

Acceleration of Thorup Shortest Paths

Algorithm by Modifying Component Tree

Demonstrated with Real Datasets

January 2014

Wei Yusi

Interdisciplinary Graduate School of Science and Engineering

Shimane University

i

Table of contents
1. Introduction .. 1

1.1. Dijkstra and the variants ... 2

1.2. Dijkstra with Priority queues ... 3

1.3. Buckets based implementations ... 13

1.4. Linear time algorithm in theory .. 14

2. The Thorup Algorithm ... 15

2.1. Differences and similarities between Dijkstra and Thorup 15

2.2. Minimum spanning tree .. 15

2.3. Tarjan’s union-find algorithm .. 17

2.4. Gabow’s split-findmin algorithm ... 19

2.5. Component hierarchy and Component tree ... 19

2.6. Unvisited structure .. 25

2.7. Thorup algorithm in practice ... 26

3. The Improved Thorup Algorithm... 30

3.1. Mechanism .. 30

3.2. Algorithms ... 31

3.3. Examples ... 34

4. Practical Experiment ... 39

4.1. The improved MX-CIF quadtree .. 39

4.2. Importing real dataset ... 41

4.3. Experiment and result ... 46

5. Conclusion ... 52

Acknowledgment .. 54

Appendix ... 55

Using GitHub ... 55

References ... 65

ii

Figure list
Figure 1.1. An undirected graph. ... 1

Figure 1.2. Dijkstra's algorithm [Corm09]. .. 3

Figure 1.3. Fibonacci heap’s algorithm: Insertion. .. 6

Figure 1.4. Fibonacci heap’s algorithm: Extract-Min. .. 7

Figure 1.5. Fibonacci heap’s algorithm: Consolidate. .. 8

Figure 1.6. Fibonacci heap’s algorithm: Link. .. 9

Figure 1.7. Fibonacci heap’s algorithm: Decrease-Key. ... 9

Figure 1.8. Fibonacci heap’s algorithm: Cut. ... 10

Figure 1.9. Fibonacci heap’s algorithm: Cascading-Cut. .. 10

Figure 1.10. An example of Fusion trees, set k represents the keys of a node. 11

Figure 1.11. Important nodes (black nodes) of keys in a node. .. 12

Figure 1.12. Find predecessor/successor of a search key. .. 13

Figure 2.1. The minimum spanning tree algorithm of Kruskal. ... 16

Figure 2.2. An example of unite two sets with Tarjan's algorithm. (a) includes two sets and (b)

shows the structure of unite the two sets. (c) shows the result obtained by applying

path compression on (b). .. 18

Figure 2.3. Algorithm of make set. .. 18

Figure 2.4. Algorithm of unite two sets. .. 18

Figure 2.5. Algorithm of unite two sets. .. 19

Figure 2.6. x should be equal to 3, since 2^3=8, and 8 is just larger than the largest weights in

the graph, that is, 7. .. 20

Figure 2.7. A component hierarchy constructed for the graph in Figure 2.6. 21

Figure 2.8. The root at level 3 contains all vertices of the graph. ... 21

Figure 2.9. Level 2 has 3 components, vertices will be assembled if the edges between them

is smaller than 4. ... 22

Figure 2.10. Level 1 has 4 components, vertices will be assembled if the edges between

them is smaller than 2. .. 22

Figure 2.11. Level 0 has 5 singleton components; each of them includes a vertex. 23

Figure 2.12. An example of bucketing components. ... 24

Figure 2.13. To compress the component hierarchy, C10, C3, C8, C12 and C9 will be removed.

... 25

file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152032
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152033
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152034
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152035
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152036
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152037
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152038
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152039
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152040
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152044
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152045
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152045
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152045
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152046
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152047
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152048
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152049
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152049
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152050
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152051
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152052
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152052
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152053
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152053
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152054
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152055
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152056
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152056

iii

Figure 2.14. The data structure of split-findmin.①: A sequence of vertices, say S.②:

Singleton element.③: Super elements. .. 26

Figure 3.1. Algorithm of visit. .. 32

Figure 3.2. Algorithm of Expand. ... 33

Figure 3.3. Algorithm of VisitLeaf. ... 33

Figure 3.4. Algorithm of Decrease. .. 33

Figure 3.5. Graph of the components arrangement on level 1. Initially, set v1 as the source

vertex. Since v1 is contained by component C1. The tentative distance of C1 is set to 1.

... 34

Figure 3.6. Plot of the component hierarchy when finished decreasing the tentative distance

of C1 and its father components. .. 35

Figure 3.7. Decrease the tentative distance of v2 and v3 to 1 and 6, respectively. 35

Figure 3.8. The tentative distances of C1 and C2's father components will not be updated,

since they are smaller than the tentative distance of C2. ... 36

Figure 3.9. The tentative distances of C5 and its father components C9 and C12 will be

decreased from infinite to 8. ... 36

Figure 3.10. The tentative distances of C4 and its father component C8 will be decreased

from infinite to 9. .. 37

Figure 3.11. All children of C13 are visited, algorithm finished. ... 37

Figure 4.1. The planar partition (a) and structure (b) of an MX-CIF quadtree. Dash-line

represents the Region-MBR of each node. ... 40

Figure 4.2. Transportation of Japan (a) and dataset used in experiment (b). 41

Figure 4.3. A single line (circled) in the graph of dataset. ... 42

Figure 4.4. Algorithm for deleting single lines in dataset. ... 42

Figure 4.5. Five datasets derived from original dataset. ... 42

Figure 4.6. Algorithm of transform dataset to adjacent list. ... 45

Figure 4.7. When there is more than one line having the same endpoints, the edge which

has the shortest length can be kept in the dataset ... 45

Figure 4.8. A graph with five vertices. ... 46

Figure 4.9. Chart of the results. Comparing with the Fibonacci based Dijkstra and the original

Thorup (base = 16). ... 48

Figure 4.10. Chart of the results. Comparing with the Array heap based Dijkstra (base = 16).

... 49

Figure 4.11. Time cost comparison among different values of base. 50

Figure 4.12. Trends of base increment and the total time cost. ... 50

file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152057
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152057
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152058
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152059
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152060
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152061
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152062
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152062
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152062
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152063
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152063
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152064
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152065
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152065
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152066
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152066
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152067
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152067
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152068
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152069
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152069
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152070
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152071
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152072
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152073
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152075
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152075
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152076
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152077
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152077
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152078
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152078
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152079
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152080

iv

Table list
Table 1.1. Information we got when a problem is solved. .. 2

Table 1.2. A comparison of time complexity of applying different structures to Dijkstra. 3

Table 1.3. Time complexity of operations supported by Fibonacci heap. 5

Table 2.1. A result of running time (sec) comparison from [Asan00], n = 50,000. 27

Table 2.2. Running time (ms) comparison with varied vertex number [Prue09], m = 5n. 28

Table 2.3. Running time (ms) comparison with varied edge numbers per vertex [Prue09], n =

20000, 3n≤m≤24n. .. 28

Table 2.4. Running time (ms) comparison with varied edges’ weights length [Prue09],

n=20000, m=5n. .. 28

Table 2.5. Accumulated running times (sec) for ten queries on road network of New York City

[Prue09]... 29

Table 4.1. Information of datasets. ... 43

Table 4.2. Result of Experiment (milliseconds). .. 48

Table 4.3. Standard Deviations (milliseconds). .. 48

Table 4.4. Experimental result of using different values of base (milliseconds). 49

Table 4.5. Comparison of memory usage. ... 51

file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152081
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152082
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152083
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152084
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152085
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152086
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152086
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152087
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152087
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152088
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152088
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152089
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152090
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152091
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152092
file:///D:/Dropbox/Paper/Shotest%20Paths%20paper/Acceleration%20of%20Thorup%20Shortest%20Paths%20Algorithm%20by%20Modifying%20Component%20Tree%20Demonstrated%20with%20Real%20Datasets.docx%23_Toc380152093

1

1. Introduction

The single source shortest path is the problem (SSSP) of finding the shortest path from a

source vertex to every other vertex. It has been applied in many fields such as navigation [En12],

keyword searching [Bhal02], computer network [Siva99], and it is widely used for finding the

optimal route in a road network. SSSP is described as the following throughout this research,

given a graph 𝐺 = (𝑉, 𝐸) and a source vertex 𝑠 ∈ 𝑉, supposes s can reach each vertex of the

graph, then find the shortest path from 𝑠 to every vertex 𝑣 ∈ 𝑉, in which 𝑉 and 𝐸 represent

the vertices and edges of G [Sedg03]. The m and n mentioned in the rest of this paper represent

|𝐸| and |𝑉| , respectively. Use D(𝑣) to represent the tentative distance from the source vertex to

v, and use d(𝑣) to represent the ensured shortest distance from the source vertex to v, let L(v,

w) represent the positive integer weights of edge(v, w). At the beginning, D(𝑣) = ∞ for every

vertex except the source vertex, d(𝑠) = 0. The length of a shortest path should be the sum of

the weights of each edge of the shortest path.

In the example shown in Figure 1.1, a graph is constructed by five vertices, the weights of

each edge is also marked nearby. The target is to calculate the shortest path from v1 to other

vertices, after the problem is solved, we will get some basic information like Table 1.1, including

the predecessor vertex and the shortest distance of each vertex. The predecessor is used to

record the shortest path from the source vertex to current vertex, for example, the predecessor

of v5 is v3, and the predecessor of v3 is v1, which is the source vertex. These records show the

shortest path from v1 to v5 is v1->v3->v5, and the distance is 2, which is recorded in the column

named distance. It is calculated by summing up the weights of edge (v1, v3) and (v3, v5).

Figure 1.1. An undirected graph.

2

The Dijkstra algorithm and its variants will be introduced in Section 1.1. Section 1.2 and

Section 1.3 introduce the priority queue and buckets based implementations of the Dijkstra

algorithm, respectively. A linear time algorithm called Thorup will be introduced in Section 1.4

and later will be introduced in detail in Chapter 2. An improved Thorup algorithm is proposed in

Chapter 3. Chapter 4 includes the introduction of the experiment and the result. Analysis is

discussed in Chapter 5.

1.1. Dijkstra and the variants

One of the most influential algorithms is Dijkstra [Dijk59][Sedg03][Erik08] which is proposed

in 1959. The basic idea of Dijkstra is described as follows,

At first, the distance of the source vertex will be set to 0, the distance of all the other

vertices will be set to infinite. And then get the vertices adjacent to the source vertex one by one,

update their tentative distance by an operation called relaxation, that is, if the distance of a

vertex u will be reduced through another vertex v, then the distance of u will be set to d(v)+w(v,

u), in which d(v) represents the tentative distance of v and w(v, u) represents the weights of the

edge which connects v and u. After the distance of every vertex adjacent to the source vertex is

relaxed (no matter updated or not), the source vertex will be marked as visited. Then do the

operations as follows recursively till all vertices are marked as visited. Pick the vertex from the

graph which is not marked as visited and has the shortest tentative distance, then update the

distance of the vertices adjacent to this vertex again and mark it as visited.

The algorithm runs based on a matrix 𝑀(𝑛, 𝑛, 𝑉), 𝑛 = |𝑉| initially. [Yen70] is considered to

be the first paper which implements Dijkstra with an array. In detail, an array is used to record the

tentative distance of the vertices which adjacent to visited vertices. Every time when a vertex is

visited, the distance of the vertices which adjacent to the vertex will be recorded in an array, and

then, the vertex which has the shortest distance will be taken to try to relax the vertices which

adjacent to this vertex. It takes O(1) to insert a relaxed vertex and O(𝑛) to delete a vertex

from an array. To relax all vertices, Dijkstra algorithm runs in O(𝑚) plus the time of maintaining

the array, overall, it takes O(𝑚 + 𝑛2).

Table 1.1. Information we got when a problem is solved.

Vertex Predecessor Distance

v1 - 0

v2 v1 1

v3 v1 1

v4 v5 3

v5 v3 2

3

1.2. Dijkstra with Priority queues

There are several implementations of the Dijkstra algorithm, some of them use priority

queues to reduce the cost of query vertex which has the shortest distance, such as using binary

trees, Fibonacci heaps and so on. Table 1.2 lists the complexity of applying different structures to

Dijkstra algorithm. The algorithm for implementing Dijkstra with a priority queue is as follows

[Sedg03][Corm09],

Table 1.2. A comparison of time complexity of applying different structures to Dijkstra.

Structure Time complexity

Array [Dijk59] O(𝑛2 +𝑚)

Fibonacci heaps [Fred87] O(𝑚 + 𝑛 log𝑛)

Relaxed heaps [Dris88] O(𝑚 + 𝑛 log𝑛)

Fusion trees [Fred93] O(𝑚√log𝑛)

Atomic heaps [Fred94] O(𝑚 + 𝑛 log𝑛 / log log𝑛)

Monotone min PQs [Rama96] O(𝑚 + 𝑛√log𝑛 log log 𝑛)

Dijkstra’s algorithm

for each vertex 𝑣 ∈ 𝑉

 if (v = source) v.key = 0

else v.key = MAX

INSERT (priority_queue, v)

 while (priority_queue != empty)

 u = EXTRACT_MIN(priority_queue)

 for each v adjacent u

 if (v.key > u.key + v.weight)

v.key = u.key + v.weight

DECREASE_KEY(priority_queue, v)

Figure 1.2. Dijkstra's algorithm [Corm09].

4

According to the algorithm shown in Figure 1.2 [Corm09], initially, the tentative distance of

source vertex will be set to 0, other vertices will be set to ∞, and then insert them to a priority

queue. While the priority queue is not empty, extract the vertex which has the smallest tentative

distance. Then try to use the extracted vertex to relax the vertices adjacent, the adjacent vertices

can be found from an adjacent list which is pre-prepared. Once any vertex is relaxed, update the

tentative distance of this vertex and update its position in the priority queue. If the distance from

the source vertex through u to v is smaller than the tentative distance of v, then make the

tentative distance of v equal to the sum of the distance of u and the weights of v, in which the

shortest distance from the source to u must be ensured.

The priority queue used in the algorithm is not restricted. It decides the time complexity of

the algorithm. An array based priority queue provides O(𝑛2 +𝑚) complexity, since

1. It takes O(𝑛) to extract the vertex with the shortest distance, for n vertices, it takes

O(𝑛2).

2. The algorithm tries to relax an endpoint of each edge with the other endpoint. For m

edges, it takes O(𝑚).

Since the complexity of the algorithms mentioned below is analyzed by amortized analysis

[Corm09]. We start from introducing amortized analysis in the beginning of this section.

Amortized analysis shows the average cost of every operation of a sequence of operations in the

worst case, which is different from an average-case analysis. For example, assume there is a

MULTIPOP operation which is used to pop n objects from the top of the stack by calling POP

operation n times. It takes O(𝑛) to operate a MULTIPOP in the worst case. Therefore, to operate

MULTIPOP n times, it costs O(𝑛2). The analysis is not very accurate, though it is correct. An

amortized analysis can provide a tighter upper bound, that is O(𝑛). Because the number of

objects popped by MULTIPOP cannot exceed the number of objects pushed into the stack. So the

MULTIPOP operation pops object n times at most, it is equal to the number of PUSH operation.

Since each POP operation cost is O(1), n times cost is O(𝑛).

In 1987, Fredman and Tarjan [Fred87] proposed a priority queue named Fibonacci heaps.

The amortized time of operations supported by Fibonacci heap is listed in Table 1.3 . It improved

the time complexity of the SSSP problem to O(𝑚 + 𝑛 log 𝑛), and also improved the time

complexity of all pairs shortest path problem to O(𝑛𝑚 + 𝑛2 log 𝑛).

5

The Fibonacci heap is created by several min-heaps, there may have more than one root in

its root list, the key value of every root is smaller than the objects below. The heap needs to be

consolidated after each call of Extract-Min operation. When consolidation is finished, the direct

children (or say degree) of each root in the root list should be unique. Each node of Fibonacci

heap has a key value, a mark sign, a degree counter and four pointers. A mark sign is used to tag

the node which has lost a sub-node, a degree counter is used to record the number of children

contained by a node. The four pointers p, left, right, child point to parent, left-sibling, right-sibling

and any one of a node’s children, respectively. If a node has only one child, then the child’s left

and right pointer point to the child itself. There are two other attributes in a Fibonacci heap,

1. min points to the minimum key value of the heap.

2. n is used to record the number of nodes in the heap.

The following descriptions of Fibonacci heap’s operations are based on the algorithm

proposed in [Corm09]. Following is the algorithm for inserting an object x to a Fibonacci heap H.

Table 1.3. Time complexity of operations supported by Fibonacci heap.

Operation Time complexity (amortized)

Make-heap O(1)

Insert O(1)

Minimum O(1)

Extract-Min O(lg 𝑛)

Union O(1)

Decrease-Key O(1)

Delete O(lg 𝑛)

6

When inserting a node, a root list will be created for the first inserted node, and then set

H.min pointing to the only one in the root list. Otherwise, insert the node to the root list directly.

If the key-value of the new node is smaller than H.min, then set the new node as the minimum

node. Finally, increase the number of nodes in the root list by one. New nodes will be inserted to

the root list directly without any locate operation, thus the running time is only O(1). And the

operation of consolidating nodes will be postponed to after the first time when extracts the

minimum node.

Because H.min always points to the object which has the minimum key value, it cost only

O(1) to get the minimum key value. When remove the minimum key value, all of its children

should be added to root list, then link the roots which have the same degree to make their

degrees distinguishable. The followings are the algorithms for extracting the minimum key value

[Corm09].

 INSERT (H, x)

1 x.degree = 0

2 x.p = NULL

3 x.child = NULL

4 x.mark = FALSE

5 if H.min == NULL

6 create a root list for H to contain x

7 H.min = x

8 else

9 insert x into H’s root list

10 if x.key < H.min.key

11 H.min = x

12 H.n = H.n + 1

Figure 1.3. Fibonacci heap’s algorithm: Insertion.

7

As the algorithm mentioned above, first pointing z to H.min, the object has the minimum

key value. In the case that z is not null, all of its children will be added to the root list and then

remove z from the root list. If z is also its right sibling, it means z is the only one in the heap, the

heap will be turned to empty. Otherwise, set H.min points to another node in the root list, in the

algorithm, H.min repoints to its right sibling, actually, any node in the root list will be all right.

Because later when operate CONSOLIDATE to reform the heap, a new H.min will be calculated. At

last, return z.

The processing of CONSOLIDATE includes two parts,

1. Link roots in root list, which have the same degree

2. Find the minimum node.

The algorithm of CONSOLIDATE is as follows,

 EXTRACT_MIN(H)

1 z = H.min

2 if H.min != NULL

3 for each child x of z

4 add x to the root list of H

5 x.p = NULL

6 remove z from the root list of H

7 if z == z.right

8 H.min = NULL

9 else

10 H.min = z.right

11 CONSOLIDATE(H)

12 H.n = H.n – 1

13 return z

Figure 1.4. Fibonacci heap’s algorithm: Extract-Min.

8

 CONSOLIDATE(H)

1 let N equal to the maximum degree of any root in root list

2 let A[0.. N] be a new array

3 for i = 0 to N

4 A[i] = NULL

5 for each node w in the root list of H

6 x = w

7 d = x.degree

8 while A[d] != NULL

9 y = A[d]

10 if x.key > y.key

11 exchange x with y

12 LINK(H, y, x)

13 A[d] = NULL

14 d = d + 1

15 A[d] = x

16 H.min = NULL

17 for i = 0 to N

18 if A[i] != NULL

19 if H.min == NULL

20 Create a new root list for H containing just A[i]

21 H.min = A[i]

22 else

23 insert A[i] into H’s root list

24 if A[i].key < H.min.key

25 H.min = A[i]

Figure 1.5. Fibonacci heap’s algorithm: Consolidate.

9

In the first part, an array A is created initially for collecting the roots which have the same

degree. The size of A is equal to the maximum degree of any root in the root list. Each root in the

root list will be removed and then stored in A. The position of the index they should be inserted

to A is equal to the number of their degree. When inserting a root, if its position is not vacant,

means there is a root which has the same degree with this one. Let the one which has a larger

key-value to be the other one’s child by calling LINK. Empty the original position and store the

new root to one position backward of A. In the next part of this algorithm, A will be traversed in

order to store its objects to root list and find the minimum node.

DECRESE-KEY operation is used to update a node with a new key-value. The new key-value

should be smaller than the node’s current key-value. Its algorithm is as follows,

 LINK(H, y, x)

1 remove y from the root list of H

2 make y a child of x, incrementing x.degree

3 y.mark = FALSE

Figure 1.6. Fibonacci heap’s algorithm: Link.

 DECREASE_KEY(H, x, k)

1 if k < x.key

2 x.key = k

3 y = x.p

4 if y != NULL and x.key < y.key

5 CUT(H, x, y)

6 CASCADING_CUT(H, y)

7 if x.key < H.min.key

8 H.min = x

Figure 1.7. Fibonacci heap’s algorithm: Decrease-Key.

10

The DECRESE-KEY operation updates a key as follows, first of all, the new key-value has to be

smaller than the x’s current key-value. After the update, if the x’s new key-value is smaller than its

parent, y, then it should be removed from y’s children list. After that, the same as INSERT, x will

not be located and inserted to any other node, but be turned into a root and then inserted in the

root list directly. At the same time, the number of y’s degree is reduced by one. Since y just lost a

child, x. If y is not in the root list and the removal of x causes y’s children list empty, then y should

be cut to root list too. Otherwise, mark y if it is not a root, since it has lost a child. Cut y’s

ancestors to the root list recursively if they match the requirements.

In 1988, a structure named “Relaxed heaps” is proposed by [Dris88]. It provides the same

time complexity as [Fred87]. The paper also proposed a theoretical improvement over Fibonacci

heaps and a parallel algorithm for calculating shortest paths on directed graphs with

non-negative weights, the algorithm accommodates both of Fibonacci heaps and Relaxed heaps.

Fusion trees [Fred90] [Fred93] can answer predecessor/successor queries in O(log𝑤 𝑛)

with n non-negative w-bits integers, each of which should not exceed 2𝑤 in a w-bits machine.

The structure of fusion tree is like a B-tree, but each node of which has 𝑤1 5⁄ sub-nodes. Figure

1.10 shows an example of Fusion trees, in which set k represents the keys in a node. 𝑘 =

 CUT (H, x, y)

1 remove x from the child list of y, decrementing y.degree

2 add x to the root list of H

3 x.p = NULL

4 x.mark = FALSE

Figure 1.8. Fibonacci heap’s algorithm: Cut.

 CASCADING_CUT(H, y)

1 z = y.p

2 if z != NULL

3 if y.mark == FALSE

4 y.mark = TRUE

5 else

6 CUT(H, y, z)

7 CASCADING_CUT(H, z)

Figure 1.9. Fibonacci heap’s algorithm: Cascading-Cut.

11

 {𝑘0, 𝑘1, …, 𝑘
𝑤

 1} and 𝑘0 < 𝑘1 < … < 𝑘

𝑤

 1. In general, when performing a query,

to decide the branch of a node to go, to visit all keys in a node is necessary. That is, 𝑘 keys are

needed to be read for making the decision of each node, and each of them has 𝑤-bits. Fusion

trees compress the length of all the keys of a node within w bits though a technique named

Sketch, thus makes it possible to let the CPU to process in parallel.

Figure 1.10. An example of Fusion trees, set k represents the keys of a node.

The basic idea of Sketch is to calculate a number of bits (say s) for each key in order to

distinguish the keys in a node. Each s can be looked as a path from the root of a binary tree to

each of its leaf node. The length of s is k-1 bits at most. An example is shown in Figure 1.11, black

nodes are important nodes, which used to distinguish keys. First, the nodes which have branches

should be important nodes, and second, the nodes in the same row with important nodes should

be changed to important nodes, such as node2, node8 and node9. The left branch of an

important node represent 0, and the right branch represent 1. In this example, three bits are

used to distinguish four keys of a node. Thus the size of all the keys of a node is compressed to

twelve in total. A Perfect Sketch is the whole path from the root of the binary tree to its leaf-node,

it includes every bit in the node on the path. The “Perfect Sketch” can be used to calculate

predecessor/successor of a search key if it doesn't fall in the Sketch set of keys of a node. After

query in each node, the Perfect Sketch of both of the result leaf-node and search-key will be

compared, in order to calculate the Perfect Sketch of predecessor/successor of the result, say e. It

is calculated by,

1. Find the first different bit between the two Sketches.

2. Copy the Sketch of the result from the first bit to the first different bit to e, the first

different bit is included.

3. Fill the rest space with inverse bits of the first different bit.

𝑘0 𝑘1 …
𝑘
𝑤

 1

12

Then calculate the Sketch key of e to perform another query. The result should be

predecessor/successor of the search-key. For example, if we cut off the leaf-node node13, it

means that the key corresponds to node13 will not be pre-Sketched. Thus the Sketches of the

example in Figure 1.12 have only two bits. Also, node2 and node3 are no longer important nodes,

since there is only one way out of node3. Now we perform a query with a binary-key 1111, and

its Sketch should be 11, which also equal to the Sketch of the leaf-node node12. We find that

node12 is not the correct result by comparing its Perfect Sketch with the Perfect Sketch of

search-key. The first different bit is node3, so e should be equal to 1011, and its Sketch is 11,

query the binary tree again with e, then we find node12 is the predecessor of search-key and

keep on perform query in the sub-node of node12 follow the branch just got.

Figure 1.11. Important nodes (black nodes) of keys in a node.

1

2 3

5 4

7 8

6

9

0 1

0

0

0

0

0

1

1

1 1 1

Node10

Perfect Sketch: 0000

Sketch: 000

Node11

Perfect Sketch: 0001

Sketch: 001

Node12

Perfect Sketch: 1001

Sketch: 101

Node13

Perfect Sketch: 1111

Sketch: 111

13

Figure 1.12. Find predecessor/successor of a search key.

1.3. Buckets based implementations

The complexity of sorting weights becomes a bottleneck of Dijkstra [Thor97]. The bucket is

an alternative which has been widely used. A bucket is an array which can be used to map the

tentative distance of vertices with index ⌊𝐷(𝑣)/∆⌋. In which ∆ represents the width of a bucket.

For example, number 4, 6, 9 should be mapped to bucket 2, 3, 4, respectively when the bucket’s

width is 2. A heap could be added to each bucket when there are more than one element are

mapped in the same bucket. [Hitc68][Dial69][Gils73] implemented buckets in networks which

have positive integer edges [Dena79].

[Dini78] and [Dena79] proved that when set ∆ equal to the smallest weights of a graph,

with Dijkstra algorithm, we can visit vertices in the order of they lied in buckets [Meye01]. That is,

the vertex in the lowest-numbered non-empty bucket should always be the vertex needed to be

visited. Thus the time cost of visiting vertices is accelerated by overcoming the bottleneck of

sorting. In the situation that the smallest weights is 1, the bucket width should be 2 but not 1. In

addition, for those graphs which has zero-length weights, a heap should be added in each bucket.

When adding a vertex to a bucket, it should be added to the heap of the bucket in ascending

order, that is, the smallest on the top of the heap. Following is the basic idea of this

implementation. The bucket’s width is set to the smallest weights of a graph.

1. Set 𝐷(𝑉𝑠𝑜𝑢𝑟𝑐𝑒) = 0 and 𝐷(𝑉𝑖) = ∞ for other vertices. Insert 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 in the 0th bucket,

and keep other buckets empty.

2. Stop if all buckets are empty. Else set 𝑝∗ point to the lowest-numbered nonempty

bucket.

3. Get a vertex v from 𝑝∗, and then try to relax the vertices adjacent v. After that, delete v

1

2 3

5 4

7 8

6

9

0 1

0

0

0

0

0

1

1

1 1 1

Node10

Perfect Sketch: 0000

Sketch: 00

Node11

Perfect Sketch: 0001

Sketch: 01

Node12

Perfect Sketch: 1001

Sketch: 11

Node13

Perfect Sketch: 1111

Sketch: 11

14

from 𝑝∗ and then map the relaxed vertex to buckets, respectively.

4. Go to step 2 if 𝑝∗ is empty, otherwise, go to step 3.

[Dena79] also proposed a bucket based multi-level structure, in which buckets have

different widths. For those sparse graphs which have few large weights, it might cost too much

time to find the next non-empty bucket, thus the efficiency will be reduced.

1.4. Linear time algorithm in theory

Thorup [Thor97] (see also [Asan00] and [Prue09]) is an algorithm which has been

theoretically proved that it can solve the SSSP problem in linear time with pre-processed index.

The paper proposed a hierarchy and buckets based algorithm to preprocessing indices for

performing queries in undirected graphs with non-negative weights. It consists of two phases,

construction and visiting. In the first phase, it constructs a component tree in linear time, each

node of the tree is a component that includes vertex(s). Leaf-nodes always contain only one

vertex. A component is created by the connected vertices of which their weights are smaller

than 2𝑖, where 𝑖 represents an integer which increases from 0 till 2𝑖 > the largest weights of G.

In the second phase, the tentative distance of reached components will be mapped to its parent’s

buckets to decide the order of visiting vertices in different components in a hierarchy structure, in

order to overcome the sorting problem. That is, when trying to get the vertex which has the

smallest tentative distance, there is no method to sort the distances in linear time currently. This

problem reduces the performance of Dijkstra every time when get the vertex from a priority

queue which has the shortest distance from which to source vertex. Because of Thorup does not

construct indices based on source vertex, the constructed indices can be used to calculate with

different source vertex without reconstruction. In practice, due to the difficulty of

implementation, Thorup algorithm occasionally does not perform as expected, according to the

experimental result provided by Asano and Imai [Asan00], and Pruehs [Prue09]. This algorithm is

introduced in Chapter 2 in detail.

15

2. The Thorup Algorithm

The Thorup algorithm [Thor97] has been theoretically proved that it can solve the SSSP

problem in linear time with pre-processed index. The paper [Thor97] proposed a hierarchy- and

buckets-based algorithm to preprocess indices for performing queries in undirected graphs with

non-negative weights. Specifically, a bucket based component tree accumulates vertices to many

components, and decides the order of visiting vertices, and an unvisited structure which looks

like an interval tree is used to maintain the tentative distance of each vertex. Theoretically, this

algorithm constructs the minimum spanning tree in O(m), constructs the component tree in O(n),

construct unvisited data structure in O(n) and calculate distance of all vertices based on

constructing structures in O(m + n). Due to the difficulty of the implementation, two alternatives

are given by [Thor97], the methods will be introduced in the rest part of this chapter. The

alternatives raise the time complexity, according to the experimental result provided by Asano,

Imai [Asan00] and Pruehs [Prue09], the Thorup algorithm did not perform as expected.

2.1. Differences and similarities between Dijkstra and Thorup

A bucket based Dijkstra algorithm has been introduced in Section 1.3. The method decides

the order of visiting vertices by mapping them in buckets according to their tentative distances.

The interval of buckets is equal to the minimum weights of a graph. This method is very efficient,

but not practicable. Since the tentative distance of a vertex in a big graph can be very long, and

the minimum weights can be very small, an extremely huge number of buckets which cannot be

created by today’s computer may be needed. The problem is that, the interval of the buckets has

to be invariable. For making the interval suit all tentative distances of a problem, it has to satisfy

the minimum tentative distance, otherwise the vertex has the minimum tentative distance

cannot be mapped. But for those extremely long tentative distances, the interval is too small.

Many unused empty buckets may exist between mapped vertices.

Thorup algorithm solves this problem by using hierarchical buckets. The intervals of buckets

in different levels are different. It accumulates connected vertices by the weights between them.

The higher the level they are included, the larger the weights between them. The vertices in the

the higher levels will be mapped in the buckets with bigger interval; on the contrary, the vertices

in lower levels will be mapped in the buckets with smaller interval. Thus the bucket number is

reduced.

Same as the Dijkstra algorithm, the Thorup algorithm also uses the relaxation operations,

but the order of visiting vertices may be different.

2.2. Minimum spanning tree

The algorithms of minimum spanning tree are used to find the edges which connect all the

vertices of a graph with the smallest weights, and also make sure vertices are connected with

16

each other through the shortest edge. In the Thorup algorithm, a component tree will be created

based on a generated minimum spanning tree, so that each edge between two components also

has the smallest weights. Theoretically, the Thorup algorithm uses the algorithm proposed in

[Fred94] to construct the Minimum spanning tree in linear time, an alternative of this algorithm

is [Krus56]. Here we first study the Kruskal’s minimum spanning tree algorithm and then study

Fredman and Willard’s union-find algorithm [Fred94].

 The Kruskal’s algorithm first makes a set for each vertex in the graph, and sorts the edges by

their weights in ascending order. Pick edges in ascending order, if the vertices of both sides of the

picked edge are not in the same set, merge them into one set by the union-find algorithm which

is introduced in Chapter 4. And then, this edge will the added to a list which all the edges in it

forms a minimum spanning tree. The following algorithm is given by [Corm09]. Set A is used to

store the edges which form a minimum spanning tree.

 The algorithm used to generate a minimum spanning tree in the Thorup algorithm is

proposed by [Fred94], in Section 2.1. The algorithm generates a minimum spanning tree by two

passes with the usage of atomic heaps and Fibonacci heaps. The basic idea is that to unite a

number of connected verties newly to create a super-vertex. The edges which have the smallest

weights will be selected to connect vertices of the super-vertex. And start the second pass to

unite the all of the super-vertices based on the same rule. After the second pass, a minimum

spanning tree is generated. To begin with, an arbitrary vertex will be added to a priority queue

based on atomic heaps, the weights of the vertex will be set to 0, set the weights of other

vertices as infinite. And then we are going to the first pass, remove the first vertex from the heap

and then mark it, update the weights of all the vertices connect it, and then add them into the

heap. Then go back to the beginning of the first step. If the number of vertices over the size of

the heap or a vertex removed from the heap connects to any marked vertex, the current process

will be stopped. Another unmarked vertex will be selected arbitrarily, and then go back to the

start of this algorithm. After every vertex is marked, the graph is condensed with several

 Kruskal’s minimum spanning tree

1 A = null

2 for each vertex v of the graph

3 MAKE-SET(v)

4 Sort the edges of the graph into ascending order by weight w

5 for each edge(u, v) of the graph, taken in ascending order by weight

6 if FIND-SET(u) ≠ FIND-SET(v)

7 A = A∪{(u, v)}

8 UNION(u, v)

9 return A

Figure 2.1. The minimum spanning tree algorithm of Kruskal.

17

super-vertices. To unite them again with the same method in the second pass. The difference is

that in the second pass, a Fibonacci heaps based priority queue is used.

2.3. Tarjan’s union-find algorithm

Union-find set is the problem of union given elements to sets. Elements in the same set have

the same relation. Here the union-find set algorithm is used to construct the component

hierarchy (Section 2.5).

Tarjan’s union-find algorithm [Corm09] uses tree to arrange the elements. It makes a

representative element of a set have multiple successors. Each tree in this algorithm represents a

set, each node of a tree represents an element of a set, and the root of a tree includes the

representation of a set which includes elements with the same relation. Each node points to its

parent, and root’s parent is the root itself. Sets are united by uniting trees. An example of unite

two sets with Tarjan’s algorithm is shown in Figure 2.2, (a) includes two sets, node A and C

include two representative elements of the two sets, respectively. And (b) shows the structure

after uniting the two sets in (a). This algorithm does not originally perform better than a list

based algorithm without two heuristics,

1. Union by rank.

A rank is used to compare the number of direct sub-nodes between two trees, when union

two trees, the root of the tree which has a larger rank should be the other’s parent. The rank

may not record the exact direct sub-nodes’ number of a tree. When unite two sets, only if

the two trees of them have the same rank, then plus one to the rank of the new tree’s root

after uniting finished. This heuristic will reduce the time cost when unite two sets which has

a different number of members, if a tree has a larger number of member is connected to a

tree has smaller number of members, then more pointers of members have to be set to root.

2. Path compression.

Path compression is realized by setting the pointer of each node on the path of query to the

root directly. In detail, when running the FIND-SET function, the ancestors of the nodes will

be found recursively till get to the root. And then the root will be returned to all the nodes on

the path of query, and then set each pointer of these nodes points to the root.

The algorithms of make set, union, and find set are as follows, based on [Corm09]. Initially, as the

first member, x is appointed as the root of a set. A root does not have a parent, so the pointer of

x’s parent point x itself, and x does not have any sub-nodes currently, so the rank of x is zero.

In FIND-SET function, the set of a member x belongs to is found by keeping on finding the

parent of x, till when find an ancestor of x, say r, that r’s parent equal to r itself. After that, for

accelerating query, all the pointers of nodes between x and r will be set to point r, it is called path

compression.

When uniting two members, first the root of each of the two members will be found

through FIND-SET operation, and then the root which has a larger rank will be the parent of the

other. If their ranks are equal, pick one of them to be the parent of the other optional, the

18

algorithm listed following chooses the secondary parameter as the parent always.

(a) (b) (c)

Figure 2.2. An example of unite two sets with Tarjan's algorithm. (a) includes two sets and (b)

shows the structure of unite the two sets. (c) shows the result obtained by

applying path compression on (b).

MAKE-SET(x)

x.p = x

x.rank = 0

Figure 2.3. Algorithm of make set.

UNION(x, y)

x = FIND-SET(x)

y = FIND-SET(y)

if x.rank > y.rank

 y.p = x

else x.p = y

 if x.rank == y.rank

 y.rank = y.rank +1

Figure 2.4. Algorithm of unite two sets.

19

2.4. Gabow’s split-findmin algorithm

The split-findmin structure [Gabo85a] maintains the smallest key of each of a number of

disjoint sequences. Just like a priority queue. Split-findmin structure has operations as follows,

1. split(x)

Split the sequence which contains x into two sequences, one sequence contains the first

element of the original sequence to x, the other sequence contains the rest elements.

2. decrease-key(x)

Decrease the key of element x, and update the key of the sequence which contains x. The key

of a sequence should be the smallest among all the elements it contains.

3. findmin(x)

Find and return the element which has the smallest key in the sequence which contains x.

The split-findmin structure is used in [Thor97] [Prue09] to instead of the atomic heaps, for

maintaining the tentative distance of each component in a component tree (the component tree

will be introduced in Section 2.5). Every four sub-nodes have a father node which stores the

minimum value of its sub-nodes.

2.5. Component hierarchy and Component tree

Component hierarchy decides the order of visiting vertices. It is the kernel of the Thorup

algorithm. With such a structure, the algorithm does not need to do any sort before visiting

vertices. But just visit vertices in buckets from the first to the last. Now, let’s study its mechanism.

At first, it groups vertices as different components in the hierarchy. The vertices included by a

component are different at each level. It depends on the weights of edges between each pair of

vertices. In each level, the vertices will be grouped to the same component if the weights of the

edges between them are smaller than 2𝑖 , 𝑖 = 0, 1, 2,… , 𝑥. Here x equals to the root’s level of a

component hierarchy. Components at each level contain the vertices which the edges between

them are smaller than 2𝑙𝑒𝑣𝑒𝑙. Accordingly, 2𝑥 should be just larger than the largest weights of

the graph. Also, the root of a component hierarchy should contain the vertices of the whole

graph.

FIND-SET(x)

if x!=x.p

 x.p = FIND-SET(x.p)

return x.p

Figure 2.5. Algorithm of unite two sets.

20

In the example shown in Figure 2.6, a graph is constructed by 5 vertices and 6 edges. The

largest weights of this graph is 7, so a component hierarchy constructed for this graph should

have 4 levels, level 0 ~ level 3. The plot of a component hierarchy constructed based on the graph

is shown in Figure 2.7. Since 23 equals to 8, it is just larger than 7. So the root on level 3 can

contain all vertices which the edges between them are smaller than 8. Means it contains all

vertices in the graph. Red frame in Figure 2.8 indicates the vertices contained by the root. And

C13 represents the ID of the component.

Figure 2.6. x should be equal to 3, since 2^3=8, and 8 is just larger than the largest weights in

the graph, that is, 7.

21

Under the root, there are 3 components at level 2. The weights of the edges between

vertices in each component at this level are smaller than 22 equals 4. Since the weights of the

edges e(v1, v3), e(v2, v5), e(v3, v5) and e(v4, v5) are not smaller than 4, they cannot be

assembled to the same component at this level. So at this level, the graph is separated into 3

parts: C10, C11 and C12. According to the same reason, there are 4 components at level 1, all

edges in each component are smaller than 21=2.

Figure 2.7. A component hierarchy constructed for the graph in Figure 2.6.

Figure 2.8. The root at level 3 contains all vertices of the graph.

22

Figure 2.9. Level 2 has 3 components, vertices will be assembled if the edges between them is

smaller than 4.

Figure 2.10. Level 1 has 4 components, vertices will be assembled if the edges between them

is smaller than 2.

23

 At level 0, the requirement of weights for constructing components is smaller than 1. Since

none of the edges matches the rule, components are constructed by each single vertex. A

component hierarchy is completely constructed with 13 components at 4 different levels.

 For deciding the order of visiting vertices, except the root, each component should be

mapped to its father component’s buckets, depending on its minimum tentative distance. A

minimum tentative distance is the smallest tentative distance among all the vertices in the

component. The unvisited structure which is used to retrieve the smallest tentative distance of a

component is introduced in Section 2.5. To map a sub-component, say c, to its father, we need to

get the index of the bucket which stores component c with c’s tentative distance (D(c)). The

formula is as follows,

D(c) >> (c.level -1)

An instance is shown in Figure 2.12, since component C10 includes the source vertex, so the

tentative of C10 would be 0. And the shortest tentative distance of the vertex contained by C11 is

6, so the tentative distance of C11 is 6. Assume we only know the tentative distances of both of

the two components, but do not know C12. Then we calculate the Bucket IDs for them by the

formula mentioned above. The Bucket ID of C10 and C11 are 0>>1=0 and 6>>1=3, respectively.

C10 and C11 will be mapped to the 0th and the 11th bucket of their father accordingly. Since we

do not know the tentative distance of C12, yet, so it will not be mapped. During visiting process,

C10 will be firstly visited. And then visit C11, if the visiting of C10 does not decrease the tentative

distances of any brothers of C11 to smaller than C11. Because that will cause another component

to be added in its father’s buckets before C11. After all sub-components of C10 and C11 are

visited, they will be removed from C13’s bucket, .

Figure 2.11. Level 0 has 5 singleton components; each of them includes a vertex.

24

 Looking back to the component hierarchy in Figure 2.7, you may find that component C10

and C6 are containing the same vertices. Similarly, C7 and C3; C8 and C4; C12, C9 and C5 also

contain the same vertices. In visiting process, visit the same crowd of vertices repeatedly will

become a burden. For reducing the burden, a component hierarchy should be compressed to a

component tree. If there are some components that contain exactly the same vertices as their

sub-components, then they should be removed from the component hierarchy, and their

sub-components would be their fathers’ direct sub-components. As the instance shown in Figure

2.13, component C10, C7, C8, C12 and C9 will be removed from the hierarchy.

Figure 2.12. An example of bucketing components.

25

2.6. Unvisited structure

An unvisited data structure is used to maintain the tentative distance of each vertex and

component of a component tree. Theoretically, the Thorup algorithm maintains distances in

linear time by using atomic heaps to construct the unvisited structure, but atomic heaps are

defined for the situation that the number of vertices is more than 212
20

, it cannot be used in

common problems. Thorup [Thor97] gives an alternative to avoid using atomic heaps by using

split-findmin algorithm [Gabo85a]. This change increases the algorithm’s cost to O (log𝐶 +

𝛼(𝑚, 𝑛)𝑚), where C represents the maximum edge weights, and 𝛼 is an inverse function of

Ackermann which grows very slowly. If the number of vertices is less than 1080, 𝛼(𝑚, 𝑛) should

be equal to, or less than 4 [Corm09].

The split-findmin separates sequences of elements to different nodes. The key of each node

indicates the minimum key of the elements inside. Thorup algorithm uses split-findmin to

maintain tentative distances of components by mapping all the vertices of a component tree on

level 0 to split-findmin structure. As the example shown in Figure 2.14, there is a sequence S

which includes all elements (①) need to be maintained. The keys of these elements are set to

infinite. To construct the split-findmin structure, firstly, from left to right, every four elements will

be collected as a new node, called super element. ③ of Figure 2.14 includes four super elements

which are created by elements below. Every four super elements on each level compose a father

super element. Till there is not enough super elements can be used. The rest element(s) of each

level which are not enough to create a super element will be inserted to a singleton element(②),

a singleton element cannot be used to create any super element. The keys of singleton elements

Figure 2.13. To compress the component hierarchy, C10, C3, C8, C12 and C9 will be removed.

26

and super elements are equal to the minimum keys of elements maintained by them.

The split-findmin supports three operations as follows,

1. Split(x), separate the sequence S which contains element x to two new sequences, s1 and

s2. s1 includes the elements of S from the first element to x. s2 includes the rest elements

of S.

2. Findmin(x), return the minimum key of the sequence which contains x.

3. Decrease(x, key), if key is smaller than the key of x, set key as the new key of x.

2.7. Thorup algorithm in practice

In practice, due to the difficulty of implementation, [Asan00] and [Prue09] proposed their

modification of the structures used in the Thorup algorithm. In the experiments executed by

[Asan00] and [Prue09], priority queue based Dijkstra algorithm performance better than Thorup.

Meanwhile, [Saku10] obtained an inverse result. In detail, Table 2.1 shows an experimental result

from [Asan00], which compared their modified Thorup algorithm with the original Dijkstra

algorithm and Dijkstra with Fibonacci heap. In which, rows MST and Data structures show the

time cost of constructing the minimum spanning tree, data structures including component tree,

buckets and interval tree, respectively. Row visit shows the time cost of calculating the shortest

path, which is the second phase of the Thorup algorithm. From their result, we see that the time

cost of constructing MST takes most of the time of total time, and reduced the efficiency of

Figure 2.14. The data structure of split-findmin.①: A sequence of vertices, say S.②: Singleton

element.③: Super elements.

27

modified Thorup. They also indicate that,

1. In grid graphs, the visiting part of modified Thorup will perform better than Binary heap

based Dijkstra algorithm when 𝑛 > 234.

2. In random graphs, set m = 6n, the execution time of visiting part of modified Thorup

should less than the binary heap based Dijkstra algorithm when 𝑛 > 225.

With another variant of Thorup algorithm, a suit of more comprehensive experiments are

proposed by [Prue09], in which graphs with varied vertex number, edge number per vertex and

edges’ weights are generated randomly. Besides that, an experiment on accumulate running

times is also included, which uses road network of New York City as the dataset. The

experimental result is shown from Table 1.5 to Table 1.8. The paper indicates that the results

were contrary to the theory, it may be caused by the inefficient implementation or the word

length of today’s computer is still not large enough to realize the Thorup algorithm.

[Saku10] obtained a different result in their experiment of a large-scale network simulation.

Their result indicated that Thorup’s algorithm is slightly faster that Dijkstra’s with approximately

30% larger consumption of memory.

Table 2.1. A result of running time (sec) comparison from [Asan00], n = 50,000.

m 175065 299914 424396

Dijkstra (original) 327.53 326.63 326.97

Dijkstra (Fibonacci heap) 2.33 2.83 3.26

Thorup (total) 25.89 40.74 57.43

MST 23.33 35.24 56.60

Data structures 1.25 1.30 1.23

Visit 1.96 2.46 2.91

28

Table 2.2. Running time (ms) comparison with varied vertex number [Prue09], m = 5n.

n
Dijkstra Thorup

Array heap Fibonacci heap MST Data structures Visit

2000 9 12 6 12 21

4000 37 25 28 25 49

6000 78 43 37 28 96

8000 132 62 46 48 131

10000 203 82 62 53 181

16000 - 140 112 100 302

24000 - 229 159 150 575

32000 - 319 191 193 866

40000 - 419 254 291 1228

Table 2.3. Running time (ms) comparison with varied edge numbers per vertex [Prue09], n =

20000, 3n≤m≤24n.

Edges per vertex
Dijkstra Thorup

Fibonacci heap MST Data structures Visit

6 190 165 119 453

12 218 247 126 515

18 273 337 97 534

24 269 451 131 581

Table 2.4. Running time (ms) comparison with varied edges’ weights length [Prue09],

n=20000, m=5n.

Maximum edges’ weights
Dijkstra Thorup

Fibonacci heap MST Data structures Visit

256 212 148 153 461

1024 209 153 171 423

16384 212 145 156 430

262144 219 168 140 403

29

Table 2.5. Accumulated running times (sec) for ten queries on road network of New York City

[Prue09].

Query times 2 4 6 8 10

Dijkstra (Fibonacci heap) 2768 5536 8367 11089 13779

Thorup 20160 39928 58118 76979 95756

30

3. The Improved Thorup Algorithm

Although theoretically Thorup algorithm is very efficient, according to the experimental

result provided by Asano and Imai [Asan00], and Pruehs [Prue09], it is still slower than array and

Fibonacci based Dijkstra algorithm in practice. One of the reasons is that the data structures

given by Thorup are complicated and having complex operations. They are difficult to be realized

in practice. Specially, the split-findmin needs to rearrange elements to create new super elements

when initializing new component. This may highly increase the time cost of calculating shortest

paths.

In the rest of this Chapter, a performance enhanced Thorup algorithm is proposed. There are

two modifications,

1. Make the component tree able to maintain the tentative distances of vertices.

2. Reduce the depth of the component tree by extending the weights’ limitation when

creating components.

3.1. Mechanism

About the first modification, the basic idea is that, the component tree could be an efficient

structure for maintaining tentative distances, constructing another structure to answer queries

from the component tree may not necessary. Our algorithm maintains the tentative distance of

each vertex with the component tree, so as to avoid creating and using any unvisited data

structures. This change has two benefits as follows.

1. Save the time cost of constructing unvisited structures, which is in the first phase of

Thorup algorithm.

2. Accelerate the process of calculating shortest paths, which is in the second phase of

Thorup algorithm.

Two variables should be added to each node of a component tree,

1. distance, which is used to record the tentative distance of each component.

2. deleted, which is used to mark that whether the tentative distance of a component is not

needed to be updated. It happens when we start to bucket the component’s children.

The second modification intends to reduce the depth of a component tree. In Section2, we have

studied that the original Thorup algorithm creates components at different levels depends on the

weights of the edges. The edges will be included in the same component if their weights are

greater than 2𝑖 and smaller than 2𝑖+1, (0 ≤ i). In the real world, the information of roads

could be enormous and various. This method might create a component tree with high depth.

This will reduce the advantage provided by using buckets. To visit components frequently through

such a structure is inefficient. Accordingly, we try to reduce the depth of the component tree by

31

extending the limitation for edges’ weights of components in different levels. That is, edges which

their weights are greater than 𝑏𝑎𝑠𝑒𝑖 and smaller than 𝑏𝑎𝑠𝑒𝑖+1 will be accumulated in the

same component, 𝑏𝑎𝑠𝑒 should be a number which is power of 2, such as 4, 8, 16 and so forth. It

is set to 16 in our experiment which will be introduced later in Section 3.3. The base should not

be restricted, but changes along the sizes of different graphs. The bucket size of each component

c is then increased to,

⌈∑ 𝑤(𝑒𝑑𝑔𝑒)/𝑏𝑎𝑠𝑒c.level −1
𝑒𝑑𝑔𝑒∈𝑐

⌉

And we also need to right-shift log2 𝑏𝑎𝑠𝑒 times to calculate the positions of components in

their father components. The formula used to calculate the index of the bucket which stores

component c with c’s tentative distance (D(c)) is accordingly changed as follows,

D(c) >> (c.level -1)*log2 𝑏𝑎𝑠𝑒

3.2. Algorithms

Figure 3.1 to Figure 3.4 show the improved algorithms starting from the one named Visit. In

function Visit, from the line 11 to line 17, sub-components are repeatedly visited until a

component does not have any child, or when v.ix >> ((j-i)*log2 𝑏𝑎𝑠𝑒) is increased. If v.ix >>

((j-i)*log2 𝑏𝑎𝑠𝑒) is increased, means the tentative distance of v is no longer the minimum

distance of its parent. It is demonstrated by Thorup in Lemma 22. Since we should always visit

the component has the minimum tentative distance, so the repeat will be stopped. Comparing to

the original algorithm, since the base is changed to a number larger than 2, when manipulating

buckets, the right-shift times is also increased in our algorithm. When decreasing keys of

components, because our algorithm does not use unvisited structure, new keys should be

updated in each undeleted father component of the current component.

32

1. Visit(v)

2. if v is a leaf node of component tree then

3. VisitLeaf(v)

4. Remove v from the bucket of v’s parent

5. return

6. end if

7. if v has not been visited previously then

8. Expand(v)

9. v.ix = v.ix0 //The lowest bucket index of this component

10. end if

11. repeat until v has no child or v.ix >> ((j-i)*log2 𝑏𝑎𝑠𝑒) is increased

12. while the bucket B[v.ix] is not empty

13. let wh equal to the node in bucket B[v.ix]

14. Visit(wh)

15. end while

16. v.ix = v.ix+1

17. end repeat

18. if v has any child then

19. move v to bucket B[v.ix>>((j-i)*log2 𝑏𝑎𝑠𝑒)] of v’s parent

20. end if

21. if v does not has child and v is not the root of the component tree then

22. remove v from the bucket of v’s parent

23. end if

Figure 3.1. Algorithm of visit.

33

1. Expand (v)

2. v.ix0 = v.distance >>((i-1)*log2 𝑏𝑎𝑠𝑒)

3. v.deleted = TRUE

4. for each child wh of v

5. store wh in bucket B[wh.distance >>((i-1)*log2 𝑏𝑎𝑠𝑒)]

6. end for

Figure 3.2. Algorithm of Expand.

1. VisitLeaf(v)

2. for each vertex w connected with v, if v.distance + L(v, w) < w.distance

3. Let wh be the unvisited root of leaf w

4. Let wi be the unvisited parent of wh

5. Decrease(w, v.distance +L(v,w))

6. if this decreases wh.distance >> ((i-1)*log2 𝑏𝑎𝑠𝑒) then

7. Move wh to bucket B[wh.distance >> ((i-1)*log2 𝑏𝑎𝑠𝑒)] of wi

8. end if

9. end for

Figure 3.3. Algorithm of VisitLeaf.

1. Decrease (v, newValue)

2. if v.distance > newValue and v.deleted !=TRUE then

3. v.distance = newValue

4. let n to be the parent of v

5. while n.deleted !=TRUE and n.distance >newValue

6. n.distance = newValue

7. let n to be the parent of n

8. end while

9. end if

Figure 3.4. Algorithm of Decrease.

34

3.3. Examples

Here is an instance for explaining the mechanism of our algorithm when calculating shortest

paths. The base of this instance is set as 2. Let v1 be the source vertex of this problem. Figure 3.5

shows the graph of component arrangement on level 0. Since v1 is contained by component C1,

the tentative distance of C1 is set to 0. Components on level 0 are indexed by an ArrayList

according to their IDs, so they can be visited directly. Currently, we do not know the tentative

distances of other components, set their tentative distances to infinite.

Figure 3.6 shows the component hierarchy after decreasing the tentative distances of

component C1 and its father components. To avoid using unvisited structure, a new variable used

to record the tentative distance is added to each component. It makes the component hierarchy

the same as component tree able to maintain tentative distances. When the tentative distance of

a leaf-component is updated, the tentative distance of its undeleted father components should

also be updated one by one. Therefore, after decrease the tentative distance of C1 from infinite

to 0, the tentative distances of its fathers C6, C10 and C13 are also decreased. For getting the

information of connected vertices, adjacent list will be visited. v2 and v3 are two vertices

connected to v1, the components which contain them are C2 and C3, respectively. As the figures

shown in Figure 3.7 and Figure 3.8, their tentative distances are decreased from infinite to 1 and

6, respectively. The tentative distances of the father components of both of C1 and C2 will not be

updated, since they are smaller than the tentative distance of C2. Then tentative distances of C6

and its father components C7 and C11 will be decreased. C13 is not included, since its tentative

distance is smaller.

Figure 3.5. Graph of the components arrangement on level 1. Initially, set v1 as the source

vertex. Since v1 is contained by component C1. The tentative distance of C1 is set

to 1.

35

Figure 3.6. Plot of the component hierarchy when finished decreasing the tentative

distance of C1 and its father components.

Figure 3.7. Decrease the tentative distance of v2 and v3 to 1 and 6, respectively.

36

Figure 3.8. The tentative distances of C1 and C2's father components will not be updated,

since they are smaller than the tentative distance of C2.

Figure 3.9. The tentative distances of C5 and its father components C9 and C12 will be

decreased from infinite to 8.

37

After decreasing the tentative distance of the components connected to source vertex, the

component hierarchy will be visited from the root. At the first time when visiting a component, a

sequence of buckets will be initialized for arranging the order of visiting its children. An ArrayList

will be added in each of the buckets for storing components. In this situation, C10 is stay before

C11 in the buckets, since its tentative distance is smaller. When visiting C6, C1 should be visited

Figure 3.10. The tentative distances of C4 and its father component C8 will be decreased

from infinite to 9.

Figure 3.11. All children of C13 are visited, algorithm finished.

38

firstly, and then C2, according to the same rule. Visited leaf-components will be removed from its

father’s buckets. A component which does not have any unvisited components will also be

removed from its fathers’ buckets. C1 and C2 will be removed from C6 after visiting. Since v2

connects with v5, as the structure shown in Figure 3.9, after visiting C2, the tentative distance of

C5 and its father components C9 and C12 are decreased from infinite to 8. C12 will be stored to

C13’s buckets behind C6. All children of C6 are visited, remove C6 from C10’s buckets, and

remove C10 from C13.

Now we have C11 and C12 in C13’s buckets, visit C11 first. C7 will be stored in C11’s bucket. C8

will be ignored for the moment since we do not know its tentative distance yet. When visiting C3,

we found v3 connects v4 and v5. The tentative distance of the component contains v4, and C4

and its father C8 will be decreased from infinite to 9. Keep C5 and its fathers’ tentative distance.

Remove C3 and C7 from C7 and C11, respectively. Go back to C11, storing C8 to the buckets of

C11. Then visiting C4 through C8, v4 connects with v5, but will not decrease its tentative distance,

so keep it as well. As the structure shown in Figure 3.10, after removing C4, C8 and C11 from the

buckets of C8, C11 and C13, respectively, we have C12 only in C13’s buckets. Visit C5 through C12

and C9, no vertex’s tentative distance will be decreased. Then remove C5, C9 and C12 from C9,

C12 and C13. As the structure shown in Figure 3.11, finally, all children of the root of this

component hierarchy are visited, algorithm finishes.

39

4. Practical Experiment

The source code of experiment in this paper is modified based on [Prue09]. This experiment

focuses on comparing the performance among Dijkstra result algorithm with priority queues

including Fibonacci heaps and binary heap, original Thorup algorithm and the improved Thorup

algorithm in Chapter 3. Since some algorithms mentioned in [Thor97] are difficult to implement,

[Prue09] replaced some algorithms in [Thor97] with other algorithms. The detailed information is

as follows,

1. Use Kruskal’s algorithm [Krus56] to generate a minimum spanning tree so as to avoid using

Fredman and Willard’s union-find algorithm [Fred94], since their algorithm uses atomic

heaps as a priority queue, which requires 𝑛 > 212
20

. It is the same as the solution given by

Thorup [Thor97]. Moreover, in Kruskal’s algorithm, Tarjan’s union-find algorithm [Tarj75] is

used to make sets. The time cost of constructing a minimum spanning tree is bounded in

O(𝛼(𝑚, 𝑛)𝑚). Here 𝛼 is an inverse function of Ackermann, which grows very slowly. If the

number of vertices is less than 1080, 𝛼(𝑚, 𝑛) should be equal to, or less than 4 [Corm09].

2. Use Tarjan’s union-find algorithm [Tarj75] instead of the tabulation-based algorithm

[Gabo85b] to construct components of the component tree.

3. Use Gabow’s split-findmin data structure [Gabo85a] instead of atomic heaps to maintain the

tentative distance of each vertex. It is called unvisited data structure in [Tarj75]. It is the

same as the solution given by Thorup.

The method of importing Shapfiles as datasets will be introduced in Section 4.1.

4.1. The improved MX-CIF quadtree

Generally, when performing a search in spatial index, all the objects’ Minimum Bounding

Rectangles (MBRs) which intersect the search-window will be taken as primary results, and then

relations between the primary results and search-window are judged by a secondary query for an

exact result. The amount of primary result is an important factor to affect time cost of the query.

When creating experimental datasets from Shapefiles, an improved MX-CIF quadtree [Wei13] is

used to prune the lines which do not intersect with any other lines. These lines will cause errors

when calculating the minimum spanning tree, so they should not be included in experimental

datasets. Every line will be queryed to find intersected lines, then delete the lines which do not

intersect with any other lines. The improved MX-CIF quadtree reduces the time cost of query by

decreasing primary results in number of objects.

Like other variants of the quadtree, in an improved MX-CIF quadtree, more than one object

can be associated with both of leaf node and non-leaf node. Moreover, an MBR should be

associated with only one node. Once an MBR is associated with a node, N, then the MBR will

never be split to any sub-nodes of N. The associated objects will be inserted into a list of the

node directly. The planar partition and structure is given by Figure 4.1. Four objects are indexed

40

with MX-CIF quadtree, A and B belong to the root, C belongs to node 2, that is, the northwestern

sub-node of the root, and D belongs to node 22. An object should be inserted into the first node

which its x or y axis intersects the object’s MBR. So although A overlaps both of the axes of the

root and the root’s northwestern sub-node, it is still associated with the root only.

The specialty which accelerates the query of the improved MX-CIF quadtree is the element

called Region-MBR. The Region-MBR is a rectangle used to present the minimum bounding of all

the objects in the same node. It is created by the maximum x and y coordinate, and the minimum

x and y coordinate of all the objects in a node. Comparing to the border of a node, Region-MBR

provides a more precise frame for judging relations between object and search-window. When

making queries to the original MX-CIF quadtree, the objects in the nodes which intersect the

search-window will be taken as approximate results and reported to a secondary query for an

exact judgment. According to the usage of the MX-CIF quadtree, assume D as a search-window to

launch an overlap query, because both of the root and its northwestern sub-node intersect D, the

primary results should include object A, B and C. And then, A, B and C will be reported to have an

exact comparison with the search-window. But in the improved MX-CIF quadree, only in the

situation that the nodes’ Region-MBRs intersect the search-window, the objects associated with

them can be reported to the secondary query. Appling this rule to the example mentioned before,

the primary result will be C only. Because D does not intersect the Region-MBR of root, so the

objects in the root, that is, A and B, should not be included. This method reduces the number of

approximate results will be reported, so the query performance is enhanced.

(a) (b)

Figure 4.1. The planar partition (a) and structure (b) of an MX-CIF quadtree. Dash-line

represents the Region-MBR of each node.

41

4.2. Importing real dataset

The experiment is originally supported running with generated datasets, in this paper, real

dataset is also available. The result of [Prue09] is given in the introduction part. The dataset used

in this experiment is the transportation of Japan, which is from the Geospatial Information

Authority of Japan. The dataset can be found at:

www1.gsi.go.jp/geowww/globalmap-gsi/download/data/gm-japan/gm-jpn-trans_u_2.zip.

Since the vertices in the dataset are not connected with each other totally, a part of the

dataset which is considered that all of its vertices are connected is extracted. The plot of the

original dataset and extracted dataset are shown in Figure 4.1.

For evaluating the performance of algorithms with different amount of vertices, five

datasets are derived from the original dataset. The pruned datasets can be found at:

http://weiyusi.com/resource/gm-jpn-trans_u_2.7z

Their plots are shown in Figure 4.4. Their detailed information is included in Table 4.1.

The source code of this project can be found at:

http://weiyusi.com/resource/ShortestPaths.7z

Because [Prue09] uses adjacent list to present a graph, so the dataset should be

transformed to adjacent list. For making the datasets easier to be edited, firstly, they are

transformed from the format of Shapefile to WKT (Well-Known Text) by functions given in JTS

[Davi03]. With the WKT format, a line which is created by three points p1(x1, y1), p2(x2, y2),

p3(x3, y3) will be presented as Linestring (x1 y1, x2 y2, x3 y3).

Before the transformation, the dataset need to be pruned to delete single edges inside. Both

sides of this kind of edge do not connect to any other edge. These edges should be cut to let the

(a) (b)

Figure 4.2. Transportation of Japan (a) and dataset used in experiment (b).

http://weiyusi.com/resource/gm-jpn-trans_u_2.7z
http://weiyusi.com/resource/ShortestPaths.7z

42

dataset be an intact graph. An example of a single line is shown in Figure 4.2, and the algorithm is

shown in Figure 4.3.

Figure 4.3. A single line (circled) in the graph of dataset.

Delete_single_line (dataset)

for each line x in dataset

 start = x.StartPoint

 end = x.EndPoint

 for each line y in dataset

 if (start.intersection(y) && x! = y) start_intersect = TRUE

 if (end.intersection(y) && x! = y) end_intersect = TRUE

 if (start_intersect == TRUE && end_intersect == TRUE)

newdataset.add(x)

break

return newdataset

Figure 4.4. Algorithm for deleting single lines in dataset.

Figure 4.5. Five datasets derived from original dataset.

43

Then the pruned datasets need to be transformed to an adjacent list. The list includes the

information of the connection between vertices and their weights, so that the datasets can be

used in [Prue09]. The algorithm of transforming dataset is shown in Figure 4.5. It uses hash tables

to allocate a unique vertex ID to each endpoint of each line in a Shapfile, and gets the length of a

line as the weights of an edge. So that it turns endpoints to vertices, and turns lines to the edges,

which will be used in the experiment. In the situation that many lines have the same endpoints,

the one has the shortest length will be reserved, and the others will be ignored. For making a

distinction, let’s call lines from Shapfile dataset as lines, and call lines in a graph as edges. Line 1

initializes two hash tables for storing vertices’ IDs and weights, respectively. Line 2 initializes two

lists. The list named edges is used to store the edges with allocated IDs. The list named graph is

an adjacent list, it stores edges from the list edges in both directions. Lines 5 and 6 get the

endpoints of each line as the vertices of each edge, and store them in variables s and e in the

form of coordinate. Line 7 gets the length of a line as the weights of an edge. Lines 8 to 21

allocate a unique ID to each endpoint which was not allocated before. Each allocated endpoint

will be stored in a hash table. Before allocating an ID, firstly, the program checks whether the

endpoint is already in the hash table, which means it was allocated an ID before. This is used to

make sure the spatial intersection point of two or more lines will not be allocated as two different

IDs. In detail, Lines 8 and 9 query in the hash table hb with endpoints of each line. If the return is

null, means the point have been queried is new and does not have an ID. Lines 11 and 17 allocate

unique IDs for new points. Lines 12 and 18 store the ID of new points to two variables,

respectively. It is for creating an edge later. If any of the endpoints has been allocated an ID, use

the allocated ID to create the edge later. When there are more than one line having the same

endpoints (an example is given in Figure 4.6), lines 22 to 30 make sure that only the edge which

has the shortest length can be kept in the dataset. Line 22 creates a key with the two IDs got

before. The key will be used in Line 23 to query the weights of the edge created by the two IDs. If

the return is null, means no edge was created by these two IDs before. Line 25 inserts this edge

to a hash table named hbw with the edge’s weights. Line 26 adds the edge to the list edges, for

creating adjacent list later. If the return is not null, means there are more than one lines have the

same endpoints. Lines 27 to 30 compare the two weights and leave the smallest as the new

weights. Lines 33 to 35 get all edges from edges, and get their weights from hbw. Lines 36 to 37

create adjacent list by storing each edge twice: positive and negative directions.

Table 4.1. Information of datasets.

Info\Data 1 2 3 4 5

Vertices 1889 6913 11478 14295 16670

Edges 5920 21798 36262 44904 53318

44

1. Hashtable hb, hbw

2. List edges, graph

3. Int id = 0

4. for each line l of the Shapfile do

5. sp = l.StartPoint

6. ep = l.EndPoint

7. weight = l.Length

8. s = hb.get(sp)

9. e = hb.get(ep)

10. if s ==null then

11. hb.put(sp, id)

12. sEdge = id

13. id++

14. else sEdge = s

15. end if

16. if e ==null then

17. hb.put(ep, id)

18. eEdge = id

19. id++

20. else eEdge = e

21. end if

22. we = sEdge + “-” + eEdge

23. w = hbw.get(we)

24. if w == null then

25. hbw.put(we, weight)

26. edges.add(WeightedEdge(sEdge, eEdge))

27. else if w > weight then

28. hbw.remove(we)

29. hbw.put(we, weight)

30. end if

31. end for

45

32. for each edge e in edges do

33. sEdge = e.Source

34. eEdge = e.Target

35. weight = hbw.get(sEdge+ “-” + eEdge)

36. graph.add(WeightedEdge(sEdge, eEdge, weight))

37. graph.add(WeightedEdge(eEdge, sEdge, weight))

38. end for

Figure 4.6. Algorithm of transform dataset to adjacent list.

After transforming lines to edges, all edges will be stored into a two-dimensional list two

times, positive sequence and negative sequence as follows,

edge(SourceVertexID, TargetVertexID, Weights)

edge(TargetVertexID , SourceVertexID, Weights)

The list uses vertex ID as the index of the first dimension, and stores the information of

edges in the second dimension, each item of information occupies a node. The data structure of

the list is as follows,

list[VertexID][Connections]

For instance, the graph in Figure 4.8 will be transformed as follows,

List: [1]-[edge(1, 2, 1)]->[edge(1, 3, 6)]

 [2]-[edge(2, 1, 1)]->[edge(2, 5, 7)]

Figure 4.7. When there is more than one line having the same endpoints, the edge which has the

shortest length can be kept in the dataset

46

 [3]-[edge(3, 1, 6)]->[edge(3, 4, 3)]->[edge(3, 5, 7)]

 [4]-[edge(4, 3, 3)]->[edge(4, 5, 6)]

 [5]-[edge(5, 2, 7)]->[edge(5, 3, 7)]->[edge(5, 4, 6)]

4.3. Experiment and result

The performance of the improved Thorup algorithm is evaluated through our modified

experiment which originally provided by Pruehs [Prue09]. The experiment compared the

performance of Dijkstra and Thorup algorithm with synthetic data sets. The time cost of finding

the distance of every vertex to a given source vertex is compared among the following three:

Dijkstra with array-based primary queue, Dijkstra with Fibonacci-based primary queue, and

Thorup. Based on the modifications that has been introduced at the very beginning of this

Chapter, we modified the experiment in two phases,

1. Added the code of the improved Thorup algorithm.

2. Made the experiment possible to run with real datasets.

The result of comparison between Dijkstra, Thorup and our algorithm is given in Table 4.2.

Figure 4.9 and Figure 4.10 show the chart of results, respectively. Each of them is the average of

1,000 times calculation. Their standard deviations are in the Figures and are also shown in Table

4.3. Because of Thorup algorithm can respond in arbitrary time of shortest path query from any

vertex by constructing an index only one time, here we focus on the comparison of visiting part.

Figure 4.8. A graph with five vertices.

47

Comparing to the Array-based Dijkstra, Fibonacci-based Dijkstra and the original Thorup

algorithm, our algorithm reduced 17.3%, 78.7% and 87.7% of time cost for all the five datasets,

respectively. Theoretically, since the amortized time complexities of the Fibonacci heap is better

than array heap, it should help the Dijkstra algorithm to perform better. But the experiment

indicates that the Fibonacci heap did not perform as well as expected. It is because the difficulty

of implementation reduces its efficiency, which is also mentioned in [Corm09].

The value of base has been changed from 8 to 64 for testing the most suitable value of these

datasets. The comparison result is shown in Table 4.4 and Figure 4.11. The chart in Figure 4.12

shows the trends of base increment and the total time cost. The results show that with these

datasets, the total time costs are almost the same when setting base equal to 16 and 32. Using

bigger base will reduce the number of buckets and then decrease memory usage. When setting

base equal to 64, for these datasets, will let the component tree has only one component, the

root, with a batch of buckets. All vertices will be mapped to it, directly

(264 = 18, 446, 744, 073, 709, 551, 616). Since the vertices are visited more efficiently when all

vertices are mapped in the same level of the component tree, the total time cost is less than

using smaller base value. In this case, the memory space is large enough to create a sufficient

number of buckets for the experimental datasets, the buckets based Dijkstra algorithm should be

more efficient, since it does not need pre-indexing and the number of created buckets may fewer.

Table 4.5 shows the comparison of memory usage among four algorithms. The result is

obtained by using JConsole. Comparing to the original Thorup algorithm, since our algorithm

does not use unvisited structure, the memory usage is greatly saved. But still takes about 200%

more memory than the array based Dijkstra algorithm. In the four results about the improved

Thorup algorithm, using base 8, 16 and 32 took almost the same memory usage. Since the

component trees have the same depth with these values of base. It took more memory when

using 64 as the base. It is because in this situation, the component tree has only on component

with a batch of buckets for mapping all vertices in the graph. The buckets number is increased.

The experimental environment is listed as follows, since the memory space of the experimental

environment (16GB) is much larger than the most memory usage (about 50 Mbytes), so there

should be no memory swapping.

CPU Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz, 2394 MHz

Memory PC3-12800 (800 MHz), 16GBytes

OS Microsoft Windows 7 64-bit Service Pack 1

48

Table 4.2. Result of Experiment (milliseconds).

Algorithms\Datasets 1 2 3 4 5

Array heap based Dijkstra 0.2670 1.2448 2.1284 2.7046 3.2503

Fibonacci heap based Dijkstra 1.4217 4.6497 8.2387 10.5074 12.4469

Thorup Construct Structures 0.8900 3.2701 5.6787 7.3159 8.9413

Thorup Visiting 1.3443 7.1367 14.1758 20.2040 21.4530

Improved Thorup Constructing (base = 16) 0.8724 3.2929 5.7094 7.3788 8.9999

Improved Thorup Visiting (base = 16) 0.2151 0.9161 1.6719 2.2689 2.8642

Table 4.3. Standard Deviations (milliseconds).

Algorithms\Datasets 1 2 3 4 5

Array heap based Dijkstra 0.0028 0.0553 0.0492 0.0843 0.0939

Fibonacci heap based Dijkstra 0.0102 0.0626 0.0775 0.0725 0.0606

Thorup Visiting 0.0095 0.1230 0.1301 0.1241 0.1376

Improved Thorup Visiting (base = 16) 0.0023 0.0178 0.0789 0.0713 0.1045

Figure 4.9. Chart of the results. Comparing with the Fibonacci based Dijkstra and the

original Thorup (base = 16).

0

5

10

15

20

25

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

M
S

Comparing with the Fibonacci based Dijkstra and
the original Thorup

Dijkstra (Fibonacci heap) Thorup (Visiting) Improved Thorup(Visiting)

49

Figure 4.10. Chart of the results. Comparing with the Array heap based Dijkstra (base = 16).

0

0.5

1

1.5

2

2.5

3

3.5

4

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

M
S

Comparing with the Array heap based Dijkstra

Dijkstra (Array heap) Improved Thorup(Visiting)

Table 4.4. Experimental result of using different values of base (milliseconds).

 Base = 8 Base = 16 Base = 32 Base = 64

Dataset1 0.2408 0.2151 0.2095 0.1940

Dataset2 0.9577 0.9161 0.9157 0.8509

Dataset3 1.7266 1.6719 1.6364 1.5463

Dataset4 2.3574 2.2689 2.2514 2.1748

Dataset5 2.9962 2.8642 2.8679 2.7139

Total time cost 8.2787 7.9362 7.8809 7.4799

50

Figure 4.11. Time cost comparison among different values of base.

0

0.5

1

1.5

2

2.5

3

3.5

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

M
ill

is
e

co
n

d
s base = 8

base = 16

base = 32

base = 64

Figure 4.12. Trends of base increment and the total time cost.

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

8 16 32 64

M
ill

is
e

co
n

d
s

Base Value

Trends

Time Cost

51

Table 4.5. Comparison of memory usage.

Algorithms Memory Usage (bytes)

Array heap based Dijkstra 6,429,896

Fibonacci heap based Dijkstra 12,865,056

Thorup 51,456,936

Improved Thorup (base = 8) 19,299,944

Improved Thorup (base = 16) 19,281,368

Improved Thorup (base = 32) 19,298,168

Improved Thorup (base = 64) 19,446,720

52

5. Conclusion

This paper introduced a single source shortest path algorithm named Thorup, and proposed

its improvement. Comparing to the original Thorup algorithm, the improved algorithm reduces

the time cost in both of constructing and visiting phases. This is realized by two improvements as

follows,

1. Modifying the component tree to make it able to maintain the tentative distances instead

of the unvisited structure,

2. Reduce the depth of the component tree in order to enhance the efficiency during visiting

phases.

The experimental result indicates, comparing to the array-based Dijkstra, Fibonacci-based

Dijkstra and the original Thorup algorithm, our algorithm reduced 17.3%, 78.7% and 87.7% of the

time cost, respectively. About the memory usage, since we avoid using unvisited structure, our

algorithm takes about only a half of the memory usage of the original Thorup algorithm. But still

takes about 200% more memory than the array based Dijkstra algorithm. The original Thorup

algorithm costs much more time to finish the query comparing to other algorithms. One of the

reasons is that the structures and algorithms used in the Thorup algorithm are complex. It makes

the implementation lose its efficiency. The other reason is, the atomic heaps [Fred94] used by

Thorup as the unvisited structure, designed for running on the RAM which its word length has to

be larger than logn, where n is the number of vertices. But the computers we used in common

and also in the experiment mentioned above use byte addressing RAM. To my understanding,

that is to say, to make the Thorup algorithm performance well in common computer, the length

of a word has to be equal to the length of a byte, which is 8bit. Due to the requirement (word

length > logn), n must be less than 256. For breaking this limitation, the split-findmin algorithm is

used to instead. Its time complexity is O(𝛼(𝑚, 𝑛)𝑚), where 𝛼 is an inverse function of

Ackermann which grows very slow. If the number of vertices is less than 1080, 𝛼(𝑚, 𝑛) should

be equal to, or less than 4. [Corm09, Section 21.4] This change reduces the Thorup algorithm’s

cost to O(log𝐶 + 𝛼(𝑚, 𝑛)𝑚), where C represents the maximum edge weights.

The improved Thorup algorithm uses a modified component tree which could afford all the

work of unvisited structure. Since the unvisited structure is not used in the new algorithm, the

time cost of constructing structures and the memory space is saved. During the period of visiting,

instead of visiting both of the component tree and the unvisited structure to calculate the

tentative distance of each component, we only need to visit the component tree, thus the time

cost of visiting is saved too. In the worst case, the time cost of the improved Thorup algorithm

including both of construction and visiting part is O(log𝐶 + 𝛼(𝑚, 𝑛)𝑚 + 𝑑𝑛) , where C

represents the maximum edge weights, n represents the number of vertices, and d represents

the depth of a component tree. It happens when all the tentative distances of the vertices are

smaller than their parents’ tentative distance. In this situation, all the vertices have to update its

tentative distance to all its parents in each level of the component tree, cost O(𝑑) for each

vertex. O(log𝐶 + 𝛼(𝑚, 𝑛)𝑚) is the time complexity of construction, the same as the original

53

Thorup algorithm., though the new algorithm does not need to construct the unvisited structure.

And O(𝑑𝑛) is the time complexity of visiting part. Since generally, in the case of memory space

is sufficient, the depth of a component tree should be controlled as small as possible, such as 3 or

4, so the time complexity should be almost the same with the original Thorup algorithm. On the

other hand, theoretically, the Fibonacci heaps based Dijkstra algorithm should be faster than the

array based Dijkstra algorithm. And the original Thorup algorithm should be the fastest. The

reason of getting opposite experimental result is that the Fibonacci heaps and the split-findmin

algorithm is difficult to implement. Using Fibonacci heaps as the priority queue or using

split-findmin algorithm as the unvisited structure might not be efficient in practice. To invent

more efficient algorithm and implementation used to construct the unvisited structure will be

very likely to accelerate the Thorup algorithm again.

54

Acknowledgment

I would like to extend my sincere gratitude foremost to my supervisor, Professor ShojiroTanaka,

for his continuous guidance of my Ph.D study, for his patience and encouragement. This

dissertation could not have accomplished without his instruction. Second, I would like to express

my gratitude to Professor Okamoto, Professor Hamaguchi and Professor Hirotomi, who have

instructed and helped me a lot. Last my thanks would go to my beloved family for their loving

considerations and encourage through these years.

55

Appendix

Using GitHub

GitHub is a web-based revision control system. It offers free service for open source project. The

code of the experiment mentioned in this Dissertation will be maintained through GitHub. The

method of pulling code from GitHub will be introduced in this Section.

 Here we use Eclipse as the local environment. Initially, the plugin of GitHub should be

installed to Eclipse. The steps of installing are as follows,

1. Click “Help” from the menu, and then select “Install New Software….”

2. Click the button “Add…” to add a source as the example shown in Appendix. Figure 1.

Here we use http://download.eclipse.org/egit/updates. Fill the “Location” column with

this address, and fill the “Name” column with any words you like.

3. Select the source just added from the Drop-down box “Work with”. Open up “Eclipse Git

Team Provider”, and then check the item “Eclipse EGit” as the example shown in

Appendix. Figure 2. When the installation is finished, a restart of Eclipse is required.

4. After restart, we are going to pull the project from GitHub. First right click in the area of

“Project Explorer”, and then click “Import” as the example shown in Appendix. Figure 3.

The “Project Explorer” is normally on the left of Eclipse’s interface. If it is not there,

open it by clicking “Window” -> “Show View” -> “Project Explorer” on the menu.

5. Open the drop-down menu “Git”, and then select “Projects from Git” as the example

shown in Appendix. Figure 4. Click “Next”, and then select “URI” for pulling project from

GitHub’s server. Click “Next” again.

6. When come to “Source Git Repository”, fill “URI” column with the address

https://github.com/weiyusi/ShortestPaths.git, then the rest columns will be filled by

default. And then click “Next.”

7. Select a branch in Branch selection. “Master” branch will be selected by default. Click

“Next.”

8. Set a local path to store the pulled project in “Local Destination.” Click “Next.”

9. Select “Import existing projects” to store pulled project to the place decided in the last

step. Click “Next.”

10. Confirm the projects you would like to pull, and then finish the importing. The project

“ShortestPaths” will be shown in the “Project Explorer” if successful.

http://download.eclipse.org/egit/updates
https://github.com/weiyusi/ShortestPaths.git

56

Appendix. Figure 1. Adding the source of GitHub to Eclipse.

Click the button “Add…” to add a source.

Here we use http://download.eclipse.org/egit/updates. Fill the “Location” column with this

address, and fill the “Name” column with any words you like.

http://download.eclipse.org/egit/updates

57

Appendix. Figure 2. Select Eclipse Egit from the source.

Select the source just added from the Drop-down box “Work with”. Open up “Eclipse Git

Team Provider”, and then check the item “Eclipse EGit”. When the installation is finished, a

restart of Eclipse is required.

58

Appendix. Figure 3. Import project (1).

After restart, we are going to pull the project from GitHub. First right click in the area of

“Project Explorer”, and then click “Import”. The “Project Explorer” is normally on the left

of Eclipse’s interface. If it is not there, open it by clicking “Window” -> “Show View” ->

“Project Explorer” on the menu.

59

Appendix. Figure 4. Import project (2).

Open the drop-down menu “Git”, and then select “Projects from Git”. Click “Next”, and

then select “URI” for pulling project from GitHub’s server. Click “Next” again.

60

Appendix. Figure 5. Import project (3).

Fill “URI” column with the address https://github.com/weiyusi/ShortestPaths.git, then the

rest columns will be filled by default. And then click “Next.”

61

Appendix. Figure 6. Import project (4).

Select a branch in Branch selection. “Master” branch will be selected by default. Click

“Next.”

62

Appendix. Figure 7. Import project (5).

Set a local path to store the pulled project in “Local Destination.” Click “Next.”

63

Appendix. Figure 8. Import project (6).

Select “Import existing projects” to store pulled project to the place decided in the last

step. Click “Next.”

64

Appendix. Figure 9. Import project (7).

Confirm the projects you would like to pull, and then finish the importing. The project

“ShortestPaths” will be shown in the “Project Explorer” if success.

65

References

[Asan00] Asano, Y., Imai, H., 2000, Practical Efficiency of the Linear Time Algorithm for the Single

Source Shortest Path problem, Journal of the Operations Research, Society of Japan,

Vol. 43, No. 4, pp.431-447.

[Bhal02] Bhatia, G., et al., 2002, Keyword Searching and Browsing in Databases using BANKS,

ICDE Conf, pp.431-440.

[Cher96] Cherkassky B V, Goldberg A V, Radzik T. Shortest paths algorithms: theory and

experimental evaluation. Mathematical programming, 1996, 73(2), pp.129-174.

[Corm09]Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford (2009) [1990].

Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill, 1292pp.

[Davi03] Davis M, Aquino J. Jts topology suite technical specifications. The Jump Project, 2003.

[Dena79] Dennard, E. V., Fox, B. L., 1979, Shortest route methods: 1. reaching pruning and

buckets, Operations Research, 27, pp.161-186.

[Dial69] Dial, R. B., 1969, Algorithm 360: Shortest Path Forest with Topological Ordering, Comm.

ACM 12, pp.632-633.

[Dijk59] Dijkstra, E. W., 1959, A note on two problems in connexion with graphs, Numerische

Mathematik 1, pp.269-271.

[Dini78] Dinic, E. A. 1978, Economical algorithms for finding shortest paths in a network. In

Transportation Modeling Systems, Y.Popkov and B. Shmulyian, eds. Institute for System

Studies, Moscow, CIS, pp. 36-44.

[Dris88] Driscoll, J. R., Gabow,H. N., Shrairman, R., Tarjan, R. E., 1988, Relaxed heaps: An

alternative to Fibonacci heaps with applications to parallel computation,

Communications of the ACM, 31(11), pp.1343-1354.

[En12] En, D., Wei, H., Yang, J., Wei, N., Chen, X., Liu, Y., 2012, Analysis of the Shortest Path of

GPS Vehicle Navigation System Based on Genetic Algorithm, Electrical, Information

Engineering and Mechatronics 2011, Springer London, pp.413-418.

[Erik08] Erik, D., Rivest, R., Devadas, S., 2008, 6.006 Introduction to Algorithms, Massachusetts

Institute of Technology: MIT OpenCourseWare.

[Fred87] Fredman, M. L., Tarjan, R. E., 1987, Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM 34, pp.596-615.

[Fred90] Fredman, M.L, Willard, D.E., 1990, Blasting through the Information Theoretic Barrier

with Fusion Trees, Proc. ACM Symp. on Theory of Computing, pp.1-7.

[Fred93] Fredman, M. L., Andwillard, D. E., 1993, Surpassing the information theoretic bound

with fusion trees. J. Comput. Syst. Sci. 47, pp.424-436.

66

[Fred94] Fredman, M.L., Andwillard, D. E., 1994, Trans-dichotomous algorithms for minimum

spanning trees and shortest paths. J. Comput. Syst. Sci. 48, pp.533-551.

[Gabo85a]Gabow, H. N. 1985. A scaling algorithm for weighted matching on general graphs. In

Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer

Science.IEEE Computer Society Press, Los Alamitos, Calif., pp.90-100.

[Gabo85b]Gabow, H. N., Tarjan, R. E., 1985, A linear-time algorithm for a special case of disjoint

set union. J. Comput. Syst. Sci. 30, pp.209-221.

[Gils73] Gilsinn, J., Witzgall, C., 1973, A Performance Comparison of Labeling Algorithms for

Calculating Shortest Path Trees, NBS Technical Note 777, National Bureau of Standards,

Washington, D.C, 87pp.

[Gold04] Goldberg, A., Harrelson, C., 2004, Computing the shortest path: A* search meets graph

theory. Technical Report MSR-TR-2004-24, Microsoft Research.

[Hage00] Hagerup, T., 2000, Improved shortest paths on the word RAM. In: Proc. 27th Int’l Colloq.

on Automata, Languages, and Program-ming(ICALP). LNCS vol. 1853, pp.61-72.

[Hitc68] Hitchner, L. E. 1968. A comparative investigation of the computational effciency of

shortest path algorithms. Tech. Rep. ORC 68-17, University of California at Berkeley.

[Hopc83] Hopcroft J E. Data structures and algorithms. Addison-Weely, 1983, 427pp.

[Krus56] Kruskal, J. B. 1956. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proc. Am. Math. Soc. 7, pp.48-50.

[Meye01] Meyer, U., 2001, Single-source shortest-paths on arbitrary directed graphs in linear

average-case time, Proceedings of the twelfth annual ACM-SIAM symposium on

Discrete algorithms, pp.797-806.

[Pett05a] Pettie, S., Ramachandran, V., 2005, A shortest path algorithm for real-weighted

undirected graphs. SIAM J. Comput.34(6), pp.1398-1431.

[Pett05b] Pettie, S., 2005, Sensitivity analysis of minimum spanning trees in

sub-inverse-Ackermann time, In Proceedings 16th Int’l Symposium on Algorithms and

Computation (ISAAC), pp.964-973.

[Prue09] Pruehs, N., 2009, Implementation of Thorup's Linear Time Algorithm for Undirected

Single-Source Shortest Paths with Positive Integer Weights.

[Rama96] Raman, R., 1996, Priority queues: small monotone, and trans-dichotomous. In Proceedings

of the 4th Annual European Symposium on Algorithms.Lecture Notes on Computer Science,

vol. 1136, Springer-Verlag, New York, pp.121-137.

[Saku10] Sakumoto, Y., Ohsaki, H., Imase, M., 2010, On the effectiveness of thorup’s shortest path

algorithm for large-scale network simulation, 2010 10th Annual International Symposium

on Applications and the Internet, pp.339-342.

[Sedg03] Sedgewick, R., 2003, Algorithms in java part 5, graph algorithms (3rd edition),

Addison-Wesley Professional, 528pp.

67

[Siva99] Sivakumar, R., Sinha, P., Bharghavan, V., 1999, CEDAR: a core-extraction distributed ad

hoc routing algorithm. IEEE Journal on Selected Areas in Communications, 17,

pp.1454-1465.

[Tarj75] Tarjan, R. E. 1975. Efficiency of a good but not linear set union algorithm. J. ACM 22 , 2

(Apr.), pp.215-225.

[Thor97] Thorup, M., 1997, Undirected single source shortest paths in linear time. Proceedings

of the 38th Symposium on Foundations of Computer Science, pp.12-21.

[Wei13] Wei, Y. and Tanaka, S., Improvement of MX-CIF Quadtree With Downloadable Source

Code and Benchmark Datasets[M]. LAP LAMBERT Academic Publishing, 2013, 99pp.

[Yen70] Yen, J. Y., 1970, A Shortest Path Algorithm, Ph.D. dissertation, University of California,

Berkeley.

