit, which

correspond to weakly and strongly coupled regions of the gauge theory, respectively.

Transition between these phases is also of the third order [31, 32]. A double scaling

limit of the model (and its generalized versions) was investigated by using orthogonal

polynomial methods in [24, 25], where the second derivative of the free energy is

given in terms of the Hastings-McLeod solution. The functional form of the free

energy is essentially the same as our result except the leading planar contribution,

which is smooth across the two phases, i.e. there is no phase transition any longer in

the double scaling limit.7 That issue is discussed in the context of trans-series and

resurgence in [35, 36].8

• In the double scaling limit of our model, aspects of nonperturbative SUSY breaking

for the region s > 0 carry over to the region s < 0 where SUSY is broken at the clas-

sical level. In fact, the order parameter of spontaneous SUSY breaking
〈

1
N tr(iB)

〉

α
,

which is proportional to the first s-derivative of the free energy, also crosses smoothly

over from s > 0 to s < 0. It is worth noting that this realizes analyticity in the

spontaneous SUSY breaking in spite of the infinite degrees of freedom at the large

N . The issue of the analyticity is discussed in section 4 of [45]. Although the fact

of the SUSY breaking has been observed analytically from the one- or two-instanton

contributions and numerically as well in [12], the region s > 0 is focused there. Thus,

our finding of the full nonperturbative free energy valid for s ∈ (−∞,∞) provides a

new insight into the analytic structure of the IIA superstring theory.

4.2 Weak coupling expansion

Asymptotic expansion of the free energy F (1, s) for s → ∞, which corresponds to weak

coupling expansion of the IIA superstring theory, can be derived in the following two

ways. The Fredholm expansion in the first line of (3.14) applied for the Airy kernel (3.18)

decomposes the free energy into a sum of finite-dimensional integrals,

F (1, s) =
∑

k≥1

Fk−inst(s),

Fk−inst(s) :=
1

k

∫ ∞

s
dt1 · · · dtkKAi(t1, t2)KAi(t2, t3) · · ·KAi(tk, t1). (4.4)

6 Since the planar solution for µ2 < 2 has a symmetric eigenvalue distribution with the support of a

single interval [8], physics of the region s < 0 should connect to that of the region s > 0 with the filling

fraction (1/2, 1/2) rather than (1, 0). However, concerning the free energy the argument in the text is valid,

because as seen from the relation above eq. (2.6), the free energy with the filling fraction (1/2, 1/2) is equal

to that with (1, 0), i.e. F (1, s), except an unimportant additive constant.
7The same result is obtained in a continuum formulation of the gauge theory [33, 34].
8Methods of trans-series and resurgence have been recently investigated in matrix models [37–40] and

in quantum field theory [41–44].
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In particular, the one-instanton part

F1−inst(s) =

∫ ∞

s
dtKAi(t, t) =

∫ ∞

s
dt
(

Ai′(t)2 − tAi(t)2
)

(4.5)

agrees with eqs. (5.26), (5.31) of ref. [12] derived directly from the properties of the Hermite

polynomials.9 Note that asymptotic expansion of the Airy function consists of a single

exponential [46]

Ai(s) ∼ e−
2

3
s3/2

2
√
πs1/4

∞
∑

n=0

(−1)n(6n)!

576n(2n)!(3n)!s3n/2
for s→ ∞ (4.6)

and does not contain subleading exponentials (trans-series). Fk−inst(s) contains 2k-fold

products of the Airy function, and thus consists of a single exponential e−
4k
3
s3/2 times an

asymptotic series in s−3/2 for s→ ∞. This observation leads to identifying Fk−inst(s) as a

k-instanton contribution to the free energy, thereby justifying the notation.10

Alternatively, one might as well employ asymptotic expansion of the Painlevé II tran-

scendent q(s) for s → ∞ in (3.21) as presented in [48, 49]. Concretely, one substitutes a

trans-series

q(s) =
√

ξ
∑

k≥0

ξkQk(s) (s→ ∞) (4.7)

with

Q0(s) = Ai(s) and Qk(s) ∼
e−

4k+2

3
s3/2

s(6k+1)/4

∞
∑

n=0

a
(k)
n

s3n/2
(4.8)

into (3.22) and equates like terms. Then, recurrence equations determining the coefficients

a
(k)
n are obtained [49]. Here we list first few terms in each Qk(s):

Q1(s) ∼ e−2s3/2

25π3/2s7/4

(

1− 23

16s3/2
+

1493

512s3
− 191635

24576s9/2
+ · · ·

)

, (4.9)

Q2(s) ∼ e−
10

3
s3/2

29π5/2s13/4

(

1− 139

48s3/2
+

38005

4608s3
− 17423767

663552s9/2
+ · · ·

)

, (4.10)

Q3(s) ∼ e−
14

3
s3/2

213π7/2s19/4

(

1− 209

48s3/2
+

72373

4608s3
− 37964645

663552s9/2
+ · · ·

)

, (4.11)

· · · .

After the integration
∫∞
s dt (t− s)q(t)2 of these asymptotics including (4.6), weak coupling

9The coupling constant t in [12] corresponds to s/4 in this paper.
10 It may be possible to obtain the result of Fk−inst by integrating k eigenvalues in the region of [2, 2 +

N−2/3s] and the remaining (N−k) in the region [−2, 2] in (2.6) as discussed in section 3 of [12]. However, it

seems a technically formidable task for general k, although the technique of an isomonodromic system [47]

would manage to deal with the cases of small k.
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expansion of the free energy is also expressed as a trans-series:

F (ξ, s) =
∑

k≥1

ξkFk−inst(s), (4.12)

F1−inst(s) ∼ e−
4

3
s3/2

16πs3/2

(

1− 35

24s3/2
+

3745

1152s3
− 805805

82944s9/2
+ · · ·

)

, (4.13)

F2−inst(s) ∼ 1

2

(

e−
4

3
s3/2

16πs3/2

)2
(

1− 35

12s3/2
+

619

72s3
− 592117

20736s9/2
+ · · ·

)

, (4.14)

F3−inst(s) ∼ 1

3

(

e−
4

3
s3/2

16πs3/2

)3
(

1− 35

8s3/2
+

2059

128s3
− 184591

3072s9/2
+ · · ·

)

, (4.15)

F4−inst(s) ∼ 1

4

(

e−
4

3
s3/2

16πs3/2

)4
(

1− 35

6s3/2
+

3701

144s3
− 1112077

10368s9/2
+ · · ·

)

, (4.16)

· · · .

Without contribution from perturbative parts, the above asymptotics valid for s → ∞
consists solely of nonperturbative parts, carrying the instanton action 4

3s
3/2 ∝ N and

expanded in 1/s3/2 ∝ N−1. It seems plausible that the target-space SUSY in the two-

dimensional IIA theory is always broken by D-brane like objects. In view of (4.12)–(4.16),

we observe that the leading and next-to-leading terms in each Fk−inst(s) could be resummed

in a form

F (ξ, s) = − log (1− ξF1−inst(s)) +O
(

ξke−
4k
3
s3/2s−

3k
2
−3
)

(4.17)

with k ≥ 2. The second term O(· · · ) contains contributions from the third or higher terms

in Fk−inst for all k ≥ 2. Assuming that this also holds for higher-instanton effects, the

generalized partition function (which we call the ‘grand’ partition function) becomes

Ξ(ξ, s) := e−F (ξ,s) = 1− ξF1−inst(s) +O
(

ξke−
4k
3
s3/2s−

3k
2
−3
)

(k ≥ 2). (4.18)

The leading and next-to-leading terms in Fk−inst(s) represent contributions of k instantons

and their fluctuations up to the two-loop order. Hence, concerning the (grand) partition

function (4.18), multi-instanton contributions vanish up to this order and start from the

three-loop order. It is distinct from the dilute gas picture of instantons and suggests

significance of interactions among instantons.

In a technical aspect, the above method is considerably easier than asymptotic ex-

pansion of a closed expression (4.4) involving k-fold integrations. The first term of the

two-instanton part (4.14) was previously derived in [12], eq. (6.33). In figure 1 we exhibit

numerical plots of the free energy and its k-instanton parts. This extends figure 4 of the

aforementioned reference by including contributions of higher instantons and the range of

s < 0.

4.3 Beyond the strong coupling region

Our identification of the matrix model with the two-dimensional IIA superstrings (2.4) is

limited to the region s > 0 by construction, as s < 0 would formally correspond to a nega-

tive Liouville coupling ω or imaginary string coupling gs. Nevertheless, the aforementioned
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Figure 1. Left: the free energy F (1, s) (black) and its 1- (blue), 2- (red), 3- (yellow), 4-instanton

(green) parts. Right: relative portions Fk−inst(s)/F (1, s) of 1- (blue), 2- (red), 3- (yellow), 4-

instanton (green) contributions to the free energy, and the sum of these four (black).

smoothness of the free energy as plotted in figure 1 leads us to speculate that the s < 0

region of the matrix model describes some physical system whose weak coupling limit is re-

alized as the IIA superstring theory. As a possible clue in identifying such a system, below

we exhibit the asymptotic form of the free energy (at ξ = 1) in the limit s ≡ −z → −∞. To

this end, we substitute into the Painlevé II equation a formal trans-series ansatz containing

a single parameter C [35]:

q(z;C) =
∑

ℓ≥0

Cℓqℓ(z), qℓ(z) ∼
e−ℓ 2

√
2

3
z3/2

z(3ℓ−2)/4

∞
∑

n=0

b
(ℓ)
n

z3n/2
(z → ∞) (4.19)

with q0(z) ∼
√

z/2 + · · · , and b
(1)
0 = 2−1/4 by definition. By equating like terms as in

section 4.2, the ‘perturbative part’ q0(z) is given by [13]

q0(z) ∼
√

z

2

(

1− 1

23z3
− 73

27z6
− 10657

210z9
+ · · ·

)

, (4.20)

and the ‘nonperturbative parts’ qℓ(z) (ℓ ≥ 1) are [35]

q1(z) ∼ e−
2
√
2

3
z3/2

21/4z1/4

(

1− 17

29/23z3/2
+

1513

21032z3
− 850193

229/234z9/2
+ · · ·

)

,

q2(z) ∼ e−
4
√
2

3
z3/2

2z

(

1− 41

27/23z3/2
+

5461

2832z3
− 1734407

223/234z9/2
+ · · ·

)

,

q3(z) ∼ e−2
√
2z3/2

27/4z7/4

(

1− 47

29/2z3/2
+

5285

210z3
− 1193755

229/23z9/2
+ · · ·

)

,

q4(z) ∼ e−
8
√
2

3
z3/2

25/2z5/2

(

1− 25

23/23z3/2
+

5011

2632z3
− 1808341

219/234z9/2
+ · · ·

)

,

· · · . (4.21)

Since the positive z-axis (i.e. negative s-axis) is a Stokes line of the Painlevé II equation, one

must perform lateral Borel resummations of the formal series (4.19) by avoiding singularities
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from above or below, which we denoted by q±(z;C). Then the Hastings-McLeod solution

is known to be expressed as a median resummation at C = 0 [35],

qHM(−z) = q±(z;∓S/2) = ℜe
[

q0,±(z)−
1

4
S2q2,±(z) +

5

16
S4q4,±(z) + · · ·

]

. (4.22)

Here S = −i/
√
2π is the Stokes constant computed in [29, 50], and both of the branches

give the same result. Substituting (4.20), (4.21) and integrating qHM(−z)2 twice in z, one

finally obtains the asymptotics of the free energy F (1,−z) for z → ∞:

F (1,−z) ∼ z3

12
+

1

8
log z − 1

24
log 2− ζ ′(−1)− 3

26z3
− 63

28z6
+ · · ·

+
e−

4
√
2

3
z3/2

2πz3/2

(

1

211/2
− 71

293z3/2
+

13465

227/232z3
− 5083145

21734z9/2
+ · · ·

)

+

(

e−
4
√
2

3
z3/2

2πz3/2

)2
(

3

210
− 65

225/2z3/2
+

3905

2153z3
− 3132385

239/233z9/2
+ · · ·

)

+ · · · . (4.23)

The integration constant in the above was first conjectured by Tracy and Widom [13] and

later proved true in [51]. Note that the leading (perturbative) part of the asymptotics is

an expansion in 1/z3, i.e. each term being proportional to N2−2h with h ≥ 0, reminiscent

of non-supersymmetric closed strings, whereas the nonperturbative parts carrying the in-

stanton action 4
√
2

3 z3/2 ∝ N are expansions in 1/z3/2 ∝ N−1, indicating their open string

origin.

We have presented asymptotic behavior of the free energy as s→ ∞ in section 4.2 and

as s → −∞ here, separately by using trans-series with a single parameter. The instanton

effects are different for these regions. For instance, the instanton action in the former (4.12)

is 4
3s

3/2, while that in the latter (4.23) is 4
√
2

3 (−s)3/2. It would be interesting to understand

the difference from the point of view of resurgence. As discussed in [36], two-parameter

trans-series would play a central role in order to perform such a resurgent analysis, which

could give an insight into the global structure of the free energy for a complex variable s.

5 Condensation of instantons

We have identified Det(1−K̂Ai|[s,∞)) with the double-scaled partition function of the SUSY

double-well matrix model Z(1,0)(µ
2) at µ2 = 2 +N−2/3s. In the grand partition function

Ξ(ξ, s) = Det(1− ξK̂Ai|[s,∞)), (5.1)

ξ can be regarded as fugacity for the matrix model instantons, which should correspond

to solitonic objects like D-branes in the two-dimensional IIA superstring theory. Although

the instanton fugacity is not explicitly incorporated in the original matrix model with the

action (2.1), it is pleasant surprise that ξ can be naturally introduced into our formulation.

Now that the parameter space of the model is extended to include an instanton chemical

potential η = log ξ in addition to the original coupling constant s, let us look for a critical
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line in the (s, η)-plane. Note that the partition function is a characteristic ‘polynomial’ of

the Fredholm eigenvalues {Λn(s)} = Spec(K̂Ai|[s,∞)) as

Ξ(eη, s) =
∏

n

(1− eηΛn(s)) , (5.2)

where 1 ≥ Λ1(s) > Λ2(s) > · · · ≥ 0 from the argument at the end of section 3, eqs. (3.25)

and (3.26). If one gradually enhances multi-instanton contributions by turning on a pos-

itive chemical potential η > 0 at fixed s, the grand partition function vanishes and the

corresponding free energy F (eη, s) diverges logarithmically whenever e−η approaches one

of the Λ’s. This property could as well be deduced from the expression of the specific

heat (3.24) in terms of a Painlevé II transcendent q(s). Namely, all of its singularities

{sn(η)} are simple poles that are movable subject to a change of the boundary condition,

i.e. the value of ξ = eη in (3.23). This leads to ∂2sF (e
η, s) = q2 ∝ (sn(η) − s)−2 and

F (eη, s) ∝ log(sn(η)− s) near any one of the singularities in s. The critical line accessible

from the ‘ordinary’ phase η = 0 is dictated by the largest Fredholm eigenvalue,

ηcr(s) = − log Λ1(s). (5.3)

We consider that this criticality allows an interpretation as a phase transition due to

condensation of instantons, at least for a sufficiently large positive s where the picture of

instantons is valid. Subleading eigenvalues Λn≥2(s) give a sequence of singularities, but

their physical or statistical-mechanical significance is unclear as the grand partition function

alternates its sign and becomes negative in the regions − log Λ2n−1(s) < η < − log Λ2n(s)

(n = 1, 2, · · · ).
As a remark for precise numerical calculation of the spectrum of a trace-class integral

operator K̂|I , the so-called Nyström-type method (i.e. quadrature approximation) is prac-

tically most suited [52, 53]. Namely, after normalizing the interval I to [−1, 1] by a linear

transformation, one uses the Gauss quadrature method to discretize it into the nodes of

the M -th order Legendre polynomial {xi}Mi=1 such that
∫

I f(x)dx ≃ ∑M
i=1 f(xi)wi. Here

{wi}Mi=1 denotes appropriate positive weights reflecting the density of the nodes. Then the

integral operator is discretized into an M ×M real symmetric matrix

K̂|I ≃ [K(xi, xj)
√
wiwj ]

M
i,j=1, (5.4)

whose eigenvalues can be easily obtained. When applied to the computation of the Fred-

holm determinant Det(1−ξK̂|I) ≃ det[δij−ξK(xi, xj)
√
wiwj ]

M
i,j=1, the discretization error

is shown to be suppressed as O(e−(const.)M ) [52, 53]. For our purpose of computing the

Fredholm eigenvalues and determinant for the Airy kernel (which decreases rapidly for

large positive argument(s)) in the range I = [s,∞) with |s| / 1, it is sufficient (actually

an overkill) to truncate the upper range at smax = 8 ∼ 10 and choose M = 100 ∼ 200

to achieve double-precision accuracy. In figure 2 we exhibit plots of F (eη, s) and ηcr(s)

computed by this method. It is evident from the plots that for a large positive s, the

critical value of η approaches infinity as

ηcr(s) ∼
4

3
s3/2 + log(16πs3/2), (5.5)
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Figure 2. Left: the free energy F (eη, s) for η = −20,−19, . . . ,−1 (cyan to purple), η = 0 (black),

and η = 1, 2, . . . , 20 (red to green). Right: the critical line η = − log Λ1(s) (solid curve) in the (s, η)

plane. Subleading Fredholm eigenvalues − log Λ2,3,···(s) are also plotted in broken curves.

in consistency with the first two terms of (4.18). This means that even in the weakly

coupled region in s, sufficient enhancement of multi-instantons always drives the system to

the phase transition of instanton condensation.

6 Discussions

We have identified Tracy and Widom’s cumulative distribution of the largest eigenvalue of

GUE as the partition function Z(1,0)(µ
2) of the SUSY double-well matrix model describ-

ing two-dimensional IIA superstring theory on a nontrivial Ramond-Ramond background.

Using this equivalence, strong and weak coupling expansions of the free energy are pro-

vided in closed forms by a Painlevé II transcendent. Conceptually, the equivalence leads

to a novel observation that the spontaneous breaking of the target-space SUSY in the IIA

superstring theory is realized, in terms of the quantum mechanics of the eigenvalues of

random matrices, as an exponential tail of the wave function in the classically forbidden

domain. By interpreting the spectral parameter ξ in the Fredholm determinant of the Airy

kernel as instanton fugacity, we have identified a phase boundary of a transition due to

instanton condensation.

Some of future subjects worth examining are listed below:

1. It is interesting to find an S-dual theory which reproduces the strong coupling ex-

pansion (4.3) as a perturbation series. Since this should be called as a noncritical

M-theory, it would be helpful to consider a connection with the issue discussed in [54].

2. In this paper, we have focused on the partition function or the free energy of the

matrix model. In order to make firmer the correspondence between the matrix

model and the two-dimensional IIA superstrings, it is important to proceed com-

puting correlation functions among various matrix-model operators at higher genera

and compare the results with the corresponding IIA string amplitudes. For non-

perturbative computation beyond the planar level in the matrix model, techniques

discussed in [30, 55–58] would be useful.
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3. We have found the equivalence of the free energy of the SUSY matrix model to that

of the unitary one-matrix model describing the one-dimensional type 0 string theories

in the double scaling limit. It is interesting to investigate whether the equivalence

persists for quantities other than the free energy. To this aim, calculation techniques

in random matrix theory would be useful to obtain correlation functions of various

operators in both sides, similarly to the previous subject.

4. From the viewpoint of random matrix theory, we list three possible extensions of our

results:

• We have dealt with the unitary (β = 2) ensemble whose matrix variables are

complex hermitian. For the cases of orthogonal and symplectic (β = 1, 4) en-

sembles in which matrix variables are real symmetric and quaternion selfdual

respectively, counterparts of the results presented in section 3 have been ob-

tained [59–61]. It could be of potential interest to make their interpretations in

the string theory side, possibly in a relation to non-orientable worldsheets.

• The result in section 3 can be generalized such that the Painlevé II equa-

tion (3.22) contains a parameter α [62]:

q′′(s) = s q(s) + 2q(s)3 + α. (6.1)

It reduces to our case in the limit α→ 0. According to [57, 63], turning on the

parameter α corresponds to introducing ‘quarks’ in the matrix models. While

such quarks generate boundaries in a random surface, our interpretation of the

matrix model as the IIA superstring theory is not based on the random surface

picture. It is intriguing to pursue what kind of deformations of our matrix model

amounts to giving (6.1) and to find its meaning in the string theory side.

• Multi-critical analogues of the Tracy-Widom distribution for β = 2 was studied

in [64–66] and its interpretation as instanton effects in minimal string theory

was presented in [67]. It would be interesting to introduce instanton fugacity

for such cases and discuss instanton condensation as in section 5.

5. Alday, Gaiotto and Tachikawa (AGT) [68] found correspondence between instan-

ton sums of four-dimensional N = 2 SUSY gauge theories (the so-called Nekrasov

partition functions) [69, 70] and conformal blocks in two-dimensional Liouville field

theory. Furthermore, ref. [71] points out that the τ -functions for Painlevé III, V and

VI (corresponding to the Fredholm determinants of e.g. Bessel, sine and Hermite

kernels, respectively) are all related to c = 1 conformal blocks, and thus further cor-

respondence is made between the instanton sums of N = 2 SUSY gauge theories with

Nf = 0, · · · , 4 and the τ -functions of the Painlevé systems. Since we have found the

correspondence of the instanton sum of the two-dimensional IIA superstring theory

to the τ -function for Painlevé II (corresponding to the Fredholm determinant of Airy

kernel), they are expected to have an analogous relation to some conformal blocks. In

addition, existence of the six-dimensional (2,0) theory has been argued to lie behind
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the AGT correspondence. Likewise, the similarity in our case will lead to existence

of the three-dimensional noncritical M-theory mentioned in the first subject.
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A Derivation of (3.21)–(3.23)

In this appendix, we present some technical steps relevant to the derivation of (3.21)–(3.23).

First, the action of a generic integration operator Ô to a function f(x) on R is expressed

by its kernel O(x, y) as

(

Ôf
)

(x) =

∫

R

dy O(x, y)f(y) and
(

fÔ
)

(y) =

∫

R

dx f(x)O(x, y). (A.1)

Note that for the kernel K(x, y)χI(y) of the operator K̂|I ,
(

K̂|If
)

(x) =

∫

R

dyK(x, y)χI(y)f(y) =

∫

I
dyK(x, y)f(y),

(

fK̂|I
)

(y) =

∫

R

dx f(x)K(x, y)χI(y). (A.2)

Suppose K(x, y) takes the form:

K(x, y) =
A(x)B(y)−B(x)A(y)

x− y
. (A.3)

For the position operator x̂ specified by its kernel x δ(x− y), the kernel of [x̂, (1− K̂|I)−1]

is given by11

(x− y)ρ(x, y) = (Q(x)P (y)− P (x)Q(y))χI(y) (A.4)

with ρ(x, y) being the kernel of (1− K̂|I)−1 and

Q(x) :=
(

(1− K̂|I)−1A
)

(x) =

∫

R

dy ρ(x, y)A(y),

P (x) :=
(

(1− K̂|I)−1B
)

(x) =

∫

R

dy ρ(x, y)B(y). (A.5)

From the expansion (1− K̂|I)−1 = 1 +
∑∞

n=1(K̂|I)n, we can see that ρ(x, y) = 0 for x ∈ I

and y /∈ I. For the resolvent operator

R̂ := (1− K̂|I)−1K̂|I = (1− K̂|I)−1 − 1, (A.6)

11For notational simplicity, we absorb ξ into K̂|I or K(x, y) in this appendix (up to eq. (A.23)).
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its kernel K(x, y) takes the form

R(x, y) =
Q(x)P (y)− P (x)Q(y)

x− y
χI(y) (A.7)

since the kernel of [x̂, R̂] is nothing but (A.4). The definition indicates that the diagonal

part of the kernel is given by the logarithmic derivative of the Fredholm determinant:

R(a, a) =
d

da
logDet(1− K̂|I). (A.8)

Hereafter we consider the interval I = [a,∞) (a will be eventually set to 2 +N−2/3s).

A.1 JMMS equations

In the case of the Hermite kernel of GUE, A(x) and B(x) can be identified with the wave

functions: A(x) =
√
ξ ψN (x) and B(x) =

√
ξ ψN−1(x). Hence they satisfy

d

dx

(

A(x)

B(x)

)

= N

(

−1
2x 1

−1 1
2x

)(

A(x)

B(x)

)

. (A.9)

For the derivative operator d̂ associated with the kernel δ′(x − y), the kernel of [d̂, (1 −
K̂|I)−1] is obtained as

− N

2
(Q(x)P (y) + P (x)Q(y))χI(y) +R(x, a) ρ(a, y). (A.10)

Use of (A.5), (A.9) and (A.10) leads to

d

dx
Q(x) = −N

2
xQ(x) +N(1− u)P (x) +R(x, a) q,

d

dx
P (x) =

N

2
xP (x)−N(1 + w)Q(x) +R(x, a) p, (A.11)

where u =
∫

I dxQ(x)A(x), w =
∫

I dxP (x)B(x), q = Q(a) and p = P (a). Here and in

what follows, quantities at the boundary x = a are defined by taking the limit x→ a+ 0,

i.e. the limit from the inside of I. Also,

∂

∂a
Q(x) = −R(x, a) q, ∂

∂a
P (x) = −R(x, a) p (A.12)

are derived from the fact that the kernel of ∂
∂a(1 − K̂|I)−1 is −R(x, a) ρ(a, y). Together

with this, (A.11) gives

dq

da
=

(

d

dx
+

∂

∂a

)

Q(x)

∣

∣

∣

∣

x=a

= −N
2
a q +N(1− u) p,

dp

da
=

(

d

dx
+

∂

∂a

)

P (x)

∣

∣

∣

∣

x=a

=
N

2
a p−N(1 + w) q (A.13)

and
∂u

∂a
= −q2, ∂w

∂a
= −p2. (A.14)
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Finally, (A.7) at x = y = a is expressed as

R(a, a) =

[

( d

dx
Q(x)

)

P (x)−
( d

dx
P (x)

)

Q(x)

]
∣

∣

∣

∣

x=a

= N
[

−a p q + (1− u) p2 + (1 + w) q2
]

. (A.15)

(A.13), (A.14) and (A.15) are the Jimbo-Miwa-Môri-Sato (JMMS) equations [72] for the

half-infinite interval I, from which we shall obtain a closed differential equation for the

diagonal resolvent.

A.2 Painlevé VI equation for the diagonal resolvent

From the JMMS equations, we find

d

da
R(a, a) = −N p q, (A.16)

d

da
(p q) = N(1− u) p2 −N(1 + w) q2, (A.17)

d

da
(u− w + uw) = (1− u) p2 − (1 + w) q2. (A.18)

The last two equations mean that p q is equal to N(u − w + uw) up to an additive a-

independent constant. However, the fact that all of p, q, u and w vanish as a → ∞
determines the constant to be nil. Namely,

p q = N(u− w + uw). (A.19)

With the help of (A.16), (A.17) and the JMMS equations, we have

d3

da3
R(a, a) = −N d

da

[

2Np2q2 +N a{R(a, a) +Nap q} − 4N2(1− u)(1 + w) p q
]

. (A.20)

After the use of (A.16) following (A.19), we finally obtain a differential equation for R(a, a):

d3

da3
R(a, a) = −N2aR(a, a) +N2(a2 − 4)

d

da
R(a, a)− 6

( d

da
R(a, a)

)2
, (A.21)

which can be transformed to Okamoto’s σ-form [73] of a Painlevé VI equation.

A.3 Soft edge scaling limit and Painlevé II equation

In the soft edge scaling limit a = 2 +N−2/3s, (3.18) indicates that the diagonal resolvent

scales as R(a, a) = N2/3R(s). Then, (A.21) becomes

R′′′(s) = −2R(s) + 4sR′(s)− 6R′(s)2. (A.22)

Integration of (A.22) after multiplied by R′′(s) leads to

1

4
R′′(s)2 = −R(s)R′(s) + sR′(s)2 −R′(s)3. (A.23)

Exponential decay of R(s) as s → ∞ is clear from the behavior of the Airy kernel (3.18).

We used it as an initial condition of the integration. Setting R(s) =
∫∞
s dt q(t)2, we see
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J
H
E
P
0
9
(
2
0
1
4
)
1
0
4

that the Painlevé II equation (3.22) is obtained from (A.23). Accordingly, the scaling limit

of (A.8) with ξ restored takes the form

d

ds
logDet(1− ξK̂Ai|[s,∞)) = R(s) =

∫ ∞

s
dt q(t)2. (A.24)

For ξ small, differentiating (A.24) with respect to s gives

q(s)2 = ξ
d

ds
KAi(s, s) +O(ξ2) = ξAi(s)2 +O(ξ2) (A.25)

with use of (3.18). This yields the boundary condition (3.23), since the O(ξ2) terms consist

of higher powers of the Airy function and become negligible as s → ∞. Finally, (3.21)

follows from (A.24), where the integration constant is fixed by the small-ξ behavior.
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Random Matrices: PIV, PII and the GUE, Commun. Math. Phys. 219 (2001) 357

[math-ph/0103025] [INSPIRE].

[28] S.P. Hastings and J.B. McLeod, A boundary value problem associated with the second
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