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Abstract

A non-autonomous nonlinear system with a time-variational forcing term is consid-
ered. For such a system, the global attraction of the origin is discussed, whose result is
suggestive to an ecological problem as well because the system is reduced to a Lotka-
Volterra predator-prey model with prey receiving an environmental time-variation by an
appropriate transformation. A numerical simulation is also shown to suggest a new math-
ematical insight beyond our intuition.

Key words: Global attraction; Predator-prey systems; Weakly integrally positive;
Time-variation
2010 MSC:34D05; 34D23; 37B25; 92D25

1. Introduction

Consider the nonlinear system

x′ = c(1− e−y),

y′ = − a(1− e−x),
(1.1)

where the prime denotesd/dt and parametersa andc are assumed to be positive. This
system has a single equilibrium point(0, 0), which is a center, i.e., a “neutrally stable”
equilibrium surrounded by a family of periodic orbits whose amplitudes depend on the
initial data since a conserved quantityV (x, y) is given as

V (x, y) = a(e−x + x− 1) + c(e−y + y − 1).

The importance of these properties is the fact that system (1.1) has relevance to a
biological problem. By the transformationx = − log(bP/a) and y = − log(dN/c)
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for positive constantsb and d, system (1.1) is reduced to the classical Lotka-Volterra
model which is well-known as the origin of theoretical study on predator-prey systems in
mathematical ecology:

N ′ = (a− bP )N,

P ′ = (− c+ dN)P.
(LV )

HereN andP represent the prey and predator population densities, respectively. Corre-
spondingly to the properties of system (1.1) mentioned above, system (LV ) has a single
interior equilibrium point(c/d, a/b), which is also a center surrounded by a family of
periodic orbits whose amplitudes depend on the initial population sizes. This implies that
the population state once changed by an external factor cannot return to the original one.
Besides, the slightest change to the structure of system (LV ) typically results in qualita-
tively different behavior (see [3]). This structural instability is often criticized because it
is desirable that models describing periodical population behavior observed in nature in-
volve robust properties such that population states strayed away from the orbit will return
to the original orbit as time passes. In fact, predator-prey systems in nature apparently
persist stably (in spite of being affected by external factors). This gap suggests that our
insight is not enough to understand mechanisms acting in nature which stabilize popula-
tion dynamics. To resolve the gap, theoreticians and experimentalists have made a long
list of such processes (see, for example, [1, 4, 9, 10, 11]).

In connection with such an ecological aspect, it is significant to consider what addi-
tional factors can stabilize the origin(0, 0) for system (1.1). For example, Sugieet al. [17]
have proved that the origin can be globally stabilized by adding−ξ(t)(1 − e−y) with a
nonnegative functionξ(t) to the right-hand side of the second equation of (1.1) as follows:

x′ = c(1− e−y),

y′ = − a(1− e−x)− ξ(t)(1− e−y).
(1.2)

In particular, mathematically surprising thing is that the global stabilization was shown to
be realized even by nonnegative functionsξ(t) which converge to0, despite the fact that
the limiting system of (1.2) is system (1.1). Special cases of these results also contribute
to the above-mentioned ecological problem of stabilizing system (LV ).

In this paper, we develop our considerations into the following system with a forcing
termp(t):

x′ = c(1− e−y),

y′ = − a(1− e−x)− ξ(t)(1− e−y) + p(t),
(E)

wherea, c andξ(t) are the same as the ones given above andp(t) is a continuous function
of t. In the next section, we present our results and prove them, where the global attraction
of the origin can be realized by using a similar method of [17] under the assumption that
the forcing termp(t) is absolutely integrable. In Section 3, we discuss a nonautonomous
Lotka-Volterra predator-prey model which is equivalent to system (E) and supply a new
aspect of the above-mentioned biological problem. Many studies have been made on
nonautonomous Lotka-Volterra models. For example, see [2]. However, there is little
research using the concept of the weak integral positivity (see Section 2 for the definition).
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2. Mathematical results and proofs

The purpose of this section is to examine the asymptotic behaviour of all solutions of
(E). To begin with, we show that all solution of (E) are bounded. Next, we give sufficient
conditions for all solution of (E) to converge to the origin(0, 0) as timet increases.

Theorem 2.1. If ξ(t) is nonnegative fort ≥ 0 andp(t) is absolutely integrable on[0,∞),
then all solutions of(E) are uniformly bounded.

Proof. Define
V (x, y) = af(x) + cf(y),

wheref(z) = e−z + z − 1 for z ∈ R. It is clear that

f(z) ≥

{
z2/4 if 0 ≤ |z| ≤ 2

|z| − 1 if |z| > 2.

DifferentiateV (x, y) along any solution of (E) to obtain

V̇(E)(t, x, y) = −c ξ(t)
(
1− e−y

)2
+ c p(t)

(
1− e−y

)
on [0,∞)× R2. Let

P (t) =

∫ t

0

|p(s)|ds.

Next, defineW (t, x, y) = e−2P (t)V (x, y) on [0,∞)× R2, so that

Ẇ(E)(t, x, y) = − 2|p(t)|e−2P (t)V (x, y) + e−2P (t)V̇(E)(t, x, y)

≤ − 2c|p(t)|e−2P (t)f(y)− c ξ(t)e−2P (t)
(
1− e−y

)2
+ c p(t)e−2P (t)

(
1− e−y

)
≤ − c|p(t)|e−2P (t)

(
2f(y)−

∣∣1− e−y
∣∣)

Taking into account that

2f(y)−
∣∣1− e−y

∣∣ = 2
(
e−y + y − 1

)
−
∣∣1− e−y

∣∣ ≥ −1

2

for y ∈ R, we obtain
Ẇ(E)(t, x, y) ≤

c

2
|p(t)|e−2P (t)

Let χ(t) = c|p(t)|e−2P (t)/2 and take

U(t, x, y) = W (t, x, y) +

∫ ∞

t

χ(s)ds

on [0,∞)× R2, so that

U̇(E)(t, x, y) = Ẇ(E)(t, x, y)− χ(t) ≤ 0.
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Sincep(t) is absolutely integrable on[0,∞), we can find a positive numberM such that
P (t) < M for t ≥ 0. Hence, we see that

U(t, x, y) ≥ W (t, x, y) ≥ e−2MV (x, y) = e−2M
(
af(x) + cf(y)

)
and

U(t, x, y) = W (t, x, y) +
c

2

∫ ∞

t

|p(s)|e−2P (s)ds ≤ W (t, x, y) +
c

2

∫ ∞

0

|p(s)|ds

≤ V (x, y) +
c

2
M = af(x) + cf(y) +

c

2
M

on [0,∞)× R2. To sum up,

(i) U(t, x, y) is not less than a continuous, strictly increasing and divergent function
with respect to|x|+ |y|;

(ii) U(t, x, y) is not greater than another continuous, strictly increasing function with
respect to|x|+ |y|;

(iii) U̇(E)(t, x, y) is nonpositive.

Hence, we conclude that all solutions of (E) are uniformly bounded by using a Lyapunov-
type theorem due to Yoshizawa [18] (refer also to Theorem 10.2 in [19, p. 38]). □

Remark 2.1. In Theorem 2.1, ifp(t) is nonnegative fort ≥ 0, then we can show that all
solutions of (E) are equi-bounded without assuming the absolute integrability ofp(t). As
to the difference between the terms ‘uniformly bounded’ and ‘equi-bounded’, refer the
books [8, 12, 19, 20] for example.

Let us leave the boundedness of solutions of (E) and turn to the second subject; that is,
the attraction of all solutions of (E). To state our result concerning the second topic, we
define a family of functions. A nonnegative functionϕ is calledweakly integrally positive
if ∫

I

ϕ(t)dt = ∞

for every setI =
∞∪
n=1

[τn, σn] such thatτn + δ < σn < τn+1 ≤ σn + ∆ for someδ > 0

and∆ > 0. We can find the concept of the weak integral positivity in the papers [5, 6, 7,
13, 14, 16]. Even some of nonnegative and decaying functions are included in the family
of weakly integrally positive functions. For example,1/(1 + t) and sin2 t/(1 + t) are
weakly integrally positive (for the proof, see Proposition 2.1 in [15]). Any nonnegative
periodic function is also weakly integrally positive. Ifϕ is weakly integrally positive, then
it naturally follows that

lim
t→∞

∫ t

ϕ(s)ds = ∞.

We are now ready to exhibit our second result.

4



Theorem 2.2. In addition to the assumptions in Theorem2.1, if ξ(t) is bounded and
weakly integrally positive, then all solutions of(E) tend to the origin(0, 0) ast → ∞.

Before proving Theorem 2.2, it is helpful to describe the properties of functionsf(z)
and

g(z)
def
=

d

dz
f(z) = 1− e−z

for z ∈ R. Sincef(z) is increasing forz ≥ 0 and decreasing forz ≤ 0, there exists the

inverse functionf̂−1(w) of w = f̂(z)
def
= f(z)sgnz. Needless to say,̂f−1(w) is increasing

for w ∈ R andf̂−1(0) = 0. It is clear thatf(−z) ≥ f(z) for z ≥ 0, with equality if and
only if z = 0. From this inequality it follows that

0 ≤ f(z) ≤ f(−α) for |z| ≤ α (2.1)

with α positive and

0 < −f̂−1(−w) < f̂−1(w) for w > 0.

It is also clear thatg(z) is increasing forz ∈ R with g(0) = 0, limz→∞ g(z) = 1,
limz→−∞ g(z) = −∞ and the inequality−g(−z) ≥ g(z) holds forz ≥ 0, with equality
if and only if z = 0. Hence, it turns out thatg(z) has the following properties:

g2(z) ≥ g2(α) > 0 for |z| ≥ α (2.2)

and
|g(z)| ≤ |g(−α)| for |z| ≤ α (2.3)

with α positive.

Proof of Theorem 2.2. Let (x(t), y(t)) be any solution of (E) with the initial timet0 ≥ 0.
It follows from Theorem 2.1 that there exists aβ > 0 such that

|x(t)|+ |y(t)| < β for t ≥ t0. (2.4)

Let
v(t) = V (x(t), y(t)) = af(x(t)) + cf(y(t)). (2.5)

Then, by (2.3) and (2.4) we have

v′(t) = −c ξ(t)g2(y(t)) + c p(t)g(y(t)) ≤ c|p(t)||g(y(t))| ≤ c|g(−β)||p(t)| (2.6)

for t ≥ t0. For the sake of brevity, we write

v′+(t) = max
{
0, v′(t)

}
and v′−(t) = max

{
0,−v′(t)

}
.

Note thatv′(t) = v′+(t) − v′−(t) and|v′(t)| = v′+(t) + v′−(t). Sincec |g(−β)||p(t)| ≥ 0
for t ≥ 0, we get

v′+(t) ≤ c|g(−β)||p(t)| for t ≥ t0.
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Integrating both sides fromt0 to∞, we obtain∫ ∞

t0

v′+(t)dt ≤ c|g(−β)|
∫ ∞

t0

|p(t)|dt < ∞.

On the other hand, we have∫ ∞

t0

v′−(t)dt = lim
t→∞

[∫ t

t0

v′+(s)ds−
∫ t

t0

v′(s)ds

]
≤

∫ ∞

t0

v′+(t)dt+ v(t0)− lim inf
t→∞

v(t).

Sincev(t) ≥ 0 for t ≥ t0, we see that∫ ∞

t0

v′−(t)dt ≤
∫ ∞

t0

v′+(t)dt+ v(t0) < ∞.

We therefore conclude that∫ ∞

t0

|v′(t)|dt =
∫ ∞

t0

v′+(t)dt+

∫ ∞

t0

v′−(t)dt < ∞,

namely,v′(t) is absolutely integrable. From this fact it follows thatv(t) has a nonnegative
limit v0.

If v0 = 0, then from (2.5) we see that bothx(t) andy(t) converge to zero ast → ∞,
and therefore, the solution(x(t), y(t)) of (E) tends to(0, 0) as timet increases. This
completes the proof. Thus, we have only to consider the case in whichv0 > 0. To tell the
truth, this case does not happen. We will show this fact hereafter.

Since|y(t)| is bounded, there exist the lower limit and the upper limit of|y(t)|. First,
we shall show that the lower limit of|y(t)| is zero, and we shall then show that the upper
limit of |y(t)| is also zero.

Suppose thatlim inft→∞ |y(t)| > 0. Then, we can find aγ > 0 and aT1 ≥ t0
satisfying

|y(t)| > γ for t ≥ T1.

From (2.2), we see that
g2(y(t)) ≥ g2(γ) for t ≥ T1,

and therefore, by (2.3) and (2.4) again,

v′(t) = −c ξ(t)g2(y(t)) + c p(t)g(y(t)) ≤ −cg2(γ)ξ(t) + c|g(−β)||p(t)|

for t ≥ T1. Hence, using (2.6), we obtain

− v(t0) = v(t)− v(t0) =

∫ t

t0

v′(s)ds ≤ −cg2(γ)

∫ t

T1

h(s)ds+ c|g(−β)|
∫ t

t0

|p(s)|ds,

which tends to−∞ ast → ∞ becauseh(t) is weakly integrally positive andp(t) is ab-
solutely integrable. This is a contradiction. Thus, it turns out thatlim inft→∞ |y(t)| = 0.
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By way of contradiction, we suppose thatλ
def
= lim supt→∞ |y(t)| > 0. Sinceξ(t) is

bounded, we can choose aρ > 0 satisfying

|ξ(t)| ≤ ρ for t ≥ 0. (2.7)

Recall thatv(t) is assumed to tend to a positive valuev0 ast → ∞. Hence, there exists a
T2 ≥ t0 such that

0 <
1

2
v0 < v(t) <

3

2
v0 for t ≥ T2. (2.8)

Let ε be so small that
0 < ε < −f̂−1

(
−v0
2c

)
, (2.9)

ρ

a
|g(−ε)| < 1− exp

(
−f̂−1

(
v0 − cf(−ε)

a

))
(2.10)

and
ρ

a
|g(−ε)| < exp

(
−f̂−1

(
cf(−ε)− v0

a

))
− 1. (2.11)

We can find such a positive numberε becauseg(−ε) approaches zero and the right-hand
sides of (2.10) and (2.11) approach positive numbers asε → 0. We also assume that
ε < λ/8. Sincep(t) is absolutely integrable on[0,∞), it follows that∫ ∞

T3

|p(t)|dt < ε (2.12)

for someT3 ≥ T2.
Sincelim inft→∞ |y(t)| = 0, we can choose two intervals[τn, σn] and [tn, sn] with

[tn, sn] ⊂ [τn, σn], T3 < τn andτn → ∞ asn → ∞ such that|y(τn)| = |y(σn)| = ε,
|y(tn)| = λ/2, |y(sn)| = 3λ/4 and

|y(t)| ≥ ε for τn < t < σn, (2.13)

|y(t)| ≤ ε for σn < t < τn+1, (2.14)

1

2
λ < |y(t)| < 3

4
λ for tn < t < sn. (2.15)

Using (2.1), (2.5), (2.8) and (2.14), we obtain

af(x(t)) = v(t)− cf(y(t)) >
1

2
v0 − cf(−ε)

for σn ≤ t ≤ τn+1. For the sake of brevity, let

w0 =
1

2
v0 − cf(−ε).

Then, it follows from (2.9) thatw0 is positive. Sincef(x(t)) > w0/a for σn ≤ t ≤ τn+1,
there are two cases to consider: (i)x(t) > f̂−1(w0/a) > 0; (ii) x(t) < f̂−1(−w0/a) < 0.
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In case (i), from (2.3), (2.7) and (2.14) and the second equation in system (E), we can
estimate that

y′(t) = − ag(x(t))− ξ(t)g(y(t)) + p(t)

≤ − ag(x(t)) + ρ|g(y(t)|+ p(t)

≤ − a
(
1− exp

(
−f̂−1(w0/a)

))
+ ρ|g(−ε)|+ p(t)

for σn ≤ t ≤ τn+1. Let

µ1 = a
(
1− exp

(
−f̂−1(w0/a)

))
− ρ|g(−ε)|.

Then, from (2.10), we see thatµ1 is a positive number that does not depend onn. Simi-
larly, in case (ii), we obtain

y′(t) ≥ − ag(x(t))− ρ|g(y(t)|+ p(t)

≥ a
(
exp

(
−f̂−1(−w0/a)

)
− 1

)
− ρ|g(−ε)|+ p(t)

for σn ≤ t ≤ τn+1. Let

µ2 = a
(
exp

(
−f̂−1(−w0/a)

)
− 1

)
− ρ|g(−ε)|.

Then, from (2.11), we see thatµ2 is also positive and independent ofn. In either case, we
get

|y′(t)− p(t)| ≥ µ for σn ≤ t ≤ τn+1,

whereµ = min{µ1, µ2} > 0. Integrate this inequality fromσn to τn+1 to obtain

|y(τn+1)|+ |y(σn)|+
∫ τn+1

σn

|p(t)|dt ≥
∣∣∣∣y(τn+1)− y(σn)−

∫ τn+1

σn

p(t)dt

∣∣∣∣
=

∣∣∣∣∫ τn+1

σn

(y′(t)− p(t))dt

∣∣∣∣
=

∫ τn+1

σn

|y′(t)− p(t)|dt ≥ µ(τn+1 − σn).

From (2.4) and (2.12), we see that2β + ε > µ(τn+1 − σn), or

τn+1 < σn +∆ for n ∈ N, (2.16)

where∆ = (2β + ε)/µ > 0.

Let I =
∞∪
n=1

[τn, σn]. Then, it follows from (2.2) and (2.13) that

g2(y(t)) ≥ g2(ε) > 0 for t ∈ I.
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Using this inequality and (2.6), we obtain∫ ∞

t0

v′(t)dt ≤ −cg2(ε)

∫
I

ξ(t)dt+ c|g(−β)|
∫ ∞

t0

|p(t)|dt.

On the other hand,∫ ∞

t0

v′(t)dt = lim
t→∞

v(t)− v(t0) = v0 − v(t0) > −∞.

Hence, taking into account thatp(t) is absolutely integrable, we see that∫
I

ξ(t)dt < ∞. (2.17)

Suppose that there exists aδ > 0 such thatσn − τn > δ for all n ∈ N. Then, from
(2.16) and the assumption thath(t) is weakly integrally positive, it follows that∫

I

ξ(t)dt = ∞.

This contradicts (2.17). Thus, there is no suchδ > 0, namely,lim infn→∞(σn − τn) = 0.
Since[tn, sn] ⊂ [τn, σn], it turns out that

lim inf
n→∞

(sn − tn) = 0. (2.18)

From (2.3), (2.4) and (2.15), we see that

|g(x(t))| ≤ |g(−β)| for t ≥ t0

and
|g(y(t))| ≤ |g(−3λ/4)| for tn ≤ t ≤ sn.

Hence, we obtain

|y′(t)| ≤ a|g(x(t))|+ ρ|g(y(t))|+ |p(t)|
≤ a|g(−β)|+ ρ|g(−3λ/4)|+ |p(t)|
def
= ν + |p(t)|

for tn ≤ t ≤ sn. It is clear thatν is positive. Integrating this inequality fromtn to sn, we
get

1

4
λ = |y(sn)| − |y(tn)| ≤ |y(sn)− y(tn)|

=

∣∣∣∣∫ sn

tn

y′(t)dt

∣∣∣∣ ≤ ∫ sn

tn

|y′(t)|dt ≤ ν (sn − tn) +

∫ sn

tn

|p(t)|dt.
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Sincetn > T3 andε < λ/8, it follows from (2.12) that

1

4
λ < ν (sn − tn) + ε < ν (sn − tn) +

1

8
λ.

This contradicts (2.18). We therefore conclude thatlim supt→∞ |y(t)| = λ = 0.
As proved above,y(t) tends to zero ast → ∞. Hence, there exists aT4 ≥ T3 such

that
|y(t)| < ε for t ≥ T4.

Using this estimation instead of (2.14) and repeating the same process as in the above
argument once more, we obtain

|y′(t)− p(t)| ≥ µ for t ≥ T4.

This inequality yields

2β + ε > |y(t)− y(T4)|+
∫ t

T4

|p(s)|ds ≥
∣∣∣∣∫ t

T4

(y′(s)− p(s))ds

∣∣∣∣
=

∫ t

T4

|y′(s)− p(s)|ds ≥ µ(t− T4)

for t ≥ T4. This is a contradiction. Thus, the case ofv0 > 0 does not occur.
The proof of Theorem 2.2 is now complete. □

3. Application

Let
ξ(t) =

c

d
h(t) and p(t) = ξ(t)− k(t),

wherec andd are positive constants,h(t) is a nonnegative and continuous function, and
k(t) is a continuous function fort ≥ 0. Then, by the transformation

x = − log(bP/a) and y = − log(dN/c),

system (E) is reduced to a predator-prey system of the form:

N ′ = (a+ k(t)− h(t)N − bP )N,

P ′ = (− c+ dN)P.
(3.1)

This transformation is a one-to-one correspondence from the first quadrantQ
def
= {(N,P ) :

N > 0 andP > 0} to the whole real plane{(x, y) : x ∈ R and y ∈ R}. The interior
point (c/d, a/b) ∈ Q corresponds to the origin(0, 0) ∈ R2. System (3.1) is a Lotka-
Volterra model with a time-variational component of the environment, where prey are
assumed to have a carrying capacity and to receive the environmental time-variation more
effectively than their predators (the component was ignored in system (LV )). By virtue
of Theorem 2.2, we have the following result.
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Theorem 3.1. Suppose thath(t) is nonnegative fort ≥ 0 and it is bounded and weakly
integrally positive. Then, if ch(t)/d − k(t) is absolutely integrable on[0,∞), then all
trajectories of(3.1)go to the point(c/d, a/b) ast → ∞.

Sugieet al. [17] have considered system (3.1) under the assumption thatch(t)/d ≡
k(t). In this special case, system (3.1) has a unique interior equilibrium point(c/d, a/b)
even though it is nonautonomous. It was surprisingly proved that the equilibrium can
be globally stabilized even by a nonnegative functionh(t) (or k(t)) that makes the lim-
iting system which is equivalent to the structurally unstable model (LV ). Our results
here develop such a technical setting into a model that provides different time-variational
functions on per capita birth and mortality rates of the prey, which is a more biologically
practical scenario. In Theorem 3.1, the global attraction of the interior point(c/d, a/b)
additionally requires only the absolute integrability ofch(t)/d − k(t), which is a trivial
condition whench(t)/d ≡ k(t), but the surprising fact remains that all the solutions can
be attracted to the interior point even by nonnegative functionsh(t) andk(t) that make
the limiting system equivalent to the structurally unstable model (LV ).

When the functionch(t)/d − k(t) is not absolutely integrable on[0,∞), we can no
longer show that all solutions of (3.1) converge to(c/d, a/b) even if

c

d
h(t)− k(t) → 0 as t → ∞. (3.2)

For example, consider system (3.1) with

a = b = c = d = 1, h(t) =
1

1 + t
and k(t) =

1

1 + t
− 1

log(2 + t)
. (3.3)

Then, it is clear that0 ≤ h(t) ≤ 1 for t ≥ 0, h(t) is weakly integrally positive and

c

d
h(t)− k(t) =

1

log(2 + t)
→ 0 as t → ∞.

However,ch(t)/d− k(t) is not absolutely integrable, namely,∫ ∞

0

∣∣∣ c
d
h(t)− k(t)

∣∣∣dt = ∞.

In Figure 3.1 (a), we sketch the trajectory of (3.1) with (3.3) starting from the point
(1, 1/

√
e) at the initial timet0 = 0. This trajectory rotates in a counterclockwise di-

rection about a pointq ∈ Q infinitely many times and approachesq ultimately. What is
important is thatq does not coincide with(c/d, a/b) = (1, 1). Notice that the coordinates
of q are observed to be almost(1, 0.9). This contradicts the conclusion of Theorem 3.1.
Hence, in Theorem 3.1, we cannot replace the absolute integrability ofch(t)/d − k(t)
by condition (3.2). We numerically show other two trajectories of (3.1) with (3.3) which
approach the pointq in Figure 3.1 (b) and (c). Any trajectory of (3.1) which starts from a
point other than(1, 1/

√
e) at the initial timet0 = 0 will approach the pointq ultimately
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(see Figure 3.1 (b)). In general, all trajectories of nonautonomous systems have various
shapes according to the initial time even if they start from the same point. However, any
trajectory of (3.1) converges to the pointq ultimately (see Figure 3.1 (c)).

What is really the pointq? This numerical result may be beyond the intuition that
the possible point to whom the solution converges ast → ∞ is (c/d, a/b) since the
limiting system of (3.1) is system (1.1) whenh(t) andk(t) tend to0 ast → ∞. We ran
additional simulations for the numerical work, with various combinations of parameters
and functions (data not shown). From these results, there might be such an extraintuitional
factor present in ecological problems regarding predator-prey interactions, which should
be clarified both mathematically and biologically for future work.
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Fig. 3.1. Illustrations that trajectories of (3.1) do not approach the
point(c/d, a/b) ast → ∞ if a = b = c = d = 1, h(t) = 1/(1+t)
andk(t) = 1/(1 + t) − 1/(log(2 + t)). A black dot and a white
dot represent the point(c/d, a/b) = (1, 1) and the pointq and
the point to whom trajectories approach ultimately, respectively.
These two points are clearly observed to be distinct each other.
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