宍道湖堆積層中のシジミ貝殻層の発見とその意義

徳岡隆夫¹)・中村唯史¹)・三瓶良和¹)

A discovery of a Corbicula bed in the Holocene sediments of Lake Shinji and its significance

Takao Tokuoka¹, Tadashi Nakamura¹ and Yoshikazu Sampei¹

Abstract: An interesting occurrence of large fossilised corbiculas (Corbicula japonica, which lives in brackish water), coexisting with living specimens, has been known by fishermen at a transitional area between shelf and slope in the northern central part of Lake Shinji at a depth of about 3 m. The possibility of the occurence being an ancient shell mound is low, as no man-made remains have been dredged in the present area. The fossilified corbicula give a ¹⁴C age of 1926+124-122 yrs B.P. This age suggests that the corbiculas flourished to form the corbicula bed at the late Holocene regression stage, as Lake Shinji is known changed from a marine embayment in the Jomon Age to a brackish coastal lagoon in the Yayoi Age. Echo-sounding surveys in the northern central part of Lake Shinji show that a reflector exists less than 1.5 metre below the bottom and this is traceable to the subaqueous exposure of the corbicula bed. The reflector could be penetrated by a newly-devised gravity corer, and it was found that the reflector definitely consists of corbiculas. It is inferred that Corbicula japonica flourished in great numbers in accordance with a drastic environmental change in Lake Shinji, from the embayment of Jomon Age to the brackish lake of Yayoi age.

Keywords : Lake Shinji, coastal lagoon, *Corbicula japonica*, ¹⁴C age, echo-sounding survey

はじめに

宍道湖はヤマトシジミの生産量日本一を誇る汽水 湖である.早朝の宍道湖で行われるシジミ漁は山陰 を代表する風物詩のひとつである.その漁を行う際 に生きたシジミに混じってひとまわり大型でキチン 質の膜が完全に取り除かれ,白色ないしやや着色さ れたヤマトシジミ殻(以下,シジミ殻)が採れる場 所が宍道湖の北岸に近い湖棚上にあることがシジミ 漁師の間では以前から知れらていた.その殻は現在 の宍道湖で獲れるシジミより明らかに大きく,限ら

れた範囲でしか採れないことから、あるいは水中に 没した貝塚ではないかとも想像されていた. そこ で、大型のシジミ殻が採れる地点でエクマンバージ 採泥器を用いて表層堆積物を採取して産状を観察し た結果、自然貝層であると判断された、また、シジ ミ殻の採れる場所から沖合に向かって音波探査を 行ったところ、湖底下堆積層中に1つの反射面が認 められ、湖棚上のシジミ殻の分布域に連続すること が予想された.そこで,この層準をねらって柱状採 泥を行ったところ、それがシジミ殻の密集層である ことが確認された.¹⁴C年代測定によるとこのシジ ミ殻は1,926 yrsB.P ということになり、 宍道湖の生 い立ちからみると縄文海進で宍道湖・中海低地帯に 入り込んだ海が汽水化していく時期にあたってい て、その時期にヤマトシジミが大発生したものと思 われる. このような興味深いデータが得られたこと から、湖棚に露出するシジミ殻と堆積層中のシジミ

¹⁾島根大学総合理工学部地球資源環境学教室

Department of Geoscience, Faculty of Science & Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690, Japan

図1. 大型のシジミが採れる地点(二重丸)と音波探査測線.

Fig. 1. Map showing approximate area where fossilised corbiculas can be dredged by fisherman's basket (double circles of A) and the echo-sounding line (A-B).

- 図2. 松江市岡垣町沖の宍道湖湖底で採れるシジミ殻 (左)と現生のシジミ(右).現生のシジミは標準 的な大きさのもの.
- Fig. 2. Large fossilised corbiculas recovered from the bottom surface of Lake Shinji (left) and recent corbiculas of standard size (right).

層についてこれまでに得られた資料を示し,考察を 加えることにする.

調査地点とシジミ殻の産状

宍道湖の湖底は湖岸から水深2~3 m までなだらか な湖棚が続き、その先で傾斜がやや急になり、水深 4.5~5.5 m の平坦な湖底平原へ移る.現生のシジミ にともなって大型のシジミ殻が採れるのは宍道湖北 部の松江市岡垣町沖約200m(図1)の、南北約100 m, 東西約200 m の範囲で、水深2.5 m の湖棚縁辺部で ある. 宍道湖漁業組合の原 俊雄氏によると, この 場所は以前からよく知られていて, かつてはより狭 い範囲に分布していたものがシジミ漁によって湖底 をかき混ぜるうちに分布がやや広がったとのことで ある. 底質は砂質泥である. 大型のシジミ殻は生息 しているシジミに混じって採れ, 貝殻表面のキチン 質の表膜はほとんど剥離し, 殻が半ば溶けているも のもあり, 現在のシジミの死貝とは明瞭に区別でき る. このようなシジミ殻は殻長1 cm 程度のものか ら殻長4 cm を超える大型のものまで含まれ, 壊れ ているものも含まれる. なお, 現在宍道湖で獲れる シジミでは殻長3 cm を超えるものは極めてまれで ある (図2).

大型のシジミ殻が採れるのが狭い範囲に限られる ため、水中に没した貝塚の可能性もあることから、 貝殻以外に伴われるものの有無について注意して観 察した.シジミ漁の場合は幅11 mm の格子状のジョ レンによって行われるので、格子の幅より小さなも のは採取の段階で取り除かれ、現生のシジミととも にシジミ殻など一定サイズ以上のものが船に積まれ て持ち帰られて、現生のシジミが選別されることに なる.この際、もし他の異物があれば同様にして持 ち帰られ, 選別場で捨てられるはずである.この, 捨て場での観察では土器,石器等は全く発見されな かった。また、この付近でシジミ漁をしたことのあ る漁師に聞いても、人工物が一緒に採れた経験を持 つものはなかった。シジミ殻については上述のよう に殻長1 cm 程度のものも含まれており、採取の対 象となる一定サイズ以上のもののみで構成されてい

図3. 音波探査記録(1996年9月)とその解釈. シジミが採れる地点から時速約6kmで湖心方向に航行して得られた記録. Fig. 3. Echo-sounding record and its interpretation of line A-B taken in September, 1996.

るわけではない.以上のことから,貝塚である可能 性はほとんどないといえる.

音波探 査

千本電機社製底質探査装置 SH 20型を用いて調査 地点の音波探査を1994年7月,1996年9月,1996年10 月の3回にわたって行った.図1に示した A-B 測線 で行い,位置決定は日本無線社製 GPS 測位機を用 いた.その代表的な記録と解析を図3,図4に示す. 図3に示した記録は貝殻が採取される範囲の中心付 近から湖心に向かって時速約6 km で船を走らせて 得られたもので,図4に示した記録は貝殻が採取さ れる範囲の西縁付近から湖心に向かって時速約2 km で船を走らせて得られたものである. 両測線は 間隔は約100 m で平行するものである.

湖岸から緩やかな傾斜の湖棚が続き,水深2.5m 付近で傾斜がやや急になり,水深4.5~5.5mの平坦 な湖底平原へ移る.シジミ殻が採れるのは傾斜の変 換点で,この地点の湖底表層はシジミ漁による撹乱 を受けて凹凸が形成されている.図3で湖底堆積層 の下に認められる強い反射面は新第三系の基盤岩で 湖心部へ向かって深くなる.この様な傾向は後藤ほ か(1989)の宍道湖全域の音波探査記録でも認められ ている.図4では湖底堆積層と新第三系の間に低角 度の斜交層理様の構造を持つ地層が認められ、上面 が開削されていることと,反射強度から更新統と判 断される.シジミ殻が採れる範囲を越えて,湖棚か

図4. 音波探査記録(1996年10月)とその解釈. シジミが採れる地点から時速約2kmで湖心方向に航行して得られた記録. Fig. 4. Echo-sounding record and its interpretation of line A-B taken in October, 1996.

ら湖底平原へ移るあたりから先に湖底堆積層中に明 瞭な反射面が認められる.この反射面は湖底表層か ら1.5 m 未満の深さにあり、シジミ殻が採れる地点 では湖底表層に連続する.反射面は水深5 m の位置 までは連続するが、これより深いところには認めら れない.図4でみると反射面は2枚認められ、上の反 射面がシジミ殻が採れる範囲の表層に連続し、下の 反射面は堆積層中で途切れる.

- 図5. 柱状コアの記載. コア採取地点は図4参照. 貝殻層 は1.0 m の深度にあるが, 採泥時の短縮があり, 深度1.2 m の反射層に対応する.
- Fig. 5. Description of the core. Locality is shown in Fig. 4. Because of core-shortening, the shell bed horizon 1.0 m from the top of the core corresponds with the echo-sounding reflector about 1.2 m below the bottom.

柱 状 採 泥

音波探査記録で湖底から1.2 m の深さに反射面が 認められる地点(第4図中に示す)で柱状コア試料 を採取した.コア試料は工業技術院地質調査所で新 たに試作された採泥器を用いて採取した*.この採 泥器は内径7.5 cmのアルミチューブに水中で20 kg の錘を20~30 cmの高さから反復落下させて堆積層 に打ち込み、コア試料を採取するもので、砂質堆積 物でも採取できるように工夫されている.今回は長 さ2 mのアルミチューブを用いた.堆積層にアルミ チューブを2 m 打ち込み、長さ1.3 m のコアを採取 することができた.打ち込み量に比ベコアが短い が,打ち込む際の圧力によってチューブ内でコアが 圧縮されていると判断される.

採取コアの柱状図を図5に、軟X線写真を図6に 示す.採取コアは表層から深さ8 cm(コア最上部か らの実長.以下同じ)までは軟弱で含水の高い黒色 泥からなり、生息しているヤマトシジミを含む.深 さ8 cm から100 cm まではやや締まりがよく、細粒 砂を含んだ青灰色の砂質泥からなり、深さ47~58 cm には細粒砂からなるラミナがみられる.深さ99~104 cm はヤマトシジミの貝殻が密集する貝殻層であ る.貝殻は離弁で層理面に対して平行するものが多 い(図6,7).シジミは殻長2~4 cm で破片も含まれ る.深さ104~130 cm はやや締まりのよい青灰色の 泥からなる.上記に示した生息性のものと貝殻層以 外の層準では貝殻は含まれない.

シジミ殻の"C 年代

湖棚に露出するシジミ殻層をねらって,エクマン バージ式採泥器を用いてシジミ殻を採取した.それ らの片弁3個を島根大学汽水域研究センターで¹⁴C 年代測定を行った.分析に供した試料は希塩酸で表 面約10%を除いた後,ベンゼン液体シンチレーショ ン法により計測し,1,926+124–122 yrsB.P.の値が 得られた.ただし, δ^{13} C値による補正は行ってい ない.この年代は弥生時代に相当する.

考察

大型シジミ殻と貝殻層の形成

宍道湖の限られた狭い範囲で、生きたシジミに混じって大型のシジミ殻が採れる.この付近では湖底 堆積層中に認められる反射面は湖底表層のシジミ殻の分布地点にまで連続していることが音波探査によって認められ、柱状採泥で反射面はシジミ貝殻層であることが明らかになった.このことから、シジ ミ殻が採れる地点では湖底堆積層中のシジミ貝殻層が現湖底直下に存在し、シジミ漁で湖底が削られることによってそれが露出したものと考えられる.

ヤマトシジミが生息する汽水環境は一般にカルシ ウムイオンや重炭酸イオンに不飽和であるため、炭 酸カルシウムからなる貝殻は溶けてしまい遺体とし て残りにくい。今回発見されたシジミ貝殻層は貝殻 が密集しているために間隙水がカルシウムイオン、 重炭酸イオンに飽和され、貝殻が溶けずに残ったと 考えられる。同様の産状を示す例として茨城県霞ヶ 浦の湖底堆積層中のヤマトシジミの貝殻層がある

^{*}この採泥器は地質調査所の井内美郎氏によって新たに 製作されたものである.それまでの採泥器では泥層中に 薄い砂層などが挟まれているとそれを貫いてコアを採る ことは困難であった.

図6. 柱状コアの軟 X 線写真. Fig. 6. Soft-X ray photographs of the core samples.

(斎藤ほか, 1990).

低鹹汽水に生息し、生息環境に他に競合する貝が ほとんどないヤマトシジミは水域の環境が変化した ときにしばしば大発生する.例えば、1987年、台風 によって八郎潟干拓地の堤防が決壊した際に淡水化 された調整池に海水が流入し、鹹度が上昇したため にヤマトシジミが大発生した.また、1994年、渇水 で鹹度が上昇した鳥取県東郷池でも同様にヤマトシ ジミが大発生したことが報道されている.このよう な大発生の後それらが死滅し、長時間湖底表面で湖 水にさらされないうちに埋積されることでシジミ貝 殻層が形成される.今回のシジミ貝殻層もこのよう にして形成されたものであろう.

大発生以外にシジミ貝殻層が形成される要因とし て,波浪による集積,何らかのイベントによる大量 死が考えられる.シジミ貝殻層を構成する貝が離弁 で,層理面に平行して産するものが多いことは,水 流による運搬を受けていることを示す.そこで,波 浪によって集積された可能性について検討する.現 在の宍道湖で観察すると,湖岸の浜には汀線に沿っ て帯状にシジミ殻が集積している.また,汀線に近 い湖底にもある程度集積しているが,浜に打ち寄せ られたものに比べて量が少なく,その範囲も汀線か ら数 m に限られる.堆積層中のシジミ貝殻層は音 波探査記録でみると湖岸に直交する方向に少なくと も250 m 連続しており,広く面的に分布していると 考えられることから,波浪で集積されたものとは考 えにくい.また,タービダイトや火山灰による急速 な埋積で貝が大量死することについては,そのよう なイベントを示す堆積物が貝殻層の上位に認められ ないことと,合弁で生息状態の貝が含まれないこと から否定できる.

音波探査記録でみるとシジミ貝殻層の分布は現在 の湖面からの深さ5m以浅に限られる.これは貝殻 層形成時のシジミの生息範囲を反映したものと考え られる.現在の宍道湖ではシジミは水深2~3m以浅 の湖棚上にほとんどが生息し,これより深くなると 数が急減し,4m以深には生息していない.また, シジミ貝殻層の形成時にはその分布は当時の汀線付 近まで連続していたと推定されるが,貝殻層が堆積 物で覆われなかった部分については貝殻が溶けて失 われたと考えられる.したがって,貝殻層が湖底表

図7. 半割したコア中のシジミ殻の産状. Fig. 7. Occurrence of the shell bed in the core.

層に露出している地点が当時の汀線位置を示すもの ではないと考えられる.

貝殻層と宍道湖の古環境変遷との関係

次に宍道湖の環境変遷とシジミ貝殻層の関係について述べる. 宍道湖の環境は完新世を通じて, 閉鎖的な内湾(完新世初頭から8,000~7,000年前頃) — 外海的要素が強い内湾(8,000~7,000年前頃から6,000年前頃) — 閉鎖的な内湾(6,000年前頃から2,000年前頃) — 低鹹度の汽水湖(2,000年前以降)と変化してきた(中村・徳岡, 1997).シジミ殻から得られた1926 yrsB.P±120の¹⁴C年代は宍道湖が低鹹度の 汽水湖に変化した時期に当たる. 茨城県霞ヶ浦の例でもヤマトシジミの貝殻層は内湾的環境からより閉鎖的な低鹹汽水環境に変化する層準に2枚挟まれている(井内・斎藤, 1993).

宍道湖は縄文海進期には西に開いた湾だったが, その後, 斐伊川・神戸川三角州の前進によって遅く とも弥生時代(2300~1700年前)までに西側は閉ざ された(中村ほか, 1996).西側が閉ざされると海 水の流入口は東側の中海に通じる水道(大橋川)の みになり、鹹度が低下したと考えられる.また、弥 生時代から古墳時代にかけて日本列島の各地で海面 の小低下が起こったことが報告されている(太田ほ か、1990). 宍道湖周辺地域では古墳時代に海面が 若干低下していたと考えられ(中村ほか、1996), シジミ貝殻層は海面低下による鹹度の低下で大発生 する条件ができることによって形成されたものと推 定される.

謝 辞

宍道湖のシジミ貝殻層の存在は宍道湖漁業協同組 合の原 俊雄氏らと宍道湖の環境保全などの問題に ついて日頃から話し合う中でちょっとしたきっかけ から知ることになったものである.1994年7月に同 氏に現地を案内していただき,その後,計3回にわ たって現地調査に協力していただいた.地質調査所 の井内美郎氏には新しく開発した柱状採泥器を利用 させていただき,また多くの御教示を得た.ここに 記してお礼申し上げます.

文 献

- 後藤慎二・中海・宍道湖自然史研究会,1989.中海・ 宍道湖の自然史研究-その9.音響探査による中 海・宍道湖の第四系(中海層・安来層・弓ヶ浜 層)基底面高度分布.島根大学地質学研究報告, 8,27-31.
- 井内美郎・斎藤文紀, 1993:海跡湖の地史3「霞ヶ 浦」. URBAN KUBOTA, 32, 56-63.
- 中村唯史・徳岡隆夫, 1997: 宍道湖ボーリング SB 1から発見されたアカホヤ火山灰と完新世古地理 変遷についての再検討. 島根大学地質学研究報 告, 15, 35-40.
- 中村唯史・徳岡隆夫・大西郁夫・三瓶良和・高安克 己・竹広文明・会下和宏・西尾克己・渡辺正巳, 1996:島根県東部の完新世環境変遷と低湿地遺 跡. LAGUNA 汽水域研究, 3, 9–11.
- 太田陽子・海津正倫・松島義章, 1990:日本におけ る完新世相対的海面変化とそれに関する問題— 1980~1988における研究の展望—.第四紀研究, 29, 31-48.
- 斎藤文紀・井内美郎・横田節哉,1990:霞ヶ浦の地 史:海水準変動に影響された沿岸湖沼環境変遷 史.地質学論集,36,103-118.