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Major and trace element compositions of Devonian and Carboniferous sedimentary rocks
from the Tsetserleg terrane, Hangay-Hentey basin, central Mongolia

Narantuya Purevjav* and Barry P. Roser™

Abstract

The Tsetserleg terrane forms part of the Hangay-Hentey basin of Mongolia, which in turn forms part of the Central
Asian Orogenic Belt. Whole-rock major and trace elements compositions of 94 Devonian and Carboniferous sand-
stones and mudrocks (siltstones and mudstones) from the Tsetserleg terrane were determined by X-ray fluorescence
spectrometry. Analyses are reported for the Devonian Erdenetsogt (n=>54) and Tsetserleg Formations (n=26), and the
Carboniferous Jargalant Formation (n= 14). The main feature of the data is the relatively uniform average SiO, content
of the sandstones in each formation. Average SiO, contents in the mudrocks are equally uniform, and are only slightly
less than those for companion sandstones. Consequently, average concentrations of most of the other elements analyzed
are only slightly greater in the mudrocks than in the sandstones. These features reflect the textural and mineralogical
immaturity of these sediments, which are classed as wackes and shales based on geochemical parameters.
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Introduction

The Hangay-Hentey basin is situated in central Mongolia,
and forms part of the Central Asian Orogenic Belt (CAOB),
the longest-lived and largest Phanerozoic accretionary
orogen on Earth. The CAOB is considered to have evolved
over 800 Ma, and is characterized by both lateral and verti-
cal growth of the continental crust by accretion of arc, back
arc, oceanic islands, seamounts, ophiolitic and Precambrian
micro-continental fragments (Jahn ez al., 2004; Windley et
al., 2007; Kroner et al., 2007; Kelty et al., 2008; Lehman
et al., 2010; Rojas-Agramonte et al., 2011). The CAOB is
bounded on the north by Siberian Craton and to the south by
the Tarim-North China Craton (Sengor et al. 1993; Badarch
et al. 2002; Long et al. 2011). The development of the
CAOB is related to complex geological processes, including
accretion of island arcs, ophiolites, and subduction units
and terranes; the origin of many of these units remains
controversial. The tectonic development of Mongolia is
genetically related to the CAOB, and thus this is also still
a matter of debate (Ruzhentsev et al., 1996; Badarch et al.,
2002).

The Hangay-Hentey basin (Fig. 1) lies within the north-
ern domain of Mongolia, and is composed of Precambrian
and lower Paleozoic metamorphic rocks, Neoproterozoic
ophiolites, Lower Paleozoic island arc volcanics, Devonian
to Carboniferous sediments and Permian volcanic-plutonic
belts, with associated marine and non-marine beds (for
details see Badarch et al., 2002; Orolmaa et al., 2008). In
the south the Tsetserleg terrane forms part of the Hangay
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sub-belt. The Tsetserleg terrane contains the Devonian
to Carboniferous Erdenetsogt, Tsetserleg and Jargalant
Formations, which are composed of deep marine turbidite
to shallow marine sedimentary sequences (Genden ef al.,
2005; Tomurtogoo et al., 2006)

Several investigations have been mainly focused on the
CAOB in relation to geodynamics and geological processes
(Sengor and Natal’in 1996; Jahn et al., 2000; Badarch et al.,
2002; Windley et al., 2007; Kelty et al. 2008; Long et al.,
2011a, b). Some provenance studies have also been carried
out mainly based on geochronology (Kelty et al., 2008;
Long et al. 2010; 2011a, b; Ren et al. 2011; Rojas-Agramonte
et al. 2011). However, Long et al. (2011a, b) have recently
used geochemical compositions of sedimentary sequences
to reveal the provenance and weathering histories of
Paleozoic greywackes from the Chinese Altai and Jung-
gar blocks. However, similar geochemical investigations
of the Devonian-Carboniferous sedimentary sequences of
the Hangay-Hentey basin have not yet been made, and the
geochemical composition of the sediments and their prov-
enance and tectonic setting of deposition remain obscure.

Previous investigations have noted that the tectonic
origin and geodynamics of the Hangay-Hentey basin in rela-
tion to the development of the CAOB are still controversial
(Sengor et al. 1993; Dobrestov et al. 1996; Badarch et al.
2002; Windley et al. 2007; Kelty et al. 2008), as reviewed
by Lehman et al. (2010). However, the recent study by Kelty
et al. (2008) suggested that the Hangay-Hentey basin devel-
oped between island arc systems with a Neoproterozoic
basement and an Andean continental margin arc.

Geochemical compositions of sedimentary rock have
been used successfully to identify the ancient tectonic set-
tings of depositional basins (Bhatia and Crook 1986; Roser
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and Korsch 1986), as recently applied to the Chinese Altai
and Junggar blocks of the NW China segment of the CAOB
by Long et al. (2011a, b). Therefore, the geochemical com-
position of sedimentary rocks can be used to test the above
controversial concept regarding the tectonic origin of the
Hangay-Hentey basin in relation to the CAOB. Geochemi-
cal data would also help identify source rock composition,
crustal evolution, and weathering history in relation to
paleoclimate.

Based on the above issues, the purpose of this report is
to present major and trace element analyses of Devonian-
Carboniferous sandstones and mudrocks from the Tsetserleg
terrane. Average concentrationsinthetwoprimarylithotypes
(sandstones and mudrocks) will also be compared between
formations. Comparison of these analyses with existing data
from other basins will contribute to our understanding of
the complex geological processes and development of the
Hangay-Hentey basin in relation to the CAOB. Further
interpretation of the data with respect to provenance, tec-
tonic setting and source weathering will be made in a future
publication.

Geology

Geologically Mongolia is divided into two parts by the
Mongolian Main Lineament (Tomurtogoo 1997; Badarch
2005; Kashiwagi et al. 2004; Kelty et al. 2008). The Hangay-
Hentey basin falls within the northern domain (Badarch et
al. 2002). The Hangay-Hentey basin was floored by either
an enriched mantle or Precambrian basement (Jahn et al.
2004; Kelty et al. 2008), and is predominantly composed
of folded and faulted Devonian to Carboniferous turbidite

sequences. These are underlain by Neoproterozoic-Lower
Paleozoic shelf carbonate-quartzite sequences and deep
marine sediments (Badarch et al. 2002), and are intruded or
overlain by Mesozoic and Cenozoic igneous rocks (Tomur-
togoo et al., 2006; Kelty et al. 2008). The present study area
is within the Hangay sub-basin of the larger Hangay-Hentey
basin. A Cenozoic fault system separates the Hangay and
Hentey sub-basins (Badarch et al. 2002; Kelty et al. 2008;
Kurihara et al. 2009). The Hangay sub-basin is further
divided into several terranes. The Tsetserleg terrane, the
object of this study, is one of these (Fig. 1).

The Tsetserleg terrane consists mainly of the Erdenetsogt
and Tsetserleg Formations (Devonian) and the Jargalant
Formation (Carboniferous). Age has been distinguished
based on tabulate coral and brachiopods (e.g. Neospirifer
derjawini, Orulgania aff. gumbiniana Kotf., Tomiopsis
sp., Lanipustula sp., Dengalosia sp., Suleoretepora sp.,
Fenestella sp., Fenniretepora sp,) which lived in marine
conditions during the Devonian period (Bayamba et al.
1994). Erdenetsogt Formation is composed mainly of grey
to green turbidite sandstones, siltstones and mudstones,
along with subordinate conglomerates, brown jaspers, and
tuffaceous andesites (Kashiwagi et al. 2004; Genden et al.
2005, 2007; Sambuu et al. 2005; Tomurtogoo et al., 2006).
Tsetserleg Formation consists mainly of grey sandstones,
siltstones and mudstones with occasional conglomerates,
interpreted to have been deposited in a marine environment,
along with thin layers of andesitic tuff (Tomurtogoo et al.,
2006; Kelty et al. 2008). Jargalant Formation is composed
of grey sandstones, siltstones and mudstones that were also
deposited in a marine environment (Genden et al. 2005,
2007; Tomurtogoo et al., 2006).
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Fig. 1. Distribution of major terranes and structural features in Mongolia, after Badarch et al. (2002), Rojas-Agramonte
et al. (2011) and Wainwright et al. (2011), and location of the Tsetserleg terrane and the study area.
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Sampling and sample preparation

Field sampling

Ninety-four sandstones and mudrocks (siltstones and
mudstones) were collected from outcrops of the three
formations, spread over an area of about 500 km?. Owing
to the regional scale of the current mapping, the physical
isolation of outcrops from each other, complex structure
and limited field time, stratigraphically controlled sampling
within individual formations was not feasible. The sample
suites should thus be regarded as representative of each for-
mation, within the constraints of current mapping and age
control. Fifty-four samples (25 sandstones, 29 mudrocks)
were collected from the Erdenetsogt Formation, 26 from
the Tsetserleg Formation (11 sandstones, 15 mudrocks), and
14 from the Carboniferous Jargalant Formation (six sand-
stones, eight mudrocks). Samples were collected only from
fresh outcrops. Individual samples weights were generally
200 to 300 g for sandstones and 75 to 150 g for mudrocks.

Sample preparation

Thin weathered surfaces and any veins were removed
from samples during manual chipping into 1 to 2 cm
pieces using a geological hammer and a manual splitter.
The chipped samples (100 g) were placed in Pyrex beakers
and washed several times under running tap water and
then deionized distilled water to remove surface dust. The
samples were then immersed in deionized distilled water,
and left to stand for about 24 hours. The samples were
then drained, and oven dried at 110° C for 24 hours prior
to milling. The samples were crushed using a ROCKLABS
model RC ring mill with a 100 g capacity tungsten carbide
head. Individual samples were crushed for 25-45 seconds,
depending on lithology and sample weight. Splits of the
powdered samples (8-10 g) were transferred to glass vials
and returned to a 110 °C oven for 24 hours prior to determi-
nation of loss on ignition (LOI).

Analytical methods

LOI values were determined by ignition of the dried
samples in a muffle furnace at 1020 °C for more than 2
hours. LOI was calculated from the difference between
initial weight and the ignited weight of the samples. The
LOI values thus include loss of volatiles (e.g. H,O, F, Cl,
CO,, SO,) and weight gains through oxidation (conversion
of FeO to Fe,0;, oxidation of sulfides). The ignited samples
were manually disaggregated in an agate pestle and mortar,
returned to glass vials, and held in a 110 °C oven before
preparation of glass fusion beads for X-ray fluorescence
(XRF) analysis.

The XRF analysis was carried out at Shimane University,
using a Rigaku RIX 2000 spectrometer fitted with a Rh-
anode tube. Major elements and 14 trace elements (Ba, Ce,
Cr, Ga, Nb, Ni, Pb, Rb, Sc, Sr, Th, V, Y, Zr) were determined

from the glass fusion beads, which were prepared with an
alkali flux (80% lithium tetraborate, Merck Spectromelt®
A10; 20% lithium metaborate, Merck Spectromelt® A20),
in a sample to flux ratio of 2:1 (Kimura and Yamada
1996). Instrument conditions, calibration and corrections
for spectral interferences followed the methodology of
Kimura and Yamada (1996). Internal correction for intra-
run drift was made using secondary calibration against ten
Geological Survey of Japan (GSJ) rock standards spanning
the compositional range from gabbro (JGb-1) through to
granite (JG-2). Four additional trace elements (La, As, Zn,
Cu) were determined from pressed powder pellets, using
conventional peak over background methods. Calibration
was made against seven GSJ rock standards, with concen-
tration ranges for the target elements exceeding those of
the samples. Roser ef al. (1998, 2000, 2003) give additional
descriptions of the sample preparation and XRF methodolo-
gies used at Shimane University.

Results and Discussion

Major and trace elements analyses (anhydrous nor-
malized basis) of Erdenetsogt, Tsetserleg and Jargalant
Formation sandstones and mudrocks are listed in Table 1,
along with lithotype averages for each formation. Compara-
tively small variations in average major and trace element
abundances are observed between lithotypes and forma-
tions, but these may be significant.

Geochemical compositions of the sediments are the
end products of processes acting on the source material
during weathering, transport, and deposition, and hence
are influenced by the interplay of multiple factors. These
processes tend to destroy unstable phases such as feldspar,
ferromagnesian minerals, and lithic fragments, converting
them to clays, and also passing mobile elements into solu-
tion. Concentrations of quartz increase relative to these
labile phases if the process continues.

In mature sedimentary successions the major element
compositions of the sediments are mainly controlled by
the relative proportions of quartz (leading to higher SiO,)
and clays (higher Al,0;). As SiO, is the dominant major
element in siliciclastic sediments, this leads to positive
correlation of most other elements with Al,O; as a result of
hydrodynamic sorting. However, in less mature sediments
the role of lithic fragments can also play a major role in
determining bulk chemistry, depending on the proportions
of the differing lithic fragments present (e.g. the proportion
of mafic or intermediate volcanic lithics to felsic volcanic
lithics). Based on geochemical parameters, the Tsetserleg
terrane sandstones and shales examined here are classed as
wackes and shales, respectively (Purevjav and Roser 2011),
and hence are mineralogically immature.

Loss on ignition values in all sandstones and mudstones
are low, with only four samples exceeding 5 wt%, and
average LOI for both lithotypes in each formation is<3
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wt% (Table 1). Average SiO, contents of the sandstones
are remarkably uniform, decreasing only slightly from the
oldest Erdenetsogt Formation (68.62 wt%) to the younger
Tsetserleg (66.96 wt%) and Jargalant Formations (67.07
wt%). Average SiO, contents in the mudrocks are equally
uniform, at 65.56, 65.54, and 67.03 wt%, respectively (Table
1). Average AL,O; contents in Erdenetsogt (17.25 wt%),
Tsetserleg (16.61 wt%) and Jargalant (16.78 wt%) mudrocks
also show little variation. All the mudrock averages are,
however, slightly greater than those for companion sand-
stones (15.43, 16.27, and 15.90 wt%, respectively).

The small contrasts in SiO, and Al,O; between forma-
tions and lithotypes and lack of consistent trend by age
suggest that contrasts between the other major elements
should also be limited. At first sight this is the case, but
closer examination of the data shows some trends. For Fe,O5
and MgO, average contents in the mudrocks are consis-
tently a little greater than in companion sandstones (Table
1). Furthermore, average contents of both elements in the
mudrocks decrease from Erdenetsogt through Tsetserleg to
Jargalant Formation; for MgO the respective averages are
1.67, 1.62, and 1.35 wt%, and for Fe,O; 5.30, 4.91, and 4.36
wt%. This pattern is not repeated in the sandstones, with
slightly higher averages for both elements in the Tsetserleg
Formation. Average TiO, content also decreases in the
mudrocks (0.72, 0.70, 0.64 wt%, respectively), and contents
are higher than in the sandstones in all except the Jargalant
Formation, where sandstones and mudrocks both average
0.64 wt%. The range in averages of the minor elements
MnO and P,Os are very small (0.07-0.08 and 0.15-0.21 wt%,
respectively), and show no clear trend with lithotype or age.

The more mobile major elements CaO, Na,O and K,O
show variable patterns (Table ). Average CaO contents
show no clear trend. Average abundance in the Tsetserleg
mudrocks (2.37wt%) is greater than in Erdenetsogt
(1.75wt%) and Jargalant (1.49 wt%) mudrocks, whereas
Tsetserleg sandstones average less (1.93 wt%) than their
Erdenetsogt and Jargalant equivalents (2.36 and 2.56 wt%,
respectively). K,O contents also show no trend with age,
with higher lithotype averages in the Tsetserleg Formation
(4.41 wt% in mudrocks, 3.75 wt% for sandstones) than in
equivalents in the other two units. However, in all three
formations, average K,O abundances in the mudrocks
are significantly greater than in companion sandstones,
especially in the older units. The clearest trends, however,
are shown by Na,O. Average abundances increase in both
lithotypes from Erdenetsogt through Tsetserleg to Jargalant
Formation, with values of 3.09, 3.53, and 4.02 wt% in
mudrocks, respectively, and 4.28, 4.30, and 4.50 wt% in
sandstones. Furthermore, in each formation, the sandstone
average is greater than that for the mudrocks, especially
in the Erdenetsogt and Tsetserleg Formations, where the
contrast is near 1 wt%, representing enrichment in the
sandstones of about one third of the amount present in the
mudrocks. The above trends for the major elements suggest

some contrasts in composition and hence provenance or
diagenetic history occur between the formations.

The mobile large ion lithophile elements (LILE) Ba and
Sr are the most abundant of the trace elements, with ranges
of averages of 726-964 and 342-534 ppm respectively
(Table 1). Average Rb abundances are also relatively high
(84-131 ppm). For Ba and Sr there is no pattern by lithot-
ype or age, with highest averages for both elements in the
Tsetserleg Formation. Although Rb contents show virtually
no contrast by age (average 131, 127, 123 ppm in mudrocks
by formation, respectively; 84, 97, 92 ppm in sandstones),
the mudrocks are consistently enriched relative to the
sandstones in each formation, paralleling the pattern seen
for K,O.

A second group of highly-charged elements that are typi-
cally immobile in surface conditions (Ce, La, Nb, Th, Y, Zr)
show common behaviour. Although average concentrations
do not vary systematically with age (most show highest
values in the Tsetserleg Formation), within each forma-
tion the mudrocks are enriched relative to the companion
sandstones, often by more than 10% of the amount present.
This suggests association with the clay fraction or silt-sized
heavy minerals including zircon, monazite, or apatite).

Four ferromagnesian trace elements (Cr, Ni, V, Sc)
show a similar pattern, with average abundances higher in
mudrocks than in sandstones in each formation. Concentra-
tions within each lithotype also tend to decrease with age,
although the contrasts are small for all except vanadium,
the most abundant element in the group (averaging 67-93
ppm). The chalcophile elements analyzed (Cu, Zn, As,
Pb) also tend to be enriched in mudrocks relative to the
sandstones on average, but show variable behaviour with
age, tending to have slightly higher concentrations in the
Tsetserleg Formation.

Overall, the results above show that the average abun-
dances of some elements vary with lithotype and age,
despite the relatively small variation seen in average SiO,
and Al,O; contents between lithotype and formation. The
cause of these variations and their implications will be
investigated in future work.

Conclusions

This study reports new whole-rock analyses of 94
sandstones and mudrocks from the Erdenetsogt, Tsetserleg
and Jargalant Formations of the Tsetserleg terrane of the
Hangay sub-belt of central Mongolia. Average elemental
abundances show some contrast between lithotype and for-
mation, suggesting subtle changes in provenance, sorting,
source weathering, tectonic setting and diagenesis within
this terrane. These factors will be addressed in future work
in an effort to clarify the controversial origin of the Hangay-
Hentey basin, based on geochemical proxies.
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