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Abstract

Lakes Shinji and Nakaumi are parts of an important fluvio-lacustrine and estuarine system in Shimane prefecture, SW
Japan. The Hii River provides much of the detrital load to these lakes, but other smaller rivers and streams could also
contribute significant detrital flux. To characterize the composition of this locally derived detritus, 33 stream sediment
samples were collected form the linashi and Iu Rivers, which feed into Lake Nakaumi. Thirty-one samples were also
collected from the Tamayu and Kimachi Rivers, which enter Lake Shinji from the south, and from small streams that
enter from the north. Twenty-five basement whole-rock samples (granitoids and volcanics) were also collected. Two
size fractions (<180 and 180-2000 um) of the stream sediment samples and the whole rocks were analyzed by X-ray
fluorescence for major element and 14 trace elements. Bulk compositions of the stream sediments were also calculated,
based on the proportions of the size fractions. The results show that compositions of bulk main channel sediments and 180-
2000 um fractions in the linashi, Tu, Tamayu and Kimachi Rivers are highly depleted relative to Upper Continental Crust
(UCC), reflecting the composition of the granitoids that dominate their watersheds. In contrast, the <180 um fractions
in these rivers have compositions very similar to UCC, reflecting their clay and heavy mineral content. Bulk sediments
and fractions in sediments from North Shinji streams show little internal contrast and UCC-like composition, reflecting
their derivation mainly from Josoji and Furue Formation mudrocks. Stream sediments in tributaries containing only single
lithotypes also show variable contrast between size fractions, with greatest fractionation in granitoid-derived sediments,
and least in those derived from intermediate-acid volcanic rocks. The results overall show that suspended and bedload
sediments supplied to Shinji and Nakaumi will vary spatially according to the geology of the river watersheds. Spatial
geochemical variations may thus also occur within the lakes, by storage of coarser 180-2000 #m detritus in the river deltas

and at lake margins, and outwash of <180 xzm material to more distal sites of deposition.
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Introduction

By their very nature, stream and river sediments broadly
reflect the composition of the lithologies present in their
drainage basins. Studies of the bulk chemical compositions
of river and stream sediments or of fractions of such sed-
iments provide important and valuable baseline data. Such
data can be used in many geological and environmental
fields, including baseline environmental surveys, mineral
exploration, and in construction of geochemical maps. How-
ever, the chemical composition of stream sediments does not
necessarily directly reflect that of their source rocks. Factors
including the extent of source area weathering, sorting and
average grain size, localized heavy mineral concentration,
and alluvial storage or flushing of fine material can cause
large contrasts between the source and sediment composition.
Many other factors may also influence compositions. Johnsson
(1993) gives an excellent review of the influence exerted by
the main factors and processes.

Recent studies of this type in Japan have concentrated on
the preparation of geochemical maps, which have applications
for environmental assessments and establishment of back-
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ground levels of many elements, especially those with possible
environmental impact (e. g. Shitkawa, 1991). Other studies
have used stream sediment data for mineral exploration (e. g.
Moritsuna, 1974; Yamamoto, 1999). Stream sediment data thus
represents basic information which can be put to a number
of uses.

Stream sediment studies are normally based on analyses
of the <180 um fraction of the bulk sediment (e. g. Koval
et al., 1995; Licht and Tarvainen 1996; Ferreira et al.,
2001; Amorosi et al., 2002). This is done to minimize the
effects of grain size, so that differences between the mean
grain sizes of individual samples are reduced. However, the
composition of the <180 um fractions may not necessarily
reflect the bulk composition of the source rocks, and hence
original provenance signatures may be obscured.

Recent work in the San’in district by Ortiz and Roser
(20064, b) examined major and trace element provenance
signatures in stream sediments from the Kando, Hino, and
Hii Rivers. Major element and trace element analyses were
made of two size fractions (<180 and 180-2000 um). The
<180 um fractions were found to be depleted in SiO, and
enriched in most other major and trace elements relative to
the 180-2000 um fractions. These studies characterized the
composition of the bedload in these three significant river
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systems. They also identified characteristic fingerprints of
individual rock types in proximal tributaries, especially of
adakitic detritus derived from Mt. Daisen and Mt. Sambe,
of ultrabasic rocks in the headwater of the Hino River, and
of Hata and Omori Formation volcanic rocks. The intensity
of these provenance signatures varied depending on the
position in the river, and the extent to which the sediments
had been diluted by detritus derived from the granitoids that
formed most of the basement in the area.

These studies aside, the data available for stream sediments
from local rivers entering Lake Nakaumi and Lake Shinji is
limited. The aim of this study is to report the geochemical
compositions of stream sediments (<180 and 180-2000 xm
fractions) from the Iu and Iinashi Rivers, both of which enter
Lake Nakaumi, and from the Tamayu and Kimachi Rivers
and small streams that supply sediments directly to Lake
Shinji (Fig. 1). Nakaumi and Shinji collectively form a very
important brackish lagoon system. Many studies of these
lakes have examined their paleontology, hydrology, organic
geochemistry and other aspects, but the only information on
the composition of the sediments entering these water bodies
is that for the Hii River given by Ortiz and Roser (2005).
Although the Hii River supplies the bulk of the sediment
flux to the Shinji-Nakaumi lagoon system, it is also useful to
characterize the composition of the sediments supplied from
the smaller rivers listed above. We also examine the frac-
tionation between the size fractions, and elemental contrasts
between source rocks and the stream sediments. The data
contained in this report are a valuable resource for future
studies of the Shinji-Nakaumi system.

Catchments and sample suites

Samples for this study were collected between March and
May, 2008. Sampling was carried out only on fine days and
when stream were clear, a minimum of two days after any
significant rainfall.

Iinashi River

The Iinashi River valley lies to the west of the Hino River
watershed, and is adjacent to that watershed in the southeast.
The linashi flows into Lake Nakaumi (Fig. 1), whereas the
Hino River discharges into Miho Bay. The linashi drainage
basin has an area of ~208 km?, and therefore is much smaller
than that of the Hino River (870 km?) and the Kando River
basins (471.3 km?) studied by Ortiz and Roser (2006a, 2006b).

Hata Formation andesite is widely distributed in the west
of the Iinashi catchment, whereas most of the rest consists of
granitoids. Hata Formation is exposed in a small range of hills
trending NW-SE and lying to the west of the main channel of
the linashi River. Lithotypes in the Hata Formation include
aphyric andesite and common hornblende plagioclase andesite;
amphibole hornblende dacite lava is also present. Dacite
pyroclastic flow sediments and volcanoclastic sediments
also occur.

Fube granite is widely distributed over the southern part of
the catchment, as are the Shimokuno and Hiyodori granites
(Kano et al., 1993). Fube granite is distributed around Yasugi
town in the Yasugi city district, and in Okutawara and Hirose
town of the Yokota area, in a belt 22km in length and
10 km in width, trending in a northeast-southwest direction.
The lithofacies consists of medium-grained biotite granite,
although some finer-grained varieties also occur in the
eastern part. Petrologically the Fube granite is described
as medium-grained biotite granite. The major minerals are
quartz, K-feldspar, plagioclase, and biotite. QPK ratios are
Q=50% P=30%, K=40% (Kano et al., 1993). Accessory
minerals include iron oxide (magnetite), muscovite, apatite,
and zircon.

Shimokuno granite is distributed in a long and slender
belt running from the vicinity of Kisuki town (Sakamizu)
to Daito, to the Yokota area northwest, and in the Matsue
area. The belt trends to the northeast, and is over 23 km in
length and 2-3km in width. The Shimokuno granite is a
fine-grained biotite granite, and major minerals include
quartz, plagioclase, and K-feldspar, in the proportions Q=40%
P=30%, K=50% (Kano et al., 1993). Accessory minerals are
represented by biotite, muscovite, iron oxide (magnetite),
allanite, and zircon.

Hiyodori granite is distributed around the margins of
the Daito granodiorite, and consists of biotite granite with
accompanying amphibole-biotite granite. The type locality
is in Daito town (Hiyodori) in the Imaichi area. The typical
lithofacies consists of medium grained biotite granite.
Plagioclase, quartz, K-feldspar, and biotite are the major
minerals, along with iron oxides, apatite, and zircon as
accessory minerals.

The sample suite for the linashi River consists of 16
stream sediment samples and seven basement rock samples
(Fig. 1). Seven of the stream sediment samples were collected
from the main channel (MC), and the remainder from tribu-
taries dominated by single rock types (andesite or granite) or
a mixture of the two. The basement rocks samples comprise
two Hata andesites and five granitoids. Some granitoids were
collected from mildly weathered outcrops, but would be
representative of the material supplied to the river. Basement
rock analyses contained in this report should not, however,
be used for petrogenetic interpretation.

lu River

The Iu River catchment is much smaller than that of the
linashi (Fig. 1), with a drainage basin with an area of only
~33.1 km? Although the Iu River drainage basin is small, its
geology is locally complex. The catchment is mainly floored
by three rock types. Omori Formation dacite dominates in
the lower reaches, and Kuri Formation rhyolites crop out in
both the upstream and downstream regions. Hiyodori granite
occupies the central part. The geological description given
below is based on the report of Kano ez al. (1993).

Omori Formation dacite is distributed in Okusa town, east
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Fig. 1. Locations of Lakes Nakaumi and Shinji, the rivers sampled, and sample sites. Base figures
from Google Maps.

35



36 Barry P. Roser, Keisuke Matsuura, Yosuke Kaino, Norihiko Matsuo, Takamine Toda, and Narantuya Purevjav

Adakae, the east Matsue area, and Sakusa town to Tamayu
town in Kasenzan. The Omori dacites are massive, but blocky
andesite lavas with platy joints also occur. Kuri Formation
rhyolite is distributed intermittently in the south of the Shinji
belt. The Kuri rhyolites are represented by lavas and rhyolite
volcanic breccia. The lithofacies consist of mudstone and
rhyolite lava, along with pyroclastic rocks. Hiyodori granite
is distributed around the margins of the Daito granodiorite
in Daito, from Yakumo village (Kumano) north to Higashi
Izumo town (Ichihara area).

The Iu River sample set consists of 17 stream sediments and
eight outcrop samples. Four of the stream sediment samples
were collected from the main channel, and the remainder
from tributaries dominated by Kuri rhyolite (n=15), granite
(4), or a mixture of lithologies. The basements rocks samples
consist of granites (4), Omori dacite (2) and Kuri rhyolite (2).

Tamayu and Kimachi Rivers

The Tamatsukuri and Kimachi valleys lie on the southern
shore of Lake Shinji (Fig. 1). The Tamayu and Kimachi Rivers
run almost perpendicular to the shore of Lake Shinji, and
have catchments composed of Miocene volcanic and sedi-
mentary rocks adjacent to the lake, and Paleogene granitoids
further inland. The Miocene rocks occur in a strip 3-5km
wide, striking parallel to the southern shoreline of Lake
Shinji and dipping gently to the north. The Miocene rocks
distributed in the field area are mainly composed of the
Kawai, Kuri, Omori and Fujina Formations, in ascending
stratigraphic order (Kano et al., 1991).

The Kawai Formation accumulated in terrestrial environ-
ments and is composed of conglomerate, sandstone derived
from granites and andesite lavas, dacite pyroclastic flows and
volcanic sediments. Kawai Formation is distributed from
Matsue to the Imaichi area (Kano et al., 1988, 1991). The
Kuri Formation is of similar age, and interfingers with the
Kawai Formation. The Kuri strata accumulated in a marine
environment. Kuri Formation is composed of mudstone,
dacite, rhyolite pyroclastic flow sediments, and lavas.

The Omori Formation unconformably overlies the Kuri
Formation. The lower part of the Omori Formation is com-
posed of andesite and dacite lavas erupted on-land or in a
shallow sea, which are succeeded by conglomerate. The upper
part of the formation is composed of sandstones deposited
in beach or shallow marine environments. The sedimentary
rocks are derived from the andesite lavas beneath, and some
are interpreted as gravity flow sediments. The conglomerates
contain abundant angular to subrounded andesite clasts, and
pass upwards into medium grained volcaniclastic sandstones
of the “Kimachi” horizon, noted locally as a building stone.

The Omori sandstones pass upward into the Fujina Formation,
which is composed of siltstones and very fine-grained sand-
stones containing abundant plant material. Fujina Formation
accumulated in a shallow sea to offshore marine environment.

The catchments of the Tamayu and Kimachi Rivers also
contain Cretaceous to Paleogene granitoids in their upper

reaches (as described above), and these more felsic lithotypes
would have supplied the bulk of the bedload, especially in
the Tamayu River. The sediments supplied from these two
rivers will thus be a mixture of chemically intermediate and
more felsic detritus.

Seventeen stream sediment samples were collected from
the Tamayu (n=8) and Kimachi (9) rivers. Of these nine were
from the main channels, and the remainder from tributaries
dominated by granitoids (n=6) or Miocene sediments (2).
The stream sediments in the lower reaches of the Tamayu
River differed from those in the Kimachi River. The Tamayu
sediments were quite fine grained (fine-medium sand), and
were obviously rich in quartz and feldspar. In contrast, the
Kimachi River sediments were often coarser, and had a
greater proportion of rock fragments, and contained much
less fine-grained material.

North Shinji Rivers

Shimane Peninsula trends roughly east-west, and consists
of a rugged range of hills ranging up to 358 m (Mt. Honguu-
san) in altitude. Streams running into Lake Shinji thus trend
roughly north-south, and are relatively straight and evenly
spaced along the northern shore of the lake (Fig. 1). Steepest
gradients occur in the northern part of the peninsula. Streams
in the southern part have shallow gradients and occupy
valleys with flat floors that are used for rice cultivation.
Samples were collected from a 30km by 10km rectangular
zone on the northern shore of Lake Shinji. Three main for-
mations crop out in the field area. These are the Koura, Josoji
and Furue Formations, in ascending stratigraphic order. The
formations also trend east to west, following the topographic
trend of the peninsula.

Koura Formation is mainly distributed along the northern
coast of Shimane Peninsula. These outcrops lie on the northern
side of the drainage divide in the peninsula, and so would
not contribute any sediment to Lake Shinji. However, two
bodies of Koura Formation occur in uplands in the headwaters
of the Ono and Aika Rivers, and these could contribute
some detritus to the middle part of Lake Shinji. The Koura
Formation consists mainly of interbedded sandstones and
argillaceous rocks (Kano et al., 1991). Some conglomerates
also occur, and 10-20 m beds of acid tuff and andesite volcanic
breccia are also present.

Josoji Formation is extensively distributed in the study area,
running in an east-west belt in the mountainous districts
in the central part of the peninsula. The formation is litho-
logically complex, consisting of black argillaceous rocks,
rhyolite lavas, volcaniclastic rocks, and some andesite lava
(Kano et al., 1991). The rhyolites from a large mass in the
west of the field area around Ofunayama and Higasen near
Hirata town; a second mass is also found in the east around
Josoji and Asahiyama. Several smaller bodies also occur
in the Ono and Ino rivers. The rhyolite pyroclastic rocks
consist of graded pumice lapilli tuffs and tuff. These form
layers of several centimeters to several meters in thickness,
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alternating with tuffaceous sandstone and argillaceous rocks.
However, black shales form the bulk of Josoji Formation in
the central part of the peninsula.

Furue Formation is widely distributed in Shimane Peninsula,
cropping out in a series of low hills in an east-west trending
belt running along the northern shore of Lake Shinji. The
thickness of the formation is about 600-900m in the west,
thinning to about 450m in the east side (Kano et al., 1991).
The lithofacies are mainly black or grey mudstones or silt-
stones. Lamellae of rhyolite tuff and sandstone may also be
present.

Miocene dolerites occur as sheets and intrusive bodies
in the Josoji and Koura Formations. The largest body is
found in the hills between the headwaters of the Ono and
Aika rivers, intruding both the Koura and Josoji Formations.
Although the dolerites are not volumetrically abundant, their
more mafic chemistry may impact on the composition of the
stream sediments.

Most of the Furue outcrops observed in this area were
moderately weathered and bleached to a pale grey or cream
shade, and slaking and incipient spheroidal weathering were
common. The ease with which Furue mudstones weather
accounts for the form of the low rounded hills in this belt.
The distribution of the Furue Formation also corresponds
with the widest parts of the valleys, and cultivation of rice
in paddy fields. In much of this zone the watercourses were
completely concreted, and no stream sediment samples could
be collected.

Fourteen stream sediment samples were collected from the
upper reaches of eight small rivers that flow into Lake Shinji,
along with 10 samples from source rock outcrops. Of the
stream sediments analyzed, three were derived from streams
draining mixed Josoji mudstone-rhyolite source rocks, three
from Josoji rhyolites, five from Josoji mudstones, and three
from Furue mudstones. The fine-grained nature of the source
rocks meant insufficient 180-2000um fraction could be
separated for analysis at six sites, and in one sample insuf-
ficient <180 um fraction could be recovered. The basement
rocks analyzed comprise five Josoji rhyolites, four Josoji
mudstones, and one Furue mudstone.

Sampling Method and Treatment

Stream sediment sampling was carried out using the same
method in all four areas. At each site 4-8 sub-samples were
collected from free-flowing active channels, using a plastic
water scoop. The sub-samples were collected over a channel
length of ~50 m, where possible from both sides of the stream,
and combined as a single representative sample. Sites where
sediments were impounded by dams or weirs were avoided,
as were sites where heavy minerals could accumulate. Sample
weights varied according to the texture of the sediments at
individual sites, with as little as 500 g collected from sites
where sediments were well-graded, and up to 1500-2000 g
where bedload was coarse.

The bulk stream sediment samples were dried in stainless
steel trays at 110°C for several days, and then homogenized
by coning and quartering. Samples were then dry sieved to
remove granules and pebbles coarser than 2 mm. The resulting
<2mm fraction was then split using a simple aluminum
chute. The splits of the <2mm fractions were then hand
sieved through stainless steel sieves to separate the <180 and
180-2000 um fractions. The number of splits sieved varied
with the grain size of the individual sample, with sieving
continuing until sufficient weight (10 g) of the <180 x#m had
been separated. Weights of the two fractions at each site
were recorded so the bulk compositions at each site could
be approximated based on their proportions. Ten gram splits
of the <180 um fractions were then ground in an automatic
agate pestle and mortar for 15 min. The larger 180-2000 um
fractions were crushed for approximately 30-45 seconds in a
tungsten carbide ring mill.

Whole rock samples were reduced to <1 cm chip using
a manual hydraulic rock splitter. Chip containing veins or
strongly weathered samples, but pervasively weathered chip
was retained, as representative of the material transported
to the rivers. The chipped samples were washed in distilled
water to remove any dust, and dried at 110°C for 24 h before
crushing in a tungsten carbide ring mill as above.

XRF analysis

Splits of both fractions were then stored in glass vials and
dried at 110°C for at least 24 hours before determination
of loss on ignition (LOI). Gravimetric LOI determinations
were made by weighing the dried samples into ceramic
crucibles, followed by ignition in a muffle furnace at 1000°C
for at least 2 hours. Loss of ignition was then calculated from
the net weight loss. The ignited material was then manually
crushed in an agate pestle, and dried at 110°C for at least
24 hours. This ignited material was used for preparation of
glass fusion beads for the XRF analysis.

All analyses were made on beads prepared with an alkali
flux consisting of 80% lithium tetraborate and 20% lithium
metaborate, using a sample to flux ratio of 1:2 (Kimura and
Yamada, 1996). The beads were then analyzed for major ele-
ments and 14 trace elements using a Rigaku RIX2000 XRF
at Shimane University, based on the instrument conditions
and calibration described by Kimura and Yamada (1996). In
each batch of samples, calibration and drift were monitored
using a secondary set of 10 rock standards produced by the
Geological Survey of Japan, with compositions ranging
from basalt to granite, and also two shales. This range in
composition matched that observed in the stream sediments
and the whole rock samples. Additional descriptions of the
sample preparation and analytical methods used here are
given by Roser et al. (1998, 2000, 2003), and Ortiz and
Roser (20044, b; 2005).
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Results

The results for each river are summarized in Table 1 (anhy-
drous basis), with averages given for bulk sediments, and
for the 180-2000 and < 180 um fractions. Separate averages
are given for main channel samples (MC), for tributaries
dominated by single lithologies, including granitoids (GD),
volcanic rocks (VD), and sedimentary rocks (SD), and for
the granitoids and volcanic rocks analyzed. No averages are
given for tributaries with mixed sources, but compositions of
these are likely to be close to those of the main channels. The
main channel samples are most representative of the bulk
sediment bedload entering Lakes Shinji and Nakaumi from
these local sources. Averages for the <180 um fractions are
more likely to represent the composition of the suspended
sediment carried into distal parts of the lakes, whereas the
180-2000 um fractions will be representative of the coarser
bedload deposited in the river deltas and around the lake
shores.

Results for the two fractions and calculated bulk compo-
sitions are listed in Table2. Results for both fractions are
reported for all samples except for six from North Shinji, in
which insufficient sample could be recovered for analysis
of both fractions. In these cases the fraction analyzed is
also reported as the bulk composition. Proportions of the
fractions in individual samples are listed in Table 3. In the
Iinashi, Iu, Tamayu and Kimachi Rivers the 180-2000 um
fraction was by far the largest, ranging from 63.6% to 99.7%
of the total <2000 um sample, averaging 94.1%. The 180-
2000 pm fraction also formed 96.6% of the sample in the 10
North Shinji samples from which both fractions could be
recovered.

Discussion

The results show that average compositions of the
fractions and bulk sediments show considerable variation
between the rivers (Table 1). Average SiO, contents range
from 63.10 wt% (Tamayu MC <180 um) to 81.46 wt% (linashi
GD 180-2000 um), and those for ALL,O; from 10.54 wt%
(Iinashi GD 180-2000 um) to 18.62wt% (Kimachi MC
<180um). Ranges of averages for other major elements
show even greater proportional contrast (e.g. TiO, 0.15-
0.87 wt%,; Fe,05 0.95-10.65 wt%; MgO 0.25-2.34 wt%; CaO
0.24-2.47 wt%; Na,0O 0.97-4.09 wt%; K,O 1.89-4.29 wt%;
Table 1). For these elements, average abundances are higher
in the <180um fractions, reflecting association with the
clay fraction. Several trace elements show comparatively
limited contrasts between fractions, with averages for Ba
ranging from 401-550 ppm, Rb from 65-170 ppm, and Sr from
55-242 ppm (Table 1), suggesting presence both in feldspars
and in clays. Elements likely to reside in heavy minerals (Zr,
52-786 ppm; Ce 18-103) and Fe-oxides or ferromagnesian
phases (Cr, 5-149 ppm; Ni 4-52 ppm; V, 7-197 ppm) also
show very large variations, with highest concentrations in

the <180 um fractions. This is also the case for most of the
remaining trace elements.

The differences in the averages noted above are caused
by a combination of the varying proportions of lithotypes in
individual catchments, variable weathering, and mineralogical
fractionation between quartz, feldspar and lithic-rich 180-
2000 um fractions and clay-rich <180 um fractions. To compare
the compositions of the sediments in the individual rivers,
average MC values were normalized against the Upper Con-
tinental Crust (UCC) composition of Taylor and McLennan
(1985).

The UCCy patterns for the MC bulk compositions of the
Iinashi, Tu, Tamayu and Kimachi Rivers have very similar
shapes, with nearly all elements except SiO, being depleted
relative to UCC (Fig.2). Depletion is particularly marked
for the mobile elements CaO, Na,O and Sr, all of which are
liable to loss during weathering (Nesbitt and Young, 1984),
and for ferromagnesian elements (MgO, Fe,O;, TiO,, Ni, Cr,
V) which are typically strongly depleted in felsic volcanic
rocks such as granites. The linashi MC sediments, with the
largest area of granitoids in its source, show the greatest
depletion in these elements, whereas the Kimachi River
shows the least. These features suggest the bulk sediment
composition in these four rivers is mainly determined by the
volume of granitoids in their sources south of Lake Shinji
and Lake Nakaumi. In contrast, the UCCy pattern for the MC
sediments in the small streams north of Lake Shinji is almost
flat, with elements in the segment Nb-Al,O; being present
in abundances similar to or slightly less than UCC, whereas
the ferromagnesians Sc-V are only slightly enriched (Fig. 2).
The most notable depletion is for CaO. This depletion and
the flat pattern overall is consistent with inheritance from
the Josoji and Furue shales which form most of the Shimane
Peninsula source. The contrast between the patterns for
North Shinji and Tamayu-Kimachi shows the sediments
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Fig.2. Average compositions of main channel bulk sediments
normalized against the average Upper Continental Crust (UCC)
values of Taylor and McLennan (1985). Elements are arranged
from left to right following increasing order of normalized
abundance (UCCy) in average Mesozoic-Cenozoic greywacke
(Condie, 1993), following the method of Dinelli e al. (1999).
Major elements are normalized as oxides, trace elements as ppm.
Stream sediment averages from Table 1.
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entering Lake Shinji from the north and south have very
different compositions. This could lead to spatial variation
in the composition of sediments deposited within the lake.

Spidergrams were also prepared to examine the composi-
tion of the two fractions in the MC sediments in each river
(Fig. 3). For all except the Tamayu and Kimachi Rivers,
these were also compared with average whole-rock data for
the main lithotypes in the catchments. The patterns for the
two fractions in the linashi River show marked separation,
with the 180-2000 um fraction showing significant depletion
relative to UCC, and an overall pattern closely matching
that for the granitoids in the catchment (Fig. 3a). In contrast,
the <180 um pattern is more UCC-like, similar to that for
Iinashi volcanics, and shows marked enrichment in Zr and
Th relative to both UCC and the 180-2000 xm fraction. These
features suggest the composition of the coarser fraction is
dominated by quartz and feldspar derived from the source
granitoids, whereas that of the finer fraction is controlled
by clays derived from both the granitoids and the bimodal
(andesite-rhyolite) volcanics, plus heavy mineral concentration
(zircon) contributing higher amounts of Zr and Th. Prefer-
ential deposition of the 180-2000 um fraction in the Iinashi
delta, and more distal deposition of the <180 um fraction in
central Lake Nakaumi will increase geochemical fractionation
in this fluvial-lacustrine system. Provenance signature in the
finer size grade will thus be obscured.

A similar pattern is observed for the Iu River fractions,

with the 180-2000um fraction average closely matching
the composition of the granitoids in the catchment (Fig. 3b).
The Tu volcanic average is also a good match, reflecting
the highly felsic nature (rhyolite-dacite) of the volcanic
rocks in the area, compared to intermediate Hata volcanics
in the western linashi watershed. As with the linashi, the
Iu <180 um fraction average is compositionally similar to
UCC, but with no significant depletion in the ferromagnesian
elements. Consequently, suspended sediment supplied to
central Lake Nakaumi from the Iu River will also have a
more mafic (UCC-like) composition than coarser bedload
deposited in the Tu delta.

The UCCy patterns for the Tamayu and Kimachi 180-2000
and <180 um fractions are strikingly similar (Fig.3c). The
<180-2000 um patterns show an overall downward trend
from Nb to V, and only moderate depletion relative to
UCC compared to the Iinashi and Tu. This probably reflects
dampening of the influence of granitoid detritus by the
greater proportion of geochemically intermediate Omori
rocks in the area. The <180 um fractions have almost flat
patterns, close to UCC (Fig. 3¢). The most obvious anomaly
is strong enrichment in Zr, and to a lesser extent Th. This
is most likely due to zircon concentration, which have been
shown to be concentrated in this fraction in sediments from
the Hino River (Ortiz and Roser, 2006b). The higher peak
for Zr than in the linashi and Tu Rivers may be due to finer
sizing of zircons in Tamayu-Kimachi granitoids, as is most
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of the quartz-feldspar detritus in the rivers draining the latter.
The similarity of the trends in the Tamayu and Kimachi,
and lesser variation between the fractions, compared to the
variability and fraction contrast in the Iinashi and Iu, is also
probably a product of their smaller catchment areas, and
significant extent of Omori rocks on the south side of Lake
Shinji.

The single-channel 180-2000 and < 180 um fractions from
North Shinji show almost identical trends, with slightly
concave patterns, close to UCC composition (Fig. 3d). Frac-
tionation between the two fractions is low, with a relative
enrichment in CaO in the <180 um fractions being the only
major difference. This apart, the average pattern for Josoji
and Furue mudstones is quite similar, whereas Josoji thyolites
show very evolved patterns, with strong depletion in CaO,
Sr, MgO, and ferromagnesian elements in the segment Sc-V.
The patterns for the North Shinji stream sediments are com-
patible with a mix of these three main sources, although
Josoji mudstones obviously dominate the source. The apparent
enrichment in CaO in the <180um fractions cannot be
accounted for by such a mix, however. The cause of this
anomaly is unknown. Nevertheless, the patterns for the
North Shinji fractions compared to those from the Tamayu
and Kimachi Rivers further highlight the differing composi-
tions of sediments supplied to Lake Shinji from its northern
and southern shores.

Potential fractionation between source rocks and stream
sediment fractions in tributaries dominated by single rock types
was also investigated. UCCy patterns for granitoid-derived
(GD) 180-2000 um fractions in the linashi, Tu, and Tamayu
Rivers are highly evolved, with marked depletion for CaO,
Sr, MgO and Sc-V (Fig. 4a). These compare very well with
the patterns for local granitoids, confirming that the dominant
coarse fraction is the best indicator of provenance. The
<180 um fractions have patterns closer to UCC, with signif-
icant depletion only for Ni and Cr, and hence fractionation
between the splits is significant. In contrast, patterns for
volcanic-sourced (VD) fractions in tributaries in the Iinashi
and Iu show little difference, and also compare very well
with average volcanic source rocks in these areas (Fig. 4b).
These features show that chemical fractionation is more
advanced in granitoid-derived suites, with the opportunity to
separate coarse-grained unitary quartz and feldspar detritus
from finer-grained clay weathering products depleted in mobile
elements. In sediments derived from volcanic sources, in
the coarser size grades bulk chemistry is determined by the
proportions among volcanic lithics, whereas in the <180 um
fraction composition is controlled by the weathering products
of the same lithic assemblage, leading to reduced contrast
between the size fractions.

The contrasts in composition seen in the fractions in the
tributaries are produced by their contrasting plutonic and
volcanic lithotypes. Nevertheless, homogenization of the
tributary provenance signatures in the main channels reduces
this fractionation, to the extent where original fingerprints
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rocks, compared to the local source rock averages. Method
as in Fig. 2.

of the original volcanic sources may be obscured, as in the
lower reaches of the linashi and Iu Rivers (Fig. 2). In smaller
catchments, such as the Tamayu and Kimachi, higher pro-
portions of volcanic sources may remain evident.

Conclusions

The results show that average compositions of the 180-2000
and <180 um fractions and bulk sediments show consider-
able variation between the rivers. Bulk main channel stream
sediments from the Iu, linashi, Tamayu and Kimachi Rivers
have broadly similar compositions, with depleted UCCy
patterns reflecting derivation from petrogenetically evolved
granitoid sources. Fractionation between the 180-2000 and
<180 um fractions is significant, with granitoid-like signatures
in the former, and UCC-like compositions in the latter. In
contrast, main channel sediments from small streams in North
Shinji have flat UCCy patterns, reflecting derivation mainly
from Josoji Formation shales, and 180-2000 and <180 x#m
fractions have similar compositions. Compositions of fractions
derived from small tributaries draining only single litholo-
gies also show variation. The coarser fractions of sediments
in tributaries draining granitoids have similar composition
to their source rocks, whereas the <180 um fractions show
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relative concentration of Zr, Th and elements associated
with Fe-oxides and ferromagnesian minerals (Sc, Fe, Ti,
Ni, Cr, and V). Fractions derived from volcanic rocks show
little contrast in composition. These features suggest that
suspended and bedload sediments supplied to Lakes Shinji
and Nakaumi vary spatially, and that spatial geochemical
variations may also occur in the lakes. Such variation would
be produced by storage of coarser 180-2000 um detritus in
the river deltas and at lake margins, and outwash of <180 um
material to more distal sites of deposition.
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Geochemistry of stream sediments in the watersheds of Lake Shinji and Lake Nakaumi

\ze L Ll 1S 08 LI 00l 60l V¢ 8 L 6 9l 6¢ 8y 0,66 100 1433 o'l G9'0 v.°0 r4Al] vr'e 09¢L S€0 oL'LL PaxiIN D MIng MInq gg-NI
€V’ . 0L¢ ¢ 16 0¢lL 1SL 0¢l 66 lZ €l ol €l 6¢ 1S 89y 1866 SLO G9'¢C Ll GZ'l €0l 8€°0 vZ'S ¢0'GlL  ¥90 19°LL PaxiIN JN 4 4zz-ni
Sl'e 80l 9l 1S 08 LI 00l OLL V2 8 L 6 9l 8¢ 8y 0,66 100 Gl'e 6g’l 90 €L°0 120 e 962l S€0 8L, PaxIN JN S see-ni
vev €91 0¢ 0L 0L 00l o€l 8Ll V€ 8 L €l vl 8¢ 66V L.66 0L0 8lL'e e 9SG0 G8'0 [1%0] S9'v eyl 090 66°cL 0Ayy an ing Mding 6L-NlI
18’8 €9¢ 0¢ 90, 06 Gl 002 2Ll 8¢ Gl L €l 8¢ 19 vy €966 LLO 282 el 180 GOl €20 1€°9 9/'Gl 960 12°0L 0Ayy an 4 461-NI
L'y 65l 0¢ 69 09 66 o¢lL 8LL V€ L L €l 142 1€ L0G 8,66 0L'0 0ce 8¢’ $S°0 ¥8°0 10 8G'v €Yl 8SG0 14572 0Ayy an S S6L-Nl|
€c'¢e €6 ol Ge 08 86 09 0¢I 6l 9 L ol Ll €C 6vYS 2066 200 oLy 6g’l G9'0 9SG0 900 14 1.2l 920 €Ll ueln as Mng ding9l-ni
G9'6 18V €¢ /91 0¢l 6yl 09l v0l GE 9l L 8l GS 19 LG 9866 100 cce v6'L 0S'L €e’l .10 L9 8€'8l 180 €099 uein as El 491-NI
[S{0R 18 6 1€ 0L L6 09 ¢l 8l g L ol 9l [44 6¥S 0066 100 ey €71 290 €90 S00 v0'C ¥SCl  ¥20 Sv'll ueln as S SaL-ni
8L'cC c0lL Sl VA 0. 00L 0L OLL 92 L g 8 L t44 12S Vv6'66 SO0 8v'e 8Ll 1S°0 8G°0 600 0g'e €l'll 620 9061 ueln as Mng Jinggil-ni
GlL'6 €¢e GE 0L 07¢L Svl 0SL SOl 8¢ 174 ol Gl 29 69 66 1666 910 66'C 8C'C Ge'l 14 120 1274 299l 890 16°89 ueln as 4 451-NI
oLz 0oL vl 9€ 0L 00L 0L OLL 92 L g 8 L [44 ¢S Vv6'66 SO0 8v'e 8Ll 1S°0 1S°0 600 12¢C 89°'LL 620 VANYA ueln as S SSL-ni
19°¢ Ll €l 0L 08 /91 0. 68 6S vl 9 L 8¢ 1€ 9% 2966 800 €8'C €8l o'l G8'0 [AA0] e’y 6l  9€0 8lL'el PaxiN XW ing AIng ZL-NI
GS'L cle L2 ¢6lL 0¢€l ¥2lL 0l Ll 6. €e L Gl 6 (WA ey 9966 VIO 14 60°L 19°1 vS'L t4Al] 198 L6'vl  LO'L 02'89 PaxiIN XN 4 4%l
6v'¢ GoL €l 89 08 891 0. 88 8% 142 9 L 9C 1€ 89y 2966 800 ¥8'C a8l o'l ¥8°0 oLo eV 8v'vl  ¥€0 8cC'¢€l PaxiIN XN S Sscl-ni
6.1 18 L 4 08 €6 0L Ol 9% L 9 9 el 14 vSy 8866 00 €0'¢e €9l 090 250 100 0ec v¥y'0l G20 66°08 ueln as Ang dinq LL-Nli
608 v.€ 0¢ ¢/l 0¢€lL gL 08l 06 (%% 92 cl Gl 19 0L 8Gy €866 SGLO 0S¢ 261 09'L er'l 120 GG'L 6L'GL S6°0 92’89 ueln as 4 E Ll
j 7% g8 L 1€ 08 €6 0L Ol 9% L 9 9 el 14 vSy 8866 00 v0'€ €9l 6S°0 1S°0 100 92¢ Lol +¥20 0L'L8 ueln as S StLi-nl
€9'¢ vSlL €2 €0L 08 LI OvlL OLL €€ 8 8 vl Gl Ge €25 8166 [AA0] 8€'E 10¢C €0l 99'L [1%0] v0'S 69l 190 €0'LL =2 4] XW ing AIng olL-NI
88V vz v¢ 9Ll 09l LI 06l 26 37 L L Gl Y4 89 9Zvy 1966 [AA0] ¥9'¢C 292 8¢l 29l 9l'0 1G9 1SSl 2.0 1€'69 PaxiIN XN 4 401-NI
99°'¢ 6yl €¢ c0L 0L ZLL Ov%L LLL CE 8 8 142 Gl €e 8¢S 6,66 110 ev'e v0'C co’L 99'L [1%0] 10°S ¥9v¥L 090 eLLL PaxiN XN S SsoL-ni
60°C €8 L 6E 0L L0l 09 €Ll ¢2¢ 9 g 6 %4 9C €S Pv¥66 900 GL'E 1434 180 €90 100 ev'e [ TAr4 . A 10°22 ueln as ng ing 60-ni
9e'8 ZLe e vl 0¢€l e€¥l 0¥l €0l €€ 8l L Gl 19 99 /GG G666 €20 L0°¢ 9G6'C ¢l 1S vZ0 ¥6°9 699l €0 G299 ueln as 4 460-NI
26l Ll cl yAS 0L 90l 09 VLI 2¢ g g 6 0c 14 9€g 2Z¥'66  S00 LL'€ €Le G8'0 190 900 0ec cLzl €20 0g'LL ueln as S S60-NI
1€°¢€ gLl 8l x4 0L 99 0§ ¢8 €C g L ol ol (0] 8y 1G°00L LOO Sv'e 25l 9’0 90 9l'0 44 ov'LL €20 €e'L8 oAyy aAn ing inqg go-NI
1787 86 G¢C g9 06 L. 0S8 9 4 L cl 8 4% 6S GO0y 9266 €00 Gl AN ¥9°0 1.0 020 40874 60°'LL  ¥9°0 G6'8. oAyy an 4 480-NI
ve'e Ll 8L 9C 0L 99 0S €8 €C g L ol 6 (0] 6vy ¥S00L LOO av'e €51 9’0 ¥9°0 GL'o 8C'C ov'LL 220 6E°L8 oAyy an S S80-NI
v0'S 8Ll ¢2¢ 4 0L L€ 08 19 %4 L 9 8 vl 92 €ee  ¥L'00L <200 ¥S'L 8G°0 120 280 [AA0] 1.2 €e0L 8L0 1G'€8 oAyy an ing inqg 20-NlI
YA A 98l 0¢ g9 0L €L 00l %S 174 ol L 6 14 [0)74 1G€ &S¥'66 00 og’lL €80 990 €0l AN €L'e 86°0L 0¥0 1€08 0Ayy an 4 4.0-NI
08’y L €2 6C 0L V€ 0L 29 %4 L 9 8 cl 14 Le€ 1200l 200 1S°1 9SG0 €20 080 [AA0] 09¢ 9z 0L 910 68°¢€8 0Ayy an S S20-NlI
1€'6 8ve ¢ GZl 00l 6L 09l 20l 9¢ Gl L 142 14 0S g8y G066 920 98¢ 10¢ Gl 6g’L t4A] 8.°S 996l 080 £€6°89 PaxiN XW ing  XIng 90-NI
96'6 29¢ 8¢ Z2¢l 00l 22l 0Ll 2oL Le 9l L Gl VA4 4] Y8y 9066 820 €8°¢C €0¢C 6L o'l €20 909 1091 ¥80 90'89 PaxiIN XN 4 490-NI
[ €8 €l Ge 09 /8 o¢e 0oL LI g g 8 014 14 €6 1066 900 9c'e oLl 990 190 900 12 650l 920 Gv'6.L PaxiN XN S S90-NI
i7" 6L cl 6C ¢S 08 v 16 6l g 9 L cl v oSy 2166 €00 00'¢e Ll 250 9’0 900 G0'¢ 696 120 89°L8 PaxiIN X ing  XIng G0-NI
v9'6 08¢ G€ 9L 0GlL L2l 0Ll V6 Ge 0c L Gl 14 9. 9% $¥0°00L ZLL°O €G'C 28l L og’l 120 69°L €.°Gl €60 01'89 PaxiN XN 4 450-NI
29l Y.L cl Y4 0SS 6. ov L6 6l g 9 L cl €C 9Sv 11’66 €00 L0°¢ o'l 160 Sv'o 900 96°L 096 00 68°L8 PaxiN XN S SSo-NI
122 16 €l 14 0S GO0l 0L <26 9C 14 g ol L [44 Gey G066 100 G6'C ¢l 96°0 190 G0'0 89C vL'¢l 820 VAsWNA PaxiIN D MIng MIng 20-NI
09'G 1.€ 82 68l 07¢L 9¥L 08l 18 €e L L €l 8¢ 9 Ly €666 ZLo e oL'e g8l el 9l'0 [WAVA 9l'SlL 60°) 00'89 PaxiN JN 4 420-NI
89°C 88 €l 1474 0SS oL 0L <26 9C 14 g ol L 44 Gevy v066 00 G6'C ¢l G6°0 190 G0'0 €9¢C LzL 120 99°// PaxiIN JN S Sco-ni
ce’ L 29 L %4 ov L 0L 88 €l 14 g 9 L 9l 80 8¢€66 100 197 ce L Sv'o €v'o 9l'0 0S'L 1.8 r4Al] 18°€8 PaxiIN D MIng MInqg Lo-NI
10’8 80¢€ 0¢€ vzl 0Ll 2¢€l OVl 68 yAS 6E ol 142 0L 0L 68y LG66 SLO 16C 9c'c 69l 9C'l 820 619 12’6l 9.0 1269 PaxiIN JN 4 410-NI
og’L 19 L 0c oy 0L 0L 68 €l 14 14 9 L Gl Zly  €£'66 200 89C ceL S0 8€°0 00 LG 44 9l'0 GS'v8 PaxiN JN S SiLo-ni
sjuawipas weals

101 1z A A yL is 9 g4 ad IN agN e9 1D 80 eg NNS “0°d O O‘®eN 0ed OB OUAN *O%d 04V “OlL ‘OIS @dounog  adAl ey  #edwes
(N1) 18A1y N

Ll 0L €2 6 €9l G/ 6y 8¥l 61 4 ol L 14 Yy SlLS v¥66 100 G6'¢ €L'e 9v'0 2€0 €00 0L €0elL L0 69°9. ueln ueln YM g-€2NI
890 Z8 0c € 191 09 G¢ <291 IZ 4 0l L 9 474 80 L0'66 100 20y 08¢ S0 ¥Z0 100 €80 8GCL VL0 86'9L ueln ueln YM g-22NI
120 Z8 6l 4 9'GlL 659 €0 9L g ¢ L L S G¢e 20S 0966 100 G6'¢ 28'¢ S0 920 200 €80 162l €10 96 L, ueln ueln YM g-02NI
8/L'L 6oL €2 14 6Ll 99 6'S 991 8l € L Gl 4 €S LS L1°66 100 6cY 142 0€0 ¥20 000 6.0 vyl LL0 20'9. ueln ueln YM g-6LNI
60°L 6 G¢ 0Z 99l 00 2¢G6 20C LI 4 L L 14 L0l 66€ ¢€¥66 <200 [4A] 8v'C 1S90 2e0 200 vl ev'cL 220 129 uein ueln YM g-0LNI
10¢C ¥6lL ¢¢ 8Ll 8G /8¢ +V'9C €€ 14 € 9 6l 4 9 66 G666 V€O ¥SL Qcy ¥S'v [4%4 610 '8 2691 90} 0809 EleH sepuy YM g-60NI
8.6 vZl L2 8b¢ 0T 9¢ 1'8¢ 8SL LI Ll L 144 4 €2 909 6,66 <220 3744 1S} 2.0 16 €0 9¢’¢l 806l GS') 19°€S EleH sepuy YM g-CONI
sa|dwes }20.1 3Oy

101 1z A A yrL Is oS qy qd IN gN e9 1D 8) eg NNS “0°d O O®N 0eD ObW OUN *0%d *OYvY  “OlL ‘OIS 20Jn0g  odAl oely  #eodwes

(M) T 3Iq8L

(NI) 19ArY 1yseus



Barry P. Roser, Keisuke Matsuura, Yosuke Kaino, Norihiko Matsuo, Takamine Toda, and Narantuya Purevjav

46

ey 68 ol 14 0S LWL 09 ¢26 8l L S L Ll G¢e 86 L¥'66 SO0 L0°€ 080 9.0 G0 600 v0'€ L€l 620 02'6L PaXIN D AIng XIng 20-IAM
‘eu 6sc ¢¢ 9¢L 0GL 9SL 0SL 96 8¢ 6¢ ol (14 [4°] 9/ 99y 6,66 820 €8¢ 8Ll 9G'L g9’ 1€0 G6'6 696l GL0 G619  PaXIN N El 4 20-\M
eu €L 6 8¢ 06 60L Ov <6 Ll 9 14 L Gl €e ¥6E 6£66 €00 oL'e 8.0 120 00 80°0 €9C /80l 920 ¥2'08  PaXIN N S S Z20-AM
‘eu 16 6 e 08 ¢2¢L 0¢C ¢8 Ll 14 S L L VA 8/¢ €0°00L €00 98¢ vl 180 250 80°0 0ge 0c0L v2o0 6,18  PaXIN I AINg AIng LO-IAM
‘eru ¢cL 9C 9vL 0GL ¥8L 0O€L ¥8 L€ 6l L 9l 8y G6 2C9¥ 1666 6L0 19 89°L S6°L or'L €0 €L'8 0491 ¥80 ¥G'G9  PaXIN O 4 410-AM
ey 0L 6 6l 0L 6LL 0L €8 9l € 14 L oL s¢€ v.€ +000L €00 182 L 280 8¥'0 100 20¢ 16’6 f44) 1628  PaXIN ON S S LO-IAM
‘e'u A 0c 08 ¢0c Ov I8 L 14 14 8 6 3% 60y /866 €00 16'C 10C Gc'L 960 00 8.1 9/'LL  8L0 €2'6L P3XIN OW ing ing 60-NL
‘e'u 929 /¢ ZLlL 091 09¢ 09l ¢8 €c (44 6 8l 8¢ 6 0cy 20’00l 0cCo 14 6v'¢ LG¢C 6L 0c'o 169 928l L0 8EV9  P3XIN O El 4 60-NL
‘e'u 19 9 cl 0L /6L 0¢€ 08 L € € L 9 9¢ 80y 9866 <¢00 L0¢ ¥0'C Sl S0 €00 9¢g'L cclL €10 G¥'08  PaXIN O S S 60-INL
‘e'u 44 8S 09 ¥0c 0. 68 G€ ol 9 9l (44 12 €8y 8966 900 9C'e [1%4 ¥S'L 80} 710 86'¢ €8yl S¥0 cLel uein ao Aing ing 80-NL
‘e'u ecs Ve 8ZL 0GL 9¢¢ 07¢CL S 94 (114 6 0c 14 1L 29% 1666 L0 8€'C GS'¢C vv'e el [4A] 8v'9 g8l 0.0 88'v9 uein ao El 4 80-NL
‘eu 16 6 8 06 66L 09 06 ¥ 6 9 Gl 8l 8C 98y V566 €00 Ge'e 90¢C 6g°L 160 oL'0 €Te 0S¥l 6€0 0s'€L uel as S S80NL
‘eu 69 L 8l 0S ¢/l 0L g8 9l 14 € oL cl lZ €ev v966 €00 aL'e €Ll 80°L 1G°0 800 GLL cTLL L1 28'6L uel as Ainging L0-W.L
‘eu 986 62 <¢ZL 08L €¥¢ 06l L8 P¥E €T L 8l ¢L vLL SZS 1666  0€0 99'C €5°C 6S°C 98'L S¥'0 €G'6 9C’LL €80 6819 uel as E| 4 L0-NL
‘eu €S 9 GL 0¥ L 0L 28 9L ¢ € ol L 14 Ley €966 200 qL'e Ll SO'L 6¥°0 100 191 L'l 90 €108 uel as S S /.0NL
‘eu 28 8 € 06 ¢€cc 0¢ 18 0C ¥ € 4] 8T L9y 8¢€66 200 8L'¢ 0ge LE°L €90 900 161 96CcL ¢co vL'LL  PEXIN O MIng Xing 90-N.L
‘eu G8S V€ L0C¢ 0'lc 0gZ 0O'Lc 28 2 0¢ L 74 Z8 16 66y L1966 ¥C0 Ge'T 10C er'e Lece 6€°0 66 €26l €60 18'65  P3XIN O El 4 90-NL
e'u 69 yA 8l Oy ¢€¢¢ 0¢ I8 6l 14 € cl € yx4 09y €66 <200 oce Lec Vel 650 G00 691 8€'¢lL 0C0 09'2L P3XIN ON S S 90-NL
‘e'u 9l 8 1€ 0G 66L 01 88 ol 9 14 cl 8 14 vy 9966 <200 Ge'e L0¢C 8¢l 8.0 900 [A°K4 99¢L 8¢0 0592 uein ao Aing ying v0-N.L
e'u 6. 6¢C ¢/l 09l 8¢¢ 0'LL 9L Gl 8l ol 0c 8S 6 6Ly 0966 €L0 9€'C 6S°C 19¢C ¥0'C €20 28’8 Ge8l v.0 €819 uein ao El 4 70-NL
‘e'u 9L L yx4 oy 96L 00 68 6 S 14 cl 14 6l 6vy 9966 100 ev'e 161 6c’)L 890 700 ¥0'C LA A 092, uein ao S S v0-INL
‘eu 6.1 Gl €L 0L ¥SL 06 S6 9 8 L Gl 0c 8¢ 9/ 9966 900 GL'e 651 Gc'L 6.0 100 S0'v 9G¥l 8¥0 GG'eL uein ao Aing ing €0-NL
‘e'u Gy 9¢ 6¥L 0¢€l ¥9L 0SL G8 €€ Gl ol 8l 6¢ 1722 9% CV'66 L0 VA4 1G'L 891 e €10 999 L0°LL €60 61,9 uein ao El 4 €0-NL
‘e'u 16 ¢l 3¢} 06 62l 0L 16 G G 9 14 14 8C 6.y 0966 +00 Ge'e 9L 9Ll 190 900 8C'¢ €8¢l  S€0 9¢'SL uein ao S S €0-NL
‘eu Ggee vl OLL 0OLL 02 08 I8 14 6 9 €l vy €S 2y 6266 SO0 L0'¢ [4A°R4 9L’ 80°L 100 ¥G'G €L'el 6v0 G9'LL  PEXIN O MIng Ming Z0-INL
‘eu 9Z¢L 6 89¢ 0GC vez 0SL L9 Ll Gl oL Gl 00L /gL 9. 8066 800 6v'C LLC 0S¢ 6LL 10 ceLlL 68€EL 060 6L°€9  PaXIN ON El 420-NL
‘eu ¢6 0L /9 0L 6l 09 G8 vL L S €L 6C 0¢ Pve¥r Ge€66 00 GL'e Sy'e 951 680 S00 96°¢ €6CL 8€0 G6'€EL  PEXIN O S SZ0NL
‘eu €l 8 Ge 06 Gle 0Z 98 cl S 14 cl 14 €€ 6y 6686 €00 62'¢ Gz'c LE°L 990 900 e (A4 7 A 1€°9L  PEXIN O AIng Ming LO-INL
‘eu 90,L 9¢ 62k 09l ¥sZ 0Ll 6L e L 6 8l S 88 €y 6066 €10 €5°C €9C VAR 8L 810 €L 969l LLO 16'¥9  PeXIN ON El 410-NL
‘eu 89 L Z 0¥ 2l 0L 98 L 14 € ¢l oL 8C 0¢vr 8686 <200 1€°¢ (444 9Tl 950 00 16°L €6°'LL 020 crLL  PEXIN ON S SL0-NL
sjuawipas weals
101 1z A A yL Is 9 g4 ad IN agN e 1D 8D ed NS *0°d oM O‘®N 0edD ObAN  OUA  *O%d *O°v ‘OlL ‘OIS @doinog  odAl pely  #edwes
s19AY (M) 1ydewry pue (1) nAewe]
ev'lL 66 0L 8L 0C 8 0¢€ €91 90l ¢ S oL 9 8L G8G ¢666 LOO €L'S 8¥°0 S00 jerA] 100 VA" €56 0z0 6128 oAyy ghud  uM ale-ni
SL'C 96¢ 0C 8 0Ll 8L 091 /9 8 14 L Ll oL oy 0L 9¢g00L L00 €Ll 1494 1£°0 69°L 900 60 9¥'GL 610 G6°LL oAyy gAud  uM a0z-ni
fAe4 28 Cl 4 oy Lz 0¢ v6 9 € 14 oL [ L 186 G0°00L LOO GS'e R 40] S00 8.0 €00 STl 69°'LL 600 6128 ueln geln YM a8L-ni
S9'Y 6¥L €L 6¥ 0cCL 0L OV LOL 8L 6 6 Ll 8L 8§ Z9¢ LE€00L LOO c0'e €Ll 6L°0 4" 900 G8'C 8’9l 8€0 8Y'v. ueln geln YM asl-ni
19 2cL € viL 0L LWL 062 LSL OF 8 S lc 8 9 €961 tv¥'00L €10 16'S 620 Y00 180 800 8L 196l €80 8199 ueln geln YM avi-ni
Sl vl 6 €l 0L 28 0e Vel V€ € L €l 8 86 v.S 966 €00 v.'v e 120 L£°0 100 860 9¥'el 220 2C9L ueln geln YM aeL-ni
8G'¢€ ¢eL 0L 8. 06 GSL OvL LS Gl 4 S Gl 0L 92 2¢9¢ 0Z00L €00 €8°L 6LC 0ge R 4] 00 9z'e 6.9 v¥0 ceCc. 8woeq goed WM av0-ni
(Y% 2cL 0z €. 06 98L O0SGL 0S 2L ¥ S GL 0L vZ¢ 06 ¥.66 LOO 98'L 9g'e qL'e 190 900 90°¢ <7284 A A1) GE'CL eweqg goeg UM a¢e0-nNl
sajdwes }20.1 3|JOyp
009 erl vl ZlL 09 ¢kl 09l /8 14 L L Ll 14 € ¢0S /666 100 92'C velL 160 (X% GLo 1.°S 6L'9L S50 9¢g'LL oAuy aAn ing Ing gg-Ni
901 G6L 8l 6ZL 09 0L OvL 08 ol el 8 Gl (019 9¢ 62ty 2000, 600 €61 191 6gL sl €10 VAR 88'GL 190 19V L oAuyy an El Elctall
[V ol ¥l L 09 ovlk 091 /8 <2 L L Ll 174 €C /0§ /666 100 82'¢C €el ¥6°0 (X% GLo 6.°S 129l SS0 YeLL oAuyy an S sseg-ni
6v'v 9¢L 9l 16 0. 6%l 02L 98 ¥4 L L Gl 92 8¢ 00S 6666 600 Gee 6gL 00} LV 90 96'S ¥6'vL 670 ¥8'CL oAuy aA ing Ing y2-ni
6¥'9 ¢l 02 8¢l 0L LLL OVl SL € Sl 8 9l *14 €y 60y 92°00L OLO 16°L 09} vyl [XA% L0 cL'S 98yl 690 96°¢CL oAuyy an El dve-ni
Sy velL 9l 16 0L 8kl 072L /8 ¥4 L yA Gl 9C 8¢ 205 8666 600 9¢€'C 6g’}L 660 yAN" 910 GG'G ¥6'vL 670 G8'¢. oAuyy an S Sye-ni
9lL'e (51 A 74 v 0L LL 06 82l ¢ 6 8 L 2 6¢ €Zy  €0°00L 900 e 6L 9¥'0 G9'0 1€0 9C'e €6'LL  6€0 29'8L  PaXIN JW dIng Ing g€2-Nl
oL's Sve 09 0L 09l 8LL OVl 0€lL 61 1z ¢l Zcl 6y 8. L0S ¥2°00L SL°0O vZ'e 08l 4" GO’} 160 68°G Ge'GlL 680 11'69  PaXIN N El ElrAall
10'€ 60L G¢ ey 0L 0L 06 82l 2 6 8 L ¢ 8¢ ¢cy €000 SO0 L'e 8Ll S0 90 9¢'0 ece /8'LL  8€0 8/'8L  PaXIN N S seez-ni
(p30) sjuawipas weans
101 1z A A yrL is 9 g4 ad N GN B9 1D 8D eg NNS “0°d oM O°%®N 0eD OBN  OUN  FO%4 04V ‘OlL ‘OIS #oin0g  odAl el #ejdwes
P12 (NI) 40A1Y Nj

(MD) T3Iq8L



47

Geochemistry of stream sediments in the watersheds of Lake Shinji and Lake Nakaumi

106 29l v¢ L6 S8 Gl ¥8L 06 ¥Z 8L <L 9L /S 2§ 68y 0L66 ¥LO ¥L'C GL0 <2L0 1L 800 €29 88Vl 690 v6'€L °Bning as ing WNZL-SN
106 29l ¥z 16 S8 S v8L 06 ¥Z 8 2L 9L LS 2GS 68y 0.66 ¥LO vL'Z SGL0 2L0 LZL 800 €S 88¥L 6G0 ¥eEL dnund @S 4 WZL-SN
052 6rl €2 1oL L9 VL 2GL 6. 02 €2 oL S 2§ 8¢ 9IS 8966 ¥L0O ¥6'L €Tl 'L 8G°L 0L'0 LG 20¥L 990 28'¢L 8ning as ing NGL-SN
052 6vL €2 0L L9 WL TSL G, 0Z € Ob SL 25 8¢ 9lG 8966 ¥LO ¥6L €L 9L 8%L OLO LLS  2O¥L 990 ¢8¢L emnd @S 4 WSL-SN
08'9 9¢L € 66 €9 €Sl 68 8. 0C ¢ 6 9L 8y ¥ G 8¥e6 SGL'0 L0C <€) og’L 96’ 600 996G €€vL 090 O0¥ZL OAuyy an ing AVL-SN
08'9 9€L €2 66 €9 €5l 68L 8 0Z 2 6 9L 8 ¥ Gy 8y66 SLO L0C 2€L 0€L 9%L 600 99 €€¥L 090 OveL ohkud QA 4  WpL-SN
SG0°0 €L ¢ €oL 0L ZvL TSV 6 L L2 OL 9L 0S5 €y 88y 0€66 8L0 8LC Ll') og’L 09'L Lo 6€'9 29l 2150 6L'LL tosor as ing WZL-SN
S0'0 €L ¢ €0L 0L Iyl TSL 16 Lz /z OL 9L 0S5 € 88y 0€66 8LO 8LZ 'L 0€L 09 LLO 6€9 29V LG0 6LLL losor @S 4 WZL-SN
leee  95¢ 8¢ 66l 99 €2¢ 99¢ 19 <¢¢ €8 6L Ll /8L ¥§ 605 +vve6 Lc0 V9L 691 6L’ 6£€  6L0 669 9€9L 20T LLY¥9 tosor as ing AInq LL-SN
8.0, 99L ¥Z ¢l 0G 86L ¥ZL 89 6L €5 O 9L L0L € 6SF 0000 ZL'O €8L €6 L9V 99C vL'0 89S €9GL €20 ¢L69 losor @S 4 4dLL-SN
v6'€€ <¢9¢ 6¢ ¥0C 99 G¢¢ L'/l¢c 19 ¢ S8 0Cc Ll 26l G <ClS Ove6 <¢Z0 €91 191 ¢ce  eve  6L0 8041 L7'9L 0L’z S¥y9 tosor as S SLL-SN
88'G €6L Lz 06 VG 09 882 L9 9L /9 6L ¥ 6eC Oy Ley 1066 020 98l 82T Lye Ove OLO LLZ  8L'¥L 86L Zvp9 Nosor @S ing ¥ng OL-SN
e 88€ /L €eS LG /2 €Oy 9¥ LL 2L ¥S ¥L ¥8E 9G 88€ 6186 0OV0 A 4% S0z 9€v 2L¥ 220 Tveh G98€l 659 6.5 losor as El 40L-SN
(78] 8/L Lz L0z V'S 8GC 08 29 9L ¥9 9L ¥ 82 66 GEF €066 8L'O 06l 0€C Ove 0€E 600 0L9 LZ¥L €91 1e69 losor  @s S  SOL-SN
PASK] Syl 8L ¢eL €9 /6L 09 LWL ZL 8y OL 9L €S G €Sy L066 €L'0 vL'C /I8 vee L£C €10 109 80vL 180 2z69 losor as ing Ying G-SN
veoL L¥e G2  Zvy 69 LlZ 6€€ GG OC vEL Oy 9L GZ¥ ¢S 68€ 0C66 €20 LSl 6SL L0€ 6EV ¥ZO0 €9LL ¥yvL ¢S  ¢e9g losor  @s E| 46-SN
(A eyl 8L 621 €9 /6L 6SC V. LV Ly OL 9L 0SL G €Sy L066 €0 SL'C 88l €2C veT TL0  ¥6'S  80vL 280  L£69 losor as S SG-SN
09'G €€l 0Z GOL 8% €51 60Z 2. 8 02 8 9L 19 O0f Ovy 266 OLO ZL'Z OLL  9FL  ZGL  9L0  ¥SS  POVL 190  Z6LL POXIN XIAN Ing XIng #-SN
8/0L 8¢¢ 8 0/L ¢T/L €8L GSC V. LZ Sy €L 6L SZL 1S by GZ66 8L0 S8L 8G°} ¢ce S¢ec €0 sLL SL9L 0Tk G8'G9 PaXIN  XIN E| 4%-SN
€€'S 0gL 02 €0L L¥ ¢SL 80Z 8 LL OC 8 9L 65 O0€ Ovy vZg66 OLO 8L'C OLL ¥¥L  0SL 9’0 8¥S 66'€EL 090 80CL PN XIN S S¥-SN
668 8yl 9¢ <20l 9. G6 <C0C 88 <2 €€ 6 8L /S €y gGev Ll'e6 910 6l¢c L0 20l 8¢’ 6L'0 1G9 ¥EYL 6G0 00CL PSXIN  XIN ing WE-SN
668 8yl 92 20L 9/ G6 2ZOZ 88 2€ € 6 8 LS €y GEy L'66 9’0 6L'C LL0 2OL  8ZL 6L0 LS9 vEVL 650 002L PIXIN XIN 4 INE-SN
€L'9 €L v¢ ¥9 TG 8SL €SI 69 SL 6 L L 6L €€ 965 ¢Z¥66 600 65C ¥8'L S0’ e 81’0  S9F S9YL L¥O 1927, OAuy an ing S¢-SN
€19 €L ¥ ¥9 TG 8SL €SL 69 G 6 L L 6L €€ 965 2¥66 600 65C ¥8L GOL CZL 80 S9¥ SOVl LvO 292, OAyd QA S ST-SN
clLL 0cc 6¢ 0¢L 68 S6 O0lc 68 ¥ 8 ¢ 0 Vv. ¥9 625 <066 €V0 <C6'L €0 8.0 ¢evl ¥20 998 €69l 6.0 29/9 PSXIN  XIN ng W1L-SN
ZVZL 0Zz 6 OEL 68 G6 Ol 68 ¥S 8 ¢ 02 ¥. Y9 625 <2066 €YV0 Z6L €€0 820 €FL 20 998 €69L 6.0 ¢GL9 PEXIN XIN 4 WL-SN
Sjuaw|pas weans

101 iZ A A Ul IS 9S a4 ad IN 9N eD IO 80 eg WNS °O°d O OBN 0eD OBN OUAN ‘O%d4 OV ‘Ol ‘OIS 9dmos adAL 1Bl #9jdwes
(SN) lulys yioN

eu 8L 6 /& 0. 20L 09 2 L OL S 0L 9L 0€ ¥ 0000L €00 922 €20 890 280 HLO 922 094l ZEO0 GL'08 PAXIN O dINg NG OL-INM
eu Gey 92z €6 0CL 66L 0CL ¥8 L € 8 8 Ly GL €S 0666 P¥L'O 88C €61 20T S€L YO 99 L00Z 290 /8€E9 PIXIN  OW 4 40L-WM
eu 18 L € 0L ¥6 09 28 L 8 ¥ OL ¥L ZZ LOF LOOOL €00 GLCT €90 250 8,0 L0 S¥Z L60OL 0E€0 6v'L8 POXIN  OW S  SOL-ANM
eu 0. 9 6L 06 2L 0C 26 2 9 ¥ Ob L Lz 92¥ G966 100 LGE 8L 020 090 600 98L 6.0L 220 6908 PIXIN DN NG NG 60-INM
eu 28 8L 96 0€L JzZz 06 98 2 g 8 9L 6y 6L GBY 2ZLOOL LLO OL'E 80€E €T 021 €60 829 GZ8L 6v0 GL'SY9 POXIN  OW 4 460-NM
eu l9 9 /L Oy OZL 0C € 2 9 ¥ 0L OL 0Z G2y v966 LOO LGE GL'L 890 650 800 6LL L90L 120 G608 POXIN  OW S S60-AM
eu 99l ¢z ¢zL 08 6€L O€EL /8 8 6 9 € 9L 6€ 9€S 8966 ¥L'O LLT G20 Z¥L €L L€0 STL  €SvL G0  $90L uelD @D Anging 80-INM
eu 89Z ¥¢ 8/l OLL 62L OlZ V8 ¥L ZL L 9L ¥Z €9 /S vve6 820 92 €Y0 vyl 661 050 Z¥iL 8€8L 8.0 /619 uelD a9 4 480-NM
eu /gL ZL L0L 09 2yl OOL 68 0 S G ¢ ¢ 6C 025 /.66 800 /6T /80 YL Q0L €20 99 90€L 8Y0 ¥6EL uelD  dD S S80-AM
eu 2¢s €¢  60L 0CL OSL OLL 28 OZ SL 6 vL l€ L. Svy L266 80 LT 8L 6L 80L 920 L 60GL LS50 6E69 PAXIN DN NG ing L0-NM
eu 960L €€ 89l 0ZL 9/L OGL 28 V¥¢ € L. 8 ¥S§ LLL 28 ¥EE6 820 0SC €L €61 ¥l 660 9Ll /S8 080 2809 POXIN  OW 4 420N
eu €6l L G, 08 G€L 08 € 8 L 8 ¢ [z € +tev 1666 <CL'0 ¢6C 6LL 80L G880 6L0 €4S 60EL YO OEVL POXIN OW S S L0-ANM
eu 0L 8 € 09 /5L Oy 28 6L S ¥ 6 6L L& Py 6€£66 YOO OL'E LSL 90L 250 800 8yZ Z60L 220 Ov6.L Uesd  aD inging 90-NM
eu 89/ [z /8L 0ZL 9l O0ZL L6 0¢ SZ L. 8 9L 96 225 8.66 ¥Z0O 08CZ 9L /€T ¥LL OF0 066 €08L 160 €219 uelD @9 4 490-WM
eu ¢, L 9 0§ ¥5L 0¢ 28 8 v v 6 Ll 8 60y LE66 €00 LL'E ¥SL 00L ZbO 200 GL'Z 090, 6L0 LZ08 Ukl aO S S 90-AM
eu 88 6 8 09 2 0€¢ O € € S 6 L 92 vy /88 200 6L€ 180 €50 960 ¥L'O €41 2§50l LL'O 6L08 uny  ds ing xing S0-W
eu l2G €2 69 09L 99L 00V ZLL vy GL OL ZL ¥Z 18 96§ €/66 <ZL'0 SS€ 8L bl 960 b0 829 86LL 2LS0 ¥E99 uny - as 4 4G0-NM
eu l9 8 G 09 8 0¢ 60L 22 ¢ ¥ 6 9 € 9¥ 288 LOO L8E ¥L0 b0 €60 ZL'0 G¥L 900, GL'O 898 uny - as S SSO-AM
eu ¥l ZL ¥8 06 0SZ O€L L9 S S 9 € 6L L€ GSOF 2666 800 €61 6.1 0T G880 900 ZLv L'yl 9S50 ZGEL HOWO  AS NG ng ¥0-INM
eu v 2z €€l 0L OLe O8L ¥S € 6 8 ¥ /& 8 9 v¥966 <¢L'0 6¥L 8L 2§ 9L 600 ¥L9 ¥6VL 260 8y0L uWowWO @S 4 4v0-NM
eu 6LlL GL 2. 0S¢ &Ge 0CL €9 S v S €L vl [z L6E 6666 200 YOCT ¥6'L GZCT 2.0 SO0 ZZ¥ LBEL b0 [Z¥. MOowO  AS S SY0-NM
(p30) sjuawipas weasns

101 iz A A UL 4S8 98 94 4d IN aGN e9 IO 98] eg ANNS  "0°d  OM O%®N 0D OBN OUAN FO%d4 09V °“OL ‘OIS 9doinos adAL joeid #9jdwes

(M) T 3Iq8L

(P32) suaAry (IY) yoewny pue (L) nAewey



Table 3. Stream sediment sample weight fractions.
Abbreviations as in Table 2.
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