中海本庄工区の水質特性

相崎守弘」・秋葉道宏」

Characteristics of water quality in the Honjo Area of brackish Lake Nakaumi

Morihiro Aizaki¹ and Michihiro Akiba¹

Abstract: The Honjo area was artificially separated by dikes from brackish Lake Nakaumi for reclamation work in 1984. However, the work was frozen and the area still remains as a closed water area. The water of the area is interchange with the surface water of Lake Nakaumi through the one shallow channel, Seibushosuiro. Water quality of the Honjo area was surveyed during May to November in 1997 at 8 sites in the area, including 1site in the Seibushosuiro and 1 site in Lake Nakaumi. A little vertical change in water quality was observed, and the strong halocline condition is not found in this area. Horizontal change of water quality was also a little. Water was well mixed vertically and horizontally. Only a station near the Honjo town was observed to be somewhat high in nutrient and chlorophyll-a concentrations. Total nitrogen concentration in Honjo area was lower than that in the surface water of Lake Nakaumi, but in the other hand total phosphorus concentration was higher in the former than that in the latter.

Key wards: brackish lake, Lake Nakaumi, Honjo area, water quality, halocline

はじめに

汽水湖における水質は流入する海水と淡水の混合 形態によって大きな影響を受ける。中海は弱混合型 の形態であり、境水道から流入した日本海の海水は 中海の底層に流入し、上流に向かって長い塩水くさ びが形成され、大橋川河口付近等で上層水に引き込 まれ、上層を流れて海へ戻っている(奥田、1997)。 このため、上層と下層の間に強い塩分躍層が生じ、 底層水は夏期を中心とした長期間にわたり貧酸素状 態となり、各種の水質に対して重大な影響を与えて いる(近藤ほか、1994)。

中海から人工的に仕切られた本庄工区は西部承水路を通して中海とつながっており,中海と干満等の水位差によって水の交換が行われている.西部承水

路はその大部分が 3m 程度と浅いため、中海の上層水のみが本庄工区の水と交換している。そのため、本庄工区内では強固な塩分躍層の形成はなく(島根大学環境分析化学研究室、1994)、中海からの流入水は塩分濃度に応じて密度流となって本庄工区内内の各層に流入している。本庄工区は宍道湖などと比べ塩分濃度の高い水域ではあるが、強い塩分躍層のような特別ない特殊な水域となっている。このような特別な特性を持つ水域であり、また中海の 1/5 の面積を持つ中海・宍道湖水系にとって貴重な水域であるが、干陸化が前提にあったため本格的な水質調査は行われておらず(日本海洋学会、1996)、その特徴は明らかになっていない。

本研究では,本庄工区内での水質特性を明らかに するとともに,西部承水路を通して水交換が行われ

[□] 島根大学生物資源科学部

ている中海の水質と比較することにより本庄工区の 中海水系で果たしている役割を解析した.また,本 庄工区と中海の関係を利用して中海の貧酸素水塊の 解消に向けた水域の利用方法に関して考察した.

調査水域

本庄工区は「国営中海干拓事業」の一環として干陸のために中海から堤防で仕切られた面積 1,689ha の水域である。中海とは大海崎堤防及び馬渡堤防によって、境水道とは森山堤防によって仕切られている。この水域は森山堤防が完成した 1981 年以来、西部承水路を通して中海と水の交換が行われる以外に完全に他の水界と仕切られており、典型的な閉鎖水域となっている(図 1)。

本庄工区水域は干陸化される予定であったが、その後の社会情勢の変化によって干陸化は 1996 年まで凍結され、独立した水域として 15 年が経過している。島根県は 1995 年に「宍道湖・中海に関わる水質予測事業」の結果を踏まえて、干陸化による他の水域への水質影響はないとの判断から干陸化事業の再開を決断し(徳岡、1995)、農林水産省へ工事の再開を申し入れた。この申し入れに対し、激しい反対運動が起き、公共事業の見直し機運と相まって、農林水産省では事業の総合的評価を行う必要があるとの判断から 1997 年度から 1998 年度にかけて調査を行い 1999 年度に判断されることとなった。したがって、もし干陸化事業が再開されれば 2 年後には失われてしまう水域である。

本庄工区には松江市側から本庄川,南川などの川が流れ込んでおり,また本庄町から生活排水が直接流入している.松江市側の流域人口は約2,700人である.大根島からは4つの農村集落排水処理場を通して約1,800人分の処理水が流入している.

西部承水路は本庄工区の西側に水路として残された水域で幅約 120m,深さ 3m 程度の水路である.調査は本庄工区内 6 地点,西部承水路 1 地点,中海 1 地点の計 8 地点で行った(図 1). St.1 は北部承水路に試験通水路が設置された場合に最も影響を受けると予想される地点である.平均水深は 4.5m であった. St.2 は最も東側の地点で汚染源としては大根島からの農村集落排水処理水がある.水深は 5.3mであった. St.4 は本庄町の前に位置し,2ヶ所切れている西部承水路の北側の切れ目に近い地点である.水深は 5.1m であった. St.5 は本庄工区の湖心にあたり,排水溝の真上の地点である.排水溝は干陸の排水用に掘られた水路で,幅約 40m,長さ約 5km の水路で水深は約 10m あるが,幅が狭いため最深点

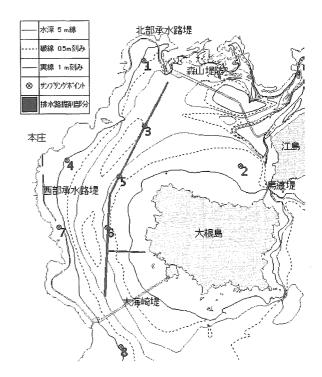


図1 本庄工区水域の概要と調査地点 **Fig.1** Location map of the Honjo area of Lake Nakaumi and sampling sites.

での観測は難しく調査時の平均水深としては 7.6m であった. St.6 は西部承水路の中海側の切れ目に近い水深 6.6m の地点である. St.7 は西部承水路の中で中海側の切れ目の地点である. 水深は 3.2m であった. St.8 は中海の西部承水路出口から 1km 程度沖合に出た地点である. 水深は 5.6m であった.

調査方法

調査は1997年4月から11月にかけて毎月1度,8月は2回行った.現地で透明度及び多項目水質計(YSI-model 85)を用いて水温,電気伝導度,塩分濃度を測定した.採水はバンドン型採水器を用いて行い表層は0.5mで採水した.水深の浅いSt.1,2,4及び8では底層水として4mの水を採水した.水深の深いSt.3及び6では4mと6mで採水した.またSt.5では排水溝中の水を採取するため4mと7mで採水した.採水した水は速やかに実験室に持ち帰り,全窒素(TN),全リン(TP)分析用にサブサンプルを採った後,ガラスフィルター(Whatman GF/F)を用いて濾過し,フィルターはクロロフィル分析用のサンプルとした.また,濾液は溶存態の栄養塩類分析用の試料とした.

分析は以下の方法で行った. クロロフィル a 濃度は 100%メタノールで 3 時間以上抽出後上澄み液に

表 1 中海本庄工区各地点における表層水の平均 水質 (5月~11月, n=8)

Table.1 Horizontal changes in average concentrations (May-November, n;8) of several items in surface water of the Honjo area of Lake Nakaumi

	St1	St.2	St.3	St.4	St.5	St.6	average
PO ₄ -P (µg/l)	19	20	18	18	17	17	18
DTP (ug/l)	34	33	31	30	30	31	32
TP (μg/l)	62	60	62	83	60	62	65
NH4-N (μg/l)	16	20	15	21	21	24	20
NO₂-N (µg/l)	1	2	1	2	1	2	2
NO3-N (µg/l)	3	5	4	10	4	8	6
TIN (µg/l)	20	26	20	33	26	33	26
DTN (µg/l)	259	231	206	220	231	263	235
TN (µg/l)	387	403	406	548	418	401	427
Chl-a (µg/l)	7.8	8.0	9.1	18.3	6.9	7.8	9.7
TN/TP	6.6	7.1	7.2	7.0	7.2	6.7	7.0
TIN/PO4-P	2.2	0.8	1.5	1.6	2.5	2.7	1.9
Transparency(cm)	229	225	223	189	238	203	218
DO (mg/l)	7.7	7.9	8.2	8.8	8.0	8.2	8.1
Salinity(%)	14.4	14.4	13.8	13.4	14.3	14.1	14.1

ついて SCOR/UNESCO 法で分析した. 全窒素及び溶存態全窒素 (DTN) 濃度はアルカリ性下でペルオキシ過硫酸カリウムによりオートクレーブを用いて加熱分解した後、硝酸態窒素濃度を測定した. 全リン及び溶存態全リン (DTP) 濃度はペルオキシ過硫酸カリウムで分解後、無機態リン (PO₄-P) 濃度を測定した. アンモニア態窒素 (NO₃-N) 及び無機態リン濃度はオートアナラーザー (ブラン・ルーベ社, AA2型)を用いて分析した (大槻ほか, 1984).

結 果

1) 水平的特徵

表 1 に本庄工区内各地点での 5 月から 11 月まで の表層の平均水質を示す。本庄工区内各地点の水質 の違いは St.4 を除いて少なく, ほぼよく混合した 状態であった. St.4 は本庄川や本庄町からの流入負 荷の影響を受けてか、他の水域より栄養塩濃度が高 く、透明度は低かった、また塩分濃度も低かった。 8月,9月,11月には赤潮の発生が見られ、特に9 月には Chl-a 濃度 77.5 μg/l という顕著な赤潮が見ら れた. 11 月には他の地点でも Chl-a 濃度が上昇し, 全域的に弱い赤潮状態を示した. St.2 及び St.3 では 8月に Chl-a 濃度が上昇したが、他の地点では変化 は少なかった. TN/TP 比を計算すると本庄工区全域 平均で 7.0 という値が得られ、窒素制限になってい た(Healey & Hendzel, 1980). 地点別では St.1 及び St.6 で他の地点より低く、より窒素制限になってい るようであった.しかしながら,藻類に利用しやす

表 2 中海本庄工区における各種水質項目の垂直変化(5~11月平均, n=8).

0.5m と 4m 層は本庄工区 6 地点の平均濃度, 6m 層は St.3, 7m 層は St.5 地点での濃度.

Table.2 Vertical changes in average concentrations (Maya-November, n;8) of several items in the Honjo area of Lake Nakaumi.

(0.5m&4m, average of 6 sites in the Honjo area; 6m, St.3; 7m, St.5)

Depth (m)	PO ₄ -P (μg/l)	ΤΡ (μg/l)	NΗ ₄ -N (μg/l)	TN (µg/l)	Chl-a (µg/l)	DO (mg/l)	Salinity (%)	TN/TP
0.5	18	65	20	427	9.7	8.1	14.1	6.6
4	31	74	31	423	7.1	5.2	15.2	5.7
6	63	85	106	395	3.2	3.4	17.2	4.6
7	85	116	161	503	3.4	0.8	18.5	4.3

い形態である無機態の TIN/PO₄-P 比では逆に St.1 及び St.6 で他の地点よりも高く St.2 で顕著に低かった. PO₄-P 濃度を見ると 8 月以降は全域で $20\sim50~\mu g/l$ 程度の濃度が残存しており,藻類に利用されずにいるもの推測された. 一方無機態窒素は 9 月には全域にわたって $88\sim133~\mu g/l$ という高い濃度で測定され,赤潮の発生要因になったものと推測されたが,他の月では 7 月の St.4 と St.6 以外では $10-30~\mu g/l$ 程度の値であった. 9 月の測定日は強風であったことと,測定日以前に多量の降雨があったことが窒素濃度が高くなった原因と考えられる. 成分的には各地点とも NH_4 -N 濃度が上昇していた.

2) 垂直的特徵

表 2 にいくつかの水質項目について垂直的な水質 変化を示す. 0.5m 及び 4m 層については本庄工区 全域の平均値, 6m 層は St.3 での値, 7m 層は排水 溝中の濃度として St.5 での値を用いた. PO₄-P, TP, NH₄-N は下層に行くにしたがって濃度が上昇して おり、排水溝中で特に高い濃度となっていた. TN 濃度は上層及び中層で変化は少なく下層では少し減 少していた. 排水溝中では濃度の増加が見られた. TN/TP 比をみると表層では 6.6 であったが, 中層で は 5.7, 底層では 4.6, 排水溝中では 4.3 と低下して おり、窒素に比べリンの増加が多い事が判明した. リン濃度の垂直変化からリンは底泥から回帰してい るものと判断された. 窒素は底層で TN 濃度が減少 しているところから底泥からの回帰とともに懸濁物 の分解によって底層での NH₄-N 濃度の上昇が見ら れたものと考えられた. Chl-a 濃度は平均すると底 層でも上層の 1/3 程度の濃度が測定されており、植 物プランクトンを含む中海の上層水が本庄工区の底 層へ密度流として流入している事が推測された. 溶 存酸素濃度は底泥直上ではほとんどの地点で貧酸素 状態であったが、底泥から 1m 程度上では 8 月を除 き酸素がかなり存在しており、6m 層でもある程度

の濃度が維持されていた.排水溝中では調査期間中は貧酸素の状態であった.塩分濃度も底層に向かって上昇していたが強い塩分躍層は認められなかった.

3) 中海の水質との比較

図 2~5 に中海表層水と本庄工区表層水 (6 地点の平均値)の栄養塩濃度, Chl-a 濃度および TN/TP比の季節変化を比較して示した. リン濃度 (図 2)は8月下旬から9月にかけて中海及び本庄工区とも高まった. また本庄工区では調査期間を通じて無機態リンが残存していた. 中海では8月下旬から10月にかけて無機態リンが残存した. 中海と本庄工区の濃度を比較すると本庄工区の方が無機態リン及び全リンとも高い傾向を示した. 特に夏期に顕著であった.

これに対して窒素(図 3)では無機態窒素濃度は 低く,7月及び9月にNH₄-N濃度の増加が本庄工

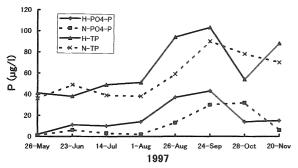


図 2 本庄工区及び中海表層水における無機リン酸及び全リン濃度の経月変化 (●) 本庄工区 PO4-P,(■)中海 PO4-P,(▲)本庄工区 TP, (x) 中海 TP.

Fig.2 Monthly changes in PO4-P and TP concentrations in the surface water of Honjo area and Lake Nakaumi. (●) Honjo area PO4-P, (■) L. Nakaumi PO4-P, (▲) Honjo area TP, (x) L. Nakaumi TP

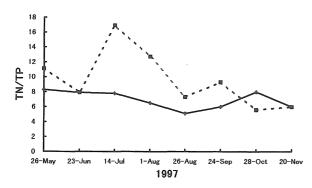


図 4 本庄工区及び中海表層水における TN/TP 比の経月変化.

実線,本庄工区;点線,中海.

Fig.4 Monthly changes in TN/TP ratio in the surface water of Honjo area and Lake Nakaumi. Solid line, Honjo area; dotted line, Lake Nakaumi.

区及び中海ともに見られたがそれ以外は低濃度を維持した。中海では7月及び9月に全窒素濃度の増加が見られたが、これは大雨による流入水の増加によって引き起こされたものと推測された。中海と本庄工区の全窒素濃度を比較すると全リンとは逆に中海の方が濃度が高くなる傾向を示した。

TN/TP 比を図4に示したが、本庄工区では調査期間を通じて変動が少なく窒素制限の状態を維持していた.一方中海では変動が激しかったが、全体としては窒素制限の様子を示していた.10 月以降は中海と本庄工区で大きな違いは見られなかった.

図5にChl-a濃度の変化を示す。本庄工区では8月下旬から9月に濃度が高くなったがそれ以外の時は10μg/Iを下回る値であった。一方中海では8月はじめ及び9月に赤潮状態となり高いChl-a濃度を示した。それ以外の月でも8月下旬を除き中海の方が本庄工区より若干高い濃度を示す傾向が見ら

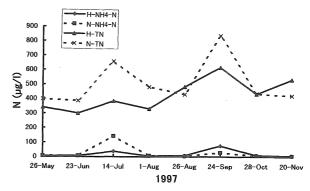


図 3 本庄工区及び中海表層水における NH4-N 及び TN 濃度の経月変化.

(●) 本庄工区 NH4-N,(■)中海 NH4-N,(▲)本庄工区 TN, (x) 中海 TN.

Fig.3 Monthly changes in NH4-N and TN concentrations in the surface water of Honjo area and Lake Nakaumi. (●) Honjo area NH4-N, (■) L. Nakaumi NH4-N, (▲) Honjo area TN, (x) L. Nakaumi TN.

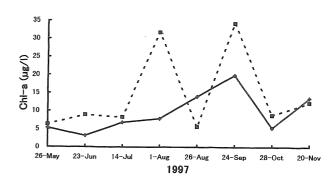


図 5 本庄工区及び中海表層水におけるクロロフィル a 濃度の経月変化.

実線,本庄工区;点線,中海.

Fig.5 Monthly changes in Chl-a concentrations in the surface water of Honjo area and Lake Nakaumi. Solid line, Honjo area; dotted line, Lake Nakaumi.

Precipitation (mm)

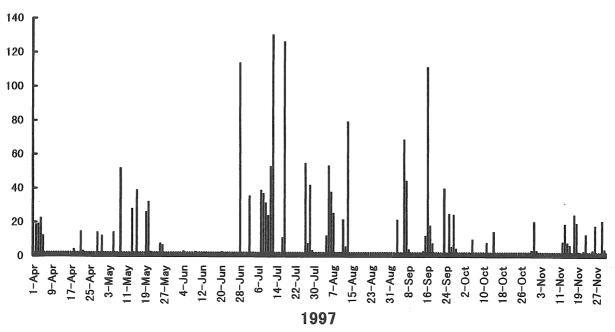


図6 松江地方における降水量(松江気象台).

Fig.6 Precipitation amount in Matsue area (Matsue meteorological station).

れた.

4) 塩分変化

1997 年はエルニーニョの影響を受けて,夏期を中心に記録的な降雨を記録した。図6に松江気象台で観測された降水量を示す。6月下旬から7月はじめにかけて多量の降雨があったことが分かる。また8月初旬9月中旬にも多量の降雨が見られた。このような多量の降雨により,6月下旬から9月にかけては流域から多量の淡水が流入し,宍道湖及び中海の塩分濃度も強い影響を受けた。

図7に中海及び本庄工区(6地点の平均値)での表層水及び底層水での塩分濃度変化を示す。中海では6月下旬から7月はじめの降雨の影響を強く受けて7月の調査時には表層の塩分濃度は5‰以下を低下し、その状態が9月まで続いた。中海湖心の平均的な塩分濃度(島根大学環境分析化学研究室、1994)を図中に示したが平均的な表層水の塩分は7月に多少低下するが他は15~20‰程度を変動していたのに対し、1997年は異常に低い塩分濃度になったことがわかる。これに対し中海の底層水の塩分濃度は多量の降雨にも関わらず変動は少なく8月下旬には濃度が増加した。中海湖心の6m層の平均的塩分濃度と比べた場合、測定地点の深さは4mであったにもかかわらず、8,10,11月には同程度の値を示した。

一方,本庄工区では中海表層水の塩分低下の影響 を受けて塩分濃度の低下が見られたが中海とは異な

って急激な濃度変化は生じなかった. また表層水と 底層水の塩分濃度は大きな違いは見られず、強い塩 分躍層は形成されなかった. このことは中海から流 入する水が表層水に限られること, また流出入口が 西部承水路に限られ水の交換が悪いことが原因と考 えられる. 中海から流入した低塩分の水は本庄工区 では表層に広がり, 風による混合を受けながら全層 に混じっていったものと推測される. また最低値も 中海表層水よりはかなり高い 10%程度の値であっ た. 10 月以降に底層水の塩分濃度上昇が表層水に 比べて速くなったが、これは塩分濃度が高くなった 中海表層水が本庄工区に流入し, 密度流となって底 層に流入したためと考えられる。図8に本庄工区各 地点での表層水と底層水中の塩分濃度の変化を示す が, 各地点とも変化の傾向としては類似しており, 強い塩分躍層の形成は認められなかった.また、10、 11 月の高塩分の水が流入してきたケースにおいて は西部承水路から遠い St.1 および 2 では塩分濃度 の増加は他の地点より遅かった.

考察

1) 本庄工区の水質特性

本庄工区の水質は流出入口が西部承水路だけであることが最も大きな要因となって支配されているものと考えられる. 西部承水路は水深が 3m 程度しか

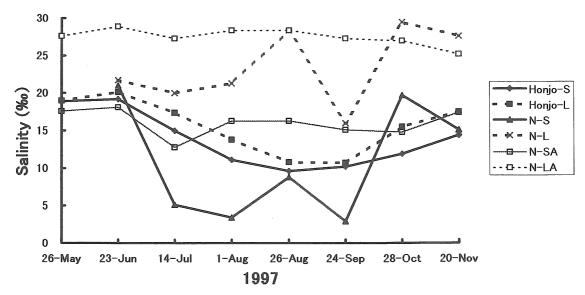


図7 本庄工区及び中海の表層水及び底層水の塩分濃度の経月変化. 実線,表層水;点線,底層水. (●)本庄工区,(■)本庄工区,(▲)中海,(x)中海,(□)中海 における平年値

Fig.7 Monthly changes in salinity concentration in the surface and bottom waters of Honjo area and Lake Nakaumi.

Solid line, surface water; dotted line, bottom water. (Honjo area, (Honjo area, (Longo area, (Lo

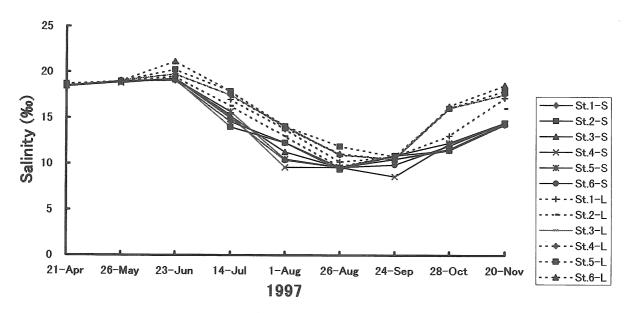


図8 本庄工区各地点における塩分濃度の経月変化. 実線,表層水;点線,底層水.

Fig.8 Monthly changes in salinity concentration at each station in the Honjo area. Solid line, surface water; dotted line, bottom water.

ないため中海の底層水の流入は見られず表層水のみが流入できる。そのため、塩分濃度の比較的均質な流入水となり、高塩分の汽水環境であるにもかかわらず塩分躍層の形成は弱く、上下混合の起きやすい湖沼環境となっている。また、このような条件は水域内の水質が均一になりやすい要因ともなっており、調査地点間での水質の違いは少なかった。また、

水質が急激に変化せず比較的ゆるかに変化した.日本には多くの汽水湖が存在するがこのような特性を持つ汽水環境はきわめて希である(田中,1992).

本庄工区内の水質は中海表層水と比べてリン濃度 は高く窒素濃度は低くなる傾向を示した. 窒素濃度 に関しては中海での高濃度値が測定されたケースは 多量の降雨の後に見られたことから流域からの多量

の流入水の影響と考えられる. このような中海から の高濃度の窒素を含む水の流入にも関わらず、本庄 工区では全窒素の濃度変化は少なく, この水域が窒 素浄化機能を持っていることが考えられる. 本庄工 区内での全窒素濃度の垂直分布を見ると底層で濃度 が低下しており、また全層を通して硝酸態窒素はほ とんど検出されなかった. このことは脱窒活性がか なり高い可能性を示唆している。清家ら(1986)は 中海で貧酸素状態での高い脱窒活性を測定してい る. 表層との水の混合が起こりやすい本庄工区では 硝化速度が速まることが予想され、それに伴って脱 窒速度も速まっている可能性が高い. 一方, リンに 関しては中海表層水より本庄工区内の方が高い値を 示した. この傾向は全リン及び無機態リンに共通し ており, 本庄工区内または流域にリンの供給源があ る可能性を示唆した. 本庄工区流域には約4,000人 の居住者がおり、そこからのリン負荷もかなりある ものと考えられる. 本庄町沖合の St.4 では他の地 点より有意に富栄養状態にあり、本庄町等からの流 入負荷の影響を受けたものと推測される. しかしな がら,流域からの負荷が本庄工区全域にわたって影 響を及ぼしているとは考えづらく、また本庄工区内 でのリンの垂直分布を見ると底層から表層に向かっ て濃度勾配が見られることから, 底泥からのリンの 回帰が大きなものと推測される. 本庄工区では強い 塩分躍層が形成されないため、底層まで酸素が供給 されている場合が多いが、底泥直上では無酸素にな っている場合が多く見られ、泥中は嫌気的になって いることが多かった (秋葉, 未発表). 底泥直上の 嫌気層が薄いことから溶出してきたリンが容易に嫌 気層より上層の湖水へ拡散し、水の混合により湖水 全体に拡散していることが考えられた(中村,1997).

2) 中海の貧酸素水塊解消のための1考察

中海では夏期を中心に広範囲にわたって底層に貧 酸素水塊が形成され、水質や生息する生物に大きな 影響を及ぼしている。 貧酸素水塊が形成される水域 では貝類をはじめとする底生生物は生存を続けるこ とができず (農業土木学会, 1983), 漁業にも大き な影響を与えている。中海における貧酸素水塊は強 い塩分躍層が形成されることによって引き起こされ ている (農業土木学会, 1983). 強い塩分躍層は境 水道を通して流入する日本海の海水が塩水くさびと なって底層を逆流することによって引き起こされて いる. 漂流ブイを使った現地調査によれば底層水は 上流方向へ継続的に流れている (奥田, 1997). 海 水中に含まれていた溶存酸素は湖心程度まで流れる 間に消費されてしまいそれより上流域では貧酸素状 態となっている(農業土木学会,1983). 奥田らの 観測によれば, 中浦水門から流入した海水が大橋川 河口まで達すのに最速でも 10 日程度かかるとされ ている.このような底層水と上層水の流れは本庄工区の堤防と中浦水門の完成によってもたらされた人為的なものである.工事以前の流れとしては,現在の本庄工区を通って水が流れており,海水と淡水の混合の様子は緩混合の状態であったと報告されている.現在のような流れの状況を続ける限り中海での貧酸素水塊の形成は必然であり,これを防止することは不可能に近い.

中海の貧酸素水塊を解消するためには、現在の中海と本庄工区の立場を変えて、塩分調節をした本庄工区の上層水を中海に流入させることにより、強い塩分躍層の形成を防止することが最善の方法と考えられる。そのためには以下のようなことを行う必要がある。

①中浦水門の2段ローラーゲートの下段を締め切り,境水道からの海水が中海底層に流入しないようにする。

②森山堤防に水門を構築し、境水道からの海水を本庄工区の方へ流入させる.

中浦水門の下段を締め切ることによって,現在密度流となって中海に流入している海水を止めることができる.この状態では淡水化が進行し,宍道湖等への影響が大きくなるので,海水は本庄工区へ流入させ,本庄工区上層水が現在の中海表層水と同程度の塩分濃度になるよう調節する.本庄工区上層水は西部承水路を通して中海に流入させる.このような操作を行うことによって,工事によって人為的に作られた塩水くさびの流入を阻止し,従前の水の流れに近づけることができる.

中海では大橋川からの流れと西部承水路からの流れが順流となるため水の混合が起きやすくなると予測される。また、密度差も少なくなることから強い塩分躍層の形成は見られなくなり、風によって上下混合が引き起こされ底層水まで酸素の供給が行われると予想される。中海上層水はその大部分は現在と同様に中浦水門を通って流出すると考えられる。現在、豊富な酸素の供給を受けて水質が改善されている中浦水門から米子空港沖合にかけての水質も、上下混合が起き底層に酸素が供給される状態になれば悪化する可能性は低いと予想される。

本庄工区の水質は豊富な海水の流入によって全域に流れが生じ、また滞留時間が短くなることから、中海とは異なって貧酸素水塊が生ずる可能性は少なく、漁場としての価値が高まることが予測される。さらに、水門を2カ所に増やすことにより、洪水時の通水量が増し、防災上も有効であると考える。

中浦水門の操作に関してはまだ何らの検討も行われておらず、操作規定が定まっていないようである. 過去の歴史的経過はいろいろあることが推察されるが、中海・宍道湖水系の環境改善手法を総合的に考 えなければいけない状況にあるところから, 柔軟な 発想による取り組みが期待される.

まとめ

中海本庄工区の水質特性を調べるため 1997 年 5 月から 11 月にかけて調査を行った.調査は本庄工 区内 6 地点,西部承水路 1 地点,中海 1 地点で行った.

本庄工区の水質は中海上層水の影響を強く受けるが、交換流量が限られるため水質変化速度は遅く、強い塩分躍層の形成は見られなかった。このため、上下混合の起きやすい湖沼環境となっており、8月を除いて底層水においても貧酸素化は見られなかった。また、このような条件は水域内の水質が均一になりやすい要因ともなっており、調査地点間での水質の違いは少なかった。

本庄工区内の水質は中海表層水と比べてリン濃度は高く窒素濃度は低くなる傾向を示した。中海からの高濃度の窒素を含む水の流入にも関わらず、本庄工区では全窒素の濃度変化は少なく、この水域が窒素浄化機能を持っていることが考えられた。一方、リンに関しては中海上層水より本庄工区内の方が高い値を示した。この傾向は全リン及び無機態リンに共通していた。本庄工区内でのリンの垂直分布を見ると底層から表層に向かって濃度勾配が見られた。このことから底泥からのリンの回帰が大きなものと推測された。

轺態

本調査の一部は本庄町の三代祐司氏所有の船を使用して行った.記して感謝いたします.また,本調査にあたっては島根大学生態環境工学講座,三浦真吾氏および福井真司氏をはじめとする多くの方の協力を得た.栄養塩の分析には国立環境研究所霞ヶ浦臨湖実験施設の機器を使用させていただいた.記して感謝いたします.

引用文献

- Healey, F. P. and L. L. Hendzel (1980): Physiological indicators of nutrients deficiency in lake phytoplankton. Can. J. *Fish. Aquat. Sci.*, 37: 442-453.
- 近藤邦男・清家泰・橋谷博 (1994): 汽水湖中海に おける栄養塩類及び植物プランクトンの鉛直分布 を支配する塩分躍層の役割. 日本陸水学会誌, 55:47-60.
- 中村由行(1997):境界層における貧酸素化とリンの溶出、沿岸海洋研究、35:15-25.
- 日本海洋学会海洋環境問題委員会 (1996): 閉鎖性 水域の環境影響評価に関する見解-中海本庄工区 干拓事業の場合-. 海の研究, 5:1-12.
- 農業土木学会宍道湖中海淡水化に伴う水質管理及び 生態系変化に関する研究委員会(1983):宍道湖 中海淡水化に関連する水理水質及び生態の挙動に ついて中間報告. 642 p.
- 大槻晃,岩熊敏夫,河合崇欣,相崎守弘(1984): 霞ヶ浦における富栄養化現象の傾向.国立公害研 究所研究報告, R-51,1-10.
- 奥田節夫(1997): 汽水湖における水塊の移動と混合過程. 沿岸海洋研究, 35:5-13.
- 清家泰,近藤邦男,伊達善夫,石田祐三郎(1986): 汽水湖中海のおける窒素代謝Ⅲ-低酸素濃度下に おける消化・脱窒.日本陸水学雑誌,47:133-141. 島根大学環境分析化学研究室(1994):宍道湖・中 海水質月報-自主調査彙報-.321 p.
- 田中正明(1992):日本湖沼誌,名古屋大学出版会,530 p.
- 徳岡隆夫(1995):中海干拓と水環境-宍道湖・中海水質予測事業中間報告書-(本庄工区水質予測)についての検討. 汽水域研究センター特別報告書第2号, 52 p.