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Abstract

This paper is concerned with pattern recognition for K(≥ 2)-class problems in a

High Dimension Low Sample Size (hdlss) context. The proposed method is based on

canonical correlations between the predictors and response vector of class label. This

paper proposes a modified version of the canonical correlation matrix which is suitable

for discrimination of a new data in a hdlss context. We call such a matrix the naive

canonical correlation matrix which plays an important role in this paper. Provided

the dimension does not grow too fast, we show that the K − 1 sample eigenvectors

of naive canonical correlation matrix are consistent estimators of the corresponding

population parameters as both the dimension and sample size grow, and we give upper

bounds for the misclassification rate. Furthermore, we propose variable ranking and

feature selection methods which integrate information from all K − 1 eigenvectors.

For real and simulated data we illustrate the performance of the new method which

results in lower errors and typically smaller numbers of selected variables than existing

methods.
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1 Introduction

Pattern recognition is a statistical method by which a new data with unknown class label

is classified into one of the previously known classes. Generally, the overall process can be

divided into four main steps: preprocessing of data, feature extraction, feature selection,

and discrimination. Following Devroye et al. (1996), we use the notion Pattern Recognition

synonymously with Discrimination, and consider the problem of classifying d-dimensional

random vectors X into one of K classes.

Fisher’s well-known linear discriminant function for K-class problems is the solution

to his paradigm: maximize the between-class variance while minimizing the within-class

variances. See Fisher (1936), and Rao (1948) for the general multi-class setting. Especially,

for the special case of 2-class problems, we assume that the two populations, C1 and

C2, have multivariate normal distributions which differ in their means µ1 and µ2, but

share a common covariance matrix Σ. For X from one of the two classes, Fisher’s linear

discriminant function

g(X) =

(
X − 1

2
(µ1 + µ2)

)T

Σ−1(µ1 − µ2) (1.1)

assigns X to C1 if g(X) > 0, and to C2 otherwise. If the random vectors have equal

probability of belonging to either of the two classes, then the misclassification rate of (1.1)

is shown to be

1

2

[
Φ

(
−∆2

2

)
+

{
1− Φ

(
∆2

2

)}]
,

where Φ is the standard normal distribution function and ∆ is the Mahalanobis distance

between the two populations:

∆ =

√
(µ1 − µ2)

T Σ−1 (µ1 − µ2).

A sample version of (1.1) is

ĝ(X) =

(
X − 1

2
(µ̂1 + µ̂2)

)T

Σ̂−1(µ̂1 − µ̂2), (1.2)

where µ̂1, µ̂2 and Σ̂ are appropriate estimates for the corresponding population parameters

of the two classes. (1.2) can be applied to data sets in the general setting where the
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sample size n is much larger than the dimension d. However, for problems with a large

dimension, it has been shown that Fisher’s linear discriminant function performs poorly

due to diverging spectra. Further for High Dimension Low Sample Size (hdlss) problems,

namely n ≪ d, it is not possible to directly define Fisher’s linear discriminant function

since the sample covariance matrix Σ̂ in (1.2) becomes singular when the dimension d

exceeds the sample size n.

Several discriminant rules have been proposed for the hdlss context which overcome

the problem of singularity of Σ̂ in different ways: Dudoit et al. (2002) proposed diagonal

linear discriminant analysis which only uses the diagonal elements of the sample covariance

matrix, Srivastava and Kubokawa (2007) proposed a discriminant function based on the

Moore-Penrose inverse, Ahn and Marron (2010) constructed discriminant function based

on the Maximal Data Piling (MDP) direction vectors, and Aoshima and Yata (2011)

considered a discriminant rule based on second moments in conjunction with geometric

representations of high-dimensional data.

In this paper we focus on the ‘diagonal’ approach of Dudoit et al. (2002) which has

special appeal since it is conceptually simpler than the competitors. Further, this approach

can be implemented efficiently for large and complex data sets. We refer to Fisher’s linear

discriminant function based on the diagonal of the covariance matrix as the naive Bayes

rule.

For two-class problems in a hdlss setting, Bickel and Levina (2004) and Fan and

Fan (2008) investigated the asymptotic behavior of the naive Bayes rule, and calculated

bounds for its misclassification rate. Tamatani et al. (2012) defined a modification of

the canonical correlation matrix that is suitable for classification problems, and studied

the asymptotic behavior of the eigenvector and the discriminant direction of the modified

canonical correlation matrix in the context of two-class problems. Also, for multi-class

problems in a hdlss context, Tamatani et al. (2013) proposed a naive Bayes rule in a

general multi-class setting and investigated its asymptotic properties for high-dimensional

data when both the dimension d and the sample size n grow.
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Throughout this paper we focus on hdlss data from K(≥ 2) classes, that is, we assume

that the dimension d of the data is much bigger than the sample size n. Our discriminant

approach is based on canonical correlations, and in particular on a modification of the

canonical correlation matrix suitable for vector-valued class labels from K classes. In this

framework, we replace the covariance matrix by its diagonal counterpart as discussed in

Dudoit et al. (2002), Bickel and Levina (2004) and Fan and Fan (2008). We call such

a matrix the naive canonical correlation matrix, and observe that this matrix plays an

important role in the present theory. The K − 1 eigenvectors belonging to K − 1 non-

zero eigenvalues of the estimated naive canonical correlation matrix yield discriminant

directions which inform our choice of a discriminant function for K classes. For this

setting we study the asymptotic behavior of the eigenvectors and associate discriminant

directions. In principal component analysis, Johnstone (2001) proposes the notion of

spiked covariance matrices and Ahn et al. (2007) and Jung and Marron (2009) combine

the spikiness of the covariance matrix with hdlss consistency. hdlss consistency is a

measure of the closeness of two vectors in a hdlss setting, and is given in terms of the

angle between the vectors. Ahn et al. (2007) and Jung and Marron (2009) derive precise

conditions under which the first eigenvector of the sample covariance matrix is hdlss

consistent. These conditions include the asymptotic rate of growth of the first eigenvalue

which exceeds the dimension d. Like Ahn et al. (2007) and Jung and Marron (2009), we

consider the asymptotic behavior of K − 1 eigenvectors in a hdlss classification context.

In our context, however, their spiked covariance model is not appropriate since we are

dealing with inverses of the covariance matrix. As a result, our conditions for consistency

differ considerably from theirs.

For hdlss data from K multivariate normal classes, we derive an upper bound for the

misclassification rate of the proposed multi-class discriminant function. Our asymptotic

results for the misclassification rate are divided into two disjoint types depending on

the precise growth rates of d and n. Depending on the two distinct growth rates, we

also develop hdlss asymptotic results for estimators of the eigenvectors and discriminant
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directions.

In high-dimensional settings, it is necessary to select a subset of relevant features (or

variables) for discrimination. There are several discussions on feature selection methods

for multi-class discriminant analysis, see Saeys et al. (2007). It appears that many of these

proposals are variable selection methods which are not specific for or connected with a par-

ticular discriminant function. We believe that in discriminant analysis, a comprehensive

feature selection method should include the discriminant function in the variable ranking

and in the choice of the number of selected features. We propose new feature selection

methods specifically for our multi-class discriminant function.

The paper is organized as follows. In Section 2, we review the framework of pattern

recognition and a relationship between Fisher’s rule and canonical correlations for K

classes. This relationship explicitly exhibits Fisher’s ratio of the within-class and between-

class variances, and its maximizer provides a discriminant rule. In Section 3, we focus on

the gene expression microarray data, which is a typical example of hdlss data. In general,

hdlss data are emerging in various areas of modern science such as genetic microarrays,

medical imaging, text recognition, chemometrics, face recognition, and so on. Further, we

present a similar discussion in Section 2 for hdlss data; we replace Σ by diagΣ, and obtain

a corresponding criterion, which leads to a natural derivation of a multi-class version of

the naive Bayes rule. Section 4 details the asymptotic behavior of the eigenvectors of the

estimated naive canonical correlation matrix and the associated discriminant directions

in a hdlss setting under general distributional assumptions. We derive an upper bound

for the asymptotic misclassification rate of the proposed multi-class discriminant function

under assumptions of normal distribution, and we show that the upper bound for the

asymptotic misclassification rate is indeed a multi-class extension of that obtained in Fan

and Fan (2008) and Tamatani et al. (2012). Section 5 includes new feature selection

methods for K-class discriminant analysis, which naturally follow from our analysis of the

naive canonical correlation matrix. Section 6 provides numerical studies to validate the

theorems derived in Section 4. Our numerical results confirm the asymptotic behavior of
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discriminant directions of Subsection 4.3, and an upper bound for the misclassification rate

of the multi-class discriminant function proposed in Subsection 4.4. Furthermore, we apply

proposed methods in Section 5 to simulated data sets, and compare the performance of our

methods with other ranking methods. Section 7 applies the proposed methods in Section

5 to microarray data example and English spoken data. These comparisons demonstrate

that our feature selection methods work well and yield a parsimonious set of features which

lead to good classification results. Section 8 contains proofs of our theoretical results. In

Section 9, we summarize our results and survey related works and directions for future

research.
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2 Pattern Recognition

2.1 Problem of Pattern Recognition

Let K be the number of class labels. For observation vector x ∈ Rd belonging to a class

k ∈ {1, . . . ,K}, we define the function g, which is called discriminant function, as

g : Rd −→ {1, . . . ,K}.

For evaluating the accuracy of the discriminant function g, it is important to focus on the

probability

P (g(X) ̸= Y ),

which is called misclassification rate of g, where X is a new data taking value in Rd and

Y is the class label of X taking value in {1, . . . ,K}. Our purpose is to choose a function

g∗ such as misclassification rate is small, that is, for any discriminant function g,

P (g∗(X) ̸= Y ) ≤ P (g(X) ̸= Y ). (2.1)

(2.1) means that g∗ is the optimal function, which is called the Bayes rule (see Devroye

et al. (1996)).

In the following sections, we first consider two-class problem under normal distributions

and then investigate the extension to general multi-class discriminant problems. The aim

of these sections is to relate Fisher’s linear discriminant function and canonical correlation

analysis.

2.2 Fisher’s Linear Discriminant Function

In this subsection, we consider two-class setting. Let C1 and C2 be two d-dimensional

populations with different means µ1 and µ2 and the same covariance matrix Σ. For a

random vector X from one of these populations/classes, let π1 be the probability that X

belongs to C1, and let π2 be the probability that X belongs to C2, where π1 + π2 = 1.
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Linear discriminant function is obtained by projecting observation vector x to one

dimension using

z(a) = aTx, (2.2)

where a is called a weight vector. For x from one of the two classes, (2.2) assigns x to

C1 if z(a) ≥ −a0, and otherwise class C2, where a0 is a threshold. A characteristic of

(2.2) is that it is easier to interpret than nonlinear functions. In addition, we can select

a projection that maximizes the class separation by adjusting the components of weight

vector. Here an important point is that we need to find an efficient weight vector which

maximizes the separation between classes.

Fisher’s idea is to obtain the vector a which maximizes the ratio of the between-class

variance ΣB and within-class variance ΣW :

J∗(a) =
aTΣBa

aTΣWa
, (2.3)

where

ΣB = (E[ X | C1 ]− E[ X | C2 ]) (E[ X | C1 ]−E[ X | C2 ])T

= (µ1 − µ2)(µ1 − µ2)
T

and

ΣW =
2∑

ℓ=1

πℓV [ X | Cℓ ]

=

2∑
ℓ=1

πℓE[ (X − µℓ)(X − µℓ)
T | Cℓ ]

= Σ.

As is well known, a solution of a∗ = argmaxa∈Rd−{0} J
∗(a) is given by

a∗ = Σ−1(µ1 − µ2), (2.4)
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see e.g. Bishop and Nasrabadi (2006). Here we select the value

a0(a
∗) =

1

2
(E[ Z(a∗) | C1 ] + E[ Z(a∗) | C2 ])

=
1

2
a∗T (µ1 + µ2)

as the threshold using (2.4). Therefore, the linear discriminant function

g∗(x) = z(a∗)− a0(a
∗)

becomes (1.1), and is called Fisher’s linear discriminant function or Fisher’s rule. It is

also well known that the choice (2.4) yields the Bayes rule, see Devroye et al. (1996).

2.3 Discriminant Function Based on Canonical Correlations

In this subsection we review the relationship between canonical correlations and Fisher’s

linear discriminant function in pattern recognition.

In canonical correlation analysis of two subsets of variables X [1] and X [2] of a random

vector

X =

[
X [1]

X [2]

]
, (2.5)

the canonical correlation matrix

C∗ = Σ
−1/2
1 Σ1,2Σ

−1/2
2 , (2.6)

and the derived matrix C∗C
T
∗ play important roles, see Mardia et al. (1979). Here Σℓ is

the covariance matrix of X [ℓ] (ℓ = 1, 2), and Σ1,2 is the between-covariance matrix of the

two vectors:

Σℓ = E
[
(X [ℓ] − E[X [ℓ]])(X [ℓ] − E[X [ℓ]])T

]
,

Σ1,2 = E
[
(X [1] − E[X [1]])(X [2] − E[X [2]])T

]
.

For random vectors X belonging to one of the classes C1 and C2, we replace X [1] in

(2.5) by X, and X [2] by the vector of labels Y defined by

Y =

[
Y1

Y2

]
and P (Y = eℓ) = πℓ, (2.7)
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where eℓ is the vector with ℓth entry 1 and 0 otherwise. For X and Y we define the

matrix

C̃ = Σ−1/2E
[
(X − µ)Y T

] {
E
[
Y Y T

]}−1/2
, (2.8)

where µ = π1µ1 + π2µ2. Strictly speaking, the centered Y should be used for C̃ in (2.8),

however, for the vector of labels Y , centering is not meaningful. From (2.7) and (2.8) it

follows that

E
[
Y Y T

]
=

[
π1 0

0 π2

]
,

E
[
(X − µ)Y T

]
= E[XY T ]− µE[Y T ]

= [ π1µ1 π2µ2 ]− µ[π1, π2]

= [ π1(µ1 − µ) π2(µ2 − µ) ],

and hence

C̃C̃T = Σ−1/2MΣ−1/2, (2.9)

where

M = E
[
(X − µ)Y T

] {
E
[
Y Y T

]}−1
E
[
(X − µ)Y T

]T
=

2∑
ℓ=1

πℓ(µℓ − µ)(µℓ − µ)T .

Now, consider the eigenvalue problem C̃C̃T p̃ = λ̃p̃. Using the expression (2.9), we see

that solving the eigenvalue problem is equivalent to maximizing J̃(b) defined by

J̃(b) =
bTMb

bTΣb
. (2.10)

From

M =

2∑
ℓ=1

πℓ(µℓ − µ)(µℓ − µ)T

= π1π2(µ1 − µ2)(µ1 − µ2)
T

= π1π2ΣB,

(2.10) is nothing other than the criterion which yields Fisher’s rule (2.3).
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2.4 Fisher’s Rule for Multi-class

We consider the K-class discrimination problem. Let Cℓ (ℓ = 1, . . . ,K) be d-dimensional

populations with different means µℓ and common covariance matrix Σ. For a random

vector X from one of the K classes, let πℓ be the probability that X belongs to Cℓ. Let

Y be the K-dimensional vector-valued class label with ℓth entry 1 if X belongs to Cℓ and

0 otherwise, so P (Y = eℓ) = πℓ, and
∑K

ℓ=1 πℓ = 1.

In canonical correlation analysis of two vectors X and Y , with Y the vector-valued

labels and µ =
∑K

ℓ=1 πℓµℓ, the matrix (2.8) plays an important role. From the definition

of (X,Y ) it follows that

E[Y Y T ] = Π and E
[
(X − µ)Y T

]
= M0Π, (2.11)

where Π = diag(π1, . . . , πK) and M0 = [ µ1 − µ · · · µK − µ ]. Using

M =

K∑
ℓ=1

πℓ(µℓ − µ)(µℓ − µ)T = M0ΠM
T
0 ,

we have (2.9). If we put b̃ = Σ−1/2p̃, where p̃ is a solution to the eigenvalue problem

C̃C̃T p̃ = λ̃p̃ with λ̃ > 0, then the vector b̃ is the maximizer of the criterion

J̃(b) =
bTMb

bTΣb
(2.12)

over vectors b. Note that (2.12) is nothing other than the criterion which yields Fisher’s

rule for the multi-class setting. In particular, the rank of C̃C̃T is K − 1, so the K − 1

eigenvectors [ p̃1 · · · p̃K−1 ] belonging to K − 1 non-zero eigenvalues should be used for

constructing the discriminant directions

B̃ ≡ [ b̃1 · · · b̃K−1 ] = Σ−1/2[ p̃1 · · · p̃K−1 ].

Using the discriminant directions B̃, we want to define a discriminant function g̃ for

classifying new observations X whose class is unknown. For α ∈ {1, . . . ,K − 1}, put

Zα(X) = b̃
T

αX, and define the vector Z(X) = [Z1(X), . . . , ZK−1(X)]T = B̃TX. For

Z(X) and Cℓ, define the Mahalanobis distance between Z(X) and Cℓ by

∆ℓ(Z(X)) =
√

(Z(X)− νℓ)TΣ
−1
ℓ (Z(X)− νℓ),

10



where

νℓ = E [ Z(X) | Cℓ ] = E [ Z(X) | Y = eℓ ] = B̃Tµℓ

and

Σℓ = V [ Z(X) | Cℓ ] = V [ Z(X) | Y = eℓ ] = B̃TΣB̃.

Hence ∆ℓ(Z(X))2 can be rewritten as

∆ℓ(Z(X))2 = (X − µℓ)
T B̃(B̃TΣB̃)−1B̃T (X − µℓ) . (2.13)

Using (2.13), we now derive the multi-class discriminant function g̃ as the minimizer of

the Mahalanobis distance, and let

g̃(X) = argmin
ℓ∈{1,...,K}

∆ℓ(Z(X))2. (2.14)

Note that B̃ depends on Σ and that (2.14) reduces to the Fisher’s linear discriminant

function in the case of 2-class by considering the sign of ∆1(Z(X))2 −∆2(Z(X))2.

2.5 Other Discriminant Functions

In previous subsections, we introduced Fisher’s rule and discriminant function based on

canonical correlations. Another discriminant functions have been discussed in literatures

which include empirical risk minimization method, nearest neighbor rule, kernel method,

neural network, and so on (see Devroye et al. (1996), Bishop and Nasrabadi (2006), Duda

et al. (2012)).

3 HDLSS

3.1 HDLSS Setting

Gene expression microarray data is a form of high-throughput biological data providing

relative measurements of mRNA levels for genes in a biological sample. One important

application of gene expression microarray data is the classification of new samples into
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known classes. In the recent years, many laboratories have collected and analyzed mi-

croarray data, and such data have been appeared in public databases or on web sites.

Indeed, the data collected from gene expression microarrays consist of thousands or tens

of thousands of genes that constitute features: leukemia data (Golub et al. (1999), K =

2, n = 73, d = 7129), lung cancer data (Gordon et al. (2002),K = 2, n = 184, d = 12433),

prostate cancer data (Singh et al. (2002), K = 2, n = 134, d = 12600), the small round

blue cell tumors (SRBCT) data (Khan et al. (2001), K = 4, n = 83, d = 2308), and

so on. These data, often called the High Dimension Low Sample Size (hdlss) data, are

characterized with large number of dimensions d and a relatively small number of sample

size n, that is, we can write n≪ d.

To establish asymptotic theory in this paper, we consider an asymptotic situation in

which the dimension d and the sample size n both approach infinity in such a way that d

is much faster than n:

n = o(d) as n, d −→ ∞.

3.2 Difficulties in HDLSS

The hdlss data involves serious problems. Let Xi (i = 1, . . . , n) be independently and

identically distributed (i.i.d.) d-dimensional random vectors with the covariance matrix Σ.

The usual estimates of Σ is defined as

Σ̂ =
1

n− 1

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T , (3.1)

where µ̂ = (1/n)
∑n

i=1Xi is the mean vector of the data {Xi}1≤i≤n. When we assume

that the data satisfies n ≪ d, (3.1) is a singular matrix because the rank of (3.1) is at

most n− 1. Hence, it means that the sample version of (2.8) is not directly applicable in

the case of n≪ d.

The difficulty of high-dimensional classification in data analysis is intrinsically caused

by the existence of many noise features that do not contribute to the decrease of misclas-

sification rate. To avoid the above problem, the importance of feature selection has been
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stressed and several methods of feature selection for hdlss data have been proposed in

literatures, for example, nearest shrunken centroids method (Tibshirani et al. (2002)) , fea-

ture annealed independence rules (Fan and Fan (2008)), minimum redundancy maximum

relevance feature selection (Ding and Peng (2005), Peng et al. (2005)), and so on.

3.3 Naive Canonical Correlations

In the hdlss two-class discrimination settings, the sample covariance matrix Σ̂ is singular

as was discussed in the previous subsection. For a population framework, it therefore

does not make sense to define a discriminant function based on the within-class covariance

matrix Σ. To overcome such a difficulty, we first require a suitable framework for the

population. We define the naive canonical correlation matrix C and vectors bα and pα by

C = D−1/2E
[
(X − µ)Y T

] {
E[Y Y T ]

}−1/2

and bα = D−1/2pα, where D = diagΣ, and pα is eigenvector of the matrix CCT corre-

sponding to the αth largest eigenvalue λ∗
α. Put P = [ p1 · · · pK−1 ]. The discriminant

directions

B ≡ [ b1 · · · bK−1 ] = [ D−1/2p1 · · · D−1/2pK−1 ] = D−1/2P

can now be seen to maximise the analogous naive criterion

J(b) =
bTMb

bTDb
. (3.2)

Note that Σ in (2.12) has been replaced by the diagonal matrix D in (3.2).

3.4 Discriminant Function in HDLSS

The corresponding discriminant function g is therefore

g(X) = argmin
ℓ∈{1,...,K}

(X − µℓ)
T B(BTDB)−1BT (X − µℓ) . (3.3)

Note that Σ has been replaced by D both in (2.12) and (2.13) to yield (3.2) and (3.3)

respectively.
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It is worth noting that for K = 2, the discriminant function g reduces to the naive

Bayes discriminant function discussed in Bickel and Levina (2004).

4 Asymptotic Theory

In this section, we evaluate the asymptotic behavior of the estimators of pα and bα in a

hdlss setting under general assumptions about the underlying distributions. In addition,

we derive upper bounds for the misclassification rate of multi-class discriminant function

under d-dimensional normal populations.

4.1 Preliminaries

Consider data (Xℓi,Y ℓi) (ℓ = 1, . . . ,K; i = 1, . . . , nℓ), where the independently dis-

tributed Xℓi are from K disjoint classes, and the Y ℓi are independent realizations of

vector labels

Y ℓi = (Yℓi1, . . . , YℓiK)T with Yℓij =

{
1 ℓ-th component,

0 otherwise.

Let X and Y be matrices defined by X = [ X11 · · · XKnK
] and Y = [ Y 11 · · · Y KnK

].

Then X is of size d× n, and Y is of size K × n, where n =
∑K

ℓ=1 nℓ.

Next we derive an empirical version of C and its left eigenvectors pα. Define estimators

µ̂ℓ and Σ̂ of µℓ and Σ by

µ̂ℓ =
1

nℓ

nℓ∑
i=1

Xℓi and Σ̂ =
1

K

K∑
ℓ=1

Ŝℓ,

where

Ŝℓ =
1

nℓ − 1

nℓ∑
i=1

(Xℓi − µ̂ℓ)(Xℓi − µ̂ℓ)
T .

Using the centering matrix, a natural estimator for C is

Ĉ = D̂−1/2

{
1

n

(
X

(
In −

1

n
1n1

T
n

))
Y T

}(
1

n
Y Y T

)−1/2

= D̂−1/2M̂0N
1/2, (4.1)

14



where D̂ = diagΣ̂, In is the n × n identity matrix, 1n is the n-dimensional vector of

ones, M̂0 = [ µ̂1 − µ̂ · · · µ̂K − µ̂ ] and N = diag(n1/n, . . . , nK/n). Hence we obtain the

expression

ĈĈT = D̂−1/2M̂D̂−1/2,

where M̂ = M̂0NM̂T
0 .

Since the rank of ĈĈT is K−1, we use the K−1 eigenvectors p̂α of ĈĈT corresponding

to the K−1 non-zero eigenvalues in the definition of the discrimination directions b̂α, and

put b̂α = D̂−1/2p̂α (α = 1, . . . ,K − 1). We note that these b̂α can be obtained as the

maximizers of the function

Ĵ(b) =
bT M̂b

bT D̂b
.

Put

B̂ = [ b̂1 · · · b̂K−1 ] = [ D̂−1/2p̂1 · · · D̂−1/2p̂K−1 ] ≡ D̂−1/2P̂ ,

then ĝ, defined by

ĝ(X) = argmin
ℓ∈{1,...,K}

(X − µ̂ℓ)
T B̂(B̂T D̂B̂)−1B̂T (X − µ̂ℓ) , (4.2)

is a natural estimator of g in (3.3), and this ĝ is our proposed discriminant function in

the hdlss multi-class setting. To elucidate the asymptotic behavior of ĝ, it is necessary

to develop first asymptotics for B̂ as well as P̂ in a hdlss setting.

Throughout this paper, we make the assumption that the sample size of each of the

K classes satisfies c ≤ nℓ/n for some positive constant c and ℓ = 1, . . . ,K.

In what follows we use the asymptotic notation:

1. an,d = O(bn,d) to mean that an,d/bn,d →M ∈ (0,∞) as n, d→∞.

2. an,d = o(bn,d) to mean that an,d/bn,d → 0 as n, d→∞.

The definition of o is usually included in that of big O, however we distinguish these cases

in this paper.
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In order to evaluate the asymptotic behavior of p̂α, we need the following definition

and conditions:

Definition 4.1 Let x ∈ Rd be a non-stochastic unit vector, and let x̂, a vector of length

one, denote an estimate of x based on the sample of size n . If

x̂Tx
P−→ 1 as n, d→∞,

where
P−→ refers to convergence in probability, then x̂ is hdlss consistent with x.

Condition A. LetX = [ X11 · · · XKnK
] be a data matrix fromK classes. Each column

of X can be written as

Xℓi = µℓ + εℓi,

where εℓi (ℓ = 1, . . . ,K; i = 1, . . . , nℓ) are i.i.d. copies of an underlying random vector ε

with mean 0 and covariance matrix Σ.

Condition B. (Cramér’s condition) There exist constants ν1, ν2,M1 and M2 such that

each component of ε = (ε1, . . . , εd)
T satisfies

E[|εj |m] ≤ m!Mm−2
1 ν1/2 and E[|ε2j − σjj |m] ≤ m!Mm−2

2 ν2/2 for all m ∈ N.

Condition C. Let nℓ → ∞ (for ℓ = 1, . . . ,K), d → ∞, log d = o(n), n = o(d). There

exists a positive sequence Cd depending only on the dimension d such that d/(nCd)→ ξ,

where ξ ≥ 0.

Condition D. All eigenvalues λ∗
α of CTC are simple (so λ∗

1 > · · · > λ∗
K) and satisfy

λ∗
α = O(Cd) and

λ∗
α − λ∗

α+1

Cd
> ξ for α = 1, . . . ,K − 1,

and Cd as in Condition C.
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Condition E. As d → ∞, µT
ℓ D

−1µℓ = O(Cd), and there exists δ ∈ (0, 1) such that

µT
ℓ D

−1µk = O(Cδ
d) for all k, ℓ ∈ {1, . . . ,K}, and Cd as in Condition C.

Condition F. For k, ℓ ∈ {1, . . . ,K}, and k ̸= ℓ,

lim
d→∞

√
πk

µT
kD

−1µk

Cd
̸= lim

d→∞

√
πℓ

µT
ℓ D

−1µℓ

Cd
,

and Cd as in Condition C.

We note that the positive sequence Cd will play an important role in the subsequent

discussions since it controls the gap between d and n.

4.2 Asymptotic Results for Eigenvectors

To establish the asymptotic behaviour of the estimators p̂α, we start with an asymptotic

expansion of the matrix ĈT Ĉ/Cd. In what follows, Θ denotes the parameter space for our

multi-class setting:

Θ =

{
(µ1, . . . ,µK ,Σ)

∣∣∣∣∣ mink ̸=ℓ(µk − µℓ)
TD−1(µk − µℓ) ≥ Cd,

λmax(R) ≤ b0, min1≤j≤d σjj > 0

}
, (4.3)

where R is the correlation matrix R = D−1/2ΣD−1/2, λmax(R) is the largest eigenvalue of

R and σjj is jth diagonal entry of Σ.

Lemma 4.1 Suppose that Condition A – Condition E hold. Then for all parameters

θ ∈ Θ, ĈT Ĉ/Cd can be expanded as

ĈT Ĉ

Cd
=

CTC

Cd
+ ξ(IK −Π1/21K1TKΠ1/2) + 1K1TKoP (1),

where Π is the diagonal matrix given in (2.11).

If ξ = 0, which means d = o(nCd) by Condition C, then the above expansion becomes

very simple.
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To proceed with the theoretical considerations, we need to show that the K − 1 eigen-

values of CTC/Cd+ ξ(IK −Π1/21K1TKΠ1/2) are simple in the case of d = O(nCd), that is,

ξ > 0.

Lemma 4.2 Let λα/Cd be αth largest eigenvalue of CTC/Cd + ξ(IK − Π1/21K1TKΠ1/2).

Suppose that the λα/Cd satisfy Condition D, and that d = O(nCd). Then for all param-

eters θ ∈ Θ,

λα = O(Cd) and
λα

Cd
>

λα+1

Cd
for α = 1, . . . ,K − 1.

In this paper, eigenvectors have unit length. In addition, we assume that the first entry

of each eigenvector is positive. This assumption avoids any ambiguity about the direction

of the eigenvector. Using Lemmas 4.1 and 4.2, we can now describe the asymptotic

behavior of p̂α as follows.

Theorem 4.1 Suppose that Condition A – Condition D hold. Then, for all parame-

ters θ ∈ Θ,

p̂T
α

Ĉγα

||Ĉγα||
= 1 + oP (1) for α = 1, . . . ,K − 1,

where γα is eigenvector of CTC/Cd + ξ(IK − Π1/21K1TKΠ1/2) belonging to the non-zero

eigenvalue λα.

On the other hand, especially in the case of K = 2, the eigenvector p̂1 of ĈĈT cor-

responding to the non-zero eigenvalue can be easily calculated in a closed form. Using

µ̂ = (n1/n)µ̂1 + (n2/n)µ̂2 and

M̂0 = [ µ̂1 − µ̂ µ̂2 − µ̂ ]

=
[ n2

n
(µ̂1 − µ̂2) − n1

n
(µ̂1 − µ̂2)

]
= (µ̂1 − µ̂2)

[n2

n
, −n1

n

]
,
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(4.1) can be expressed as

Ĉ =

√
n1n2

n2
D̂−1/2 (µ̂1 − µ̂2)

[√
n2

n
, −
√

n1

n

]
(4.4)

from which we obtain the expression

ĈT Ĉ = λ̂∗


√

n2

n

−
√

n1

n



√

n2

n

−
√

n1

n


T

, (4.5)

where λ̂∗ =
{
(n1n2)/n

2
}
(µ̂1 − µ̂2)

T D̂−1 (µ̂1 − µ̂2). From (4.5), it follows that the rank

of ĈT Ĉ is one. The non-zero eigenvalue of ĈT Ĉ is λ̂∗ and its eigenvector is

p̂0 ≡


√

n2

n

−
√

n1

n

 .

Hence the normalized eigenvector p̂1 of ĈĈT is given by

p̂1 =
Ĉp̂0

||Ĉp̂0||
=

D̂−1/2 (µ̂1 − µ̂2)

(µ̂1 − µ̂2)
T D̂−1 (µ̂1 − µ̂2)

. (4.6)

Proofs of Lemmas 4.1, 4.2 and Theorem 4.1 are given in Section 8. To gain further

insight in the behavior of the p̂α, we define the vectors

pα =
Cγα

||Cγα||
for α = 1, . . . ,K − 1 (4.7)

by referring to Theorem 4.1. Under the assumption that d = O(nCd), one can show that

the vectors p̂α are consistent estimators for the pα. We have the following theorem and

corollary:

Theorem 4.2 Suppose that Condition A – Condition E hold, and that d = O(nCd).

Moreover, assume that λα/Cd → κα and γT
αΠ

1/21K → ηα. Then for all parameters θ ∈ Θ,

P̂ TP
P−→

κβδαβ − ξ(δαβ − ηαηβ)
√
κα
√

κβ − ξ(1− η2β)


1≤α,β≤K−1

, (4.8)

where δαβ is the Kronecker delta-function.
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Corollary 4.1 Suppose that Condition A – Condition E hold, and that d = o(nCd).

Then for all parameters θ ∈ Θ,

P̂ TP
P−→ IK−1.

Corollary 4.1 states that if d = o(nCd) is satisfied, then p̂α is hdlss consistent with

pα. Furthermore, p̂α is asymptotically orthogonal to pβ for α ̸= β. On the other hand,

if d = O(nCd) is satisfied, then the angle between p̂α and pβ converges to a particular

non-zero angle for all α and β.

For the two-class setting, we obtain a simple expression of (4.8) that does not need to

use γ1 appeared in Theorem 4.2. Similarly to (4.4) and (4.5), we have

C =
√
π1π2D

−1/2 (µ1 − µ2) [
√
π2, −

√
π1]

and

CTC = λ∗

[ √
π2

−√π1

][ √
π2

−√π1

]T
,

where λ∗ = π1π2 (µ1 − µ2)
T D−1 (µ1 − µ2). Also, the matrix I2 − Π1/2121

T
2 Π

1/2 can be

written as

I2 −Π1/2121
T
2 Π

1/2 =

[
1 0

0 1

]
−

[
π1

√
π1π2

√
π1π2 π2

]

=

[ √
π2

−√π1

][ √
π2

−√π1

]T
.

Therefore, we obtain

CTC

Cd
+ ξ(I2 −Π1/2121

T
2 Π

1/2) =

(
λ∗

Cd
+ ξ

)[ √
π2

−√π1

][ √
π2

−√π1

]T
.

Hence

γ1 =

[ √
π2

−√π1

]
is an eigenvector of CTC/Cd + ξ(I2 −Π1/2121

T
2 Π

1/2) with λ∗/Cd + ξ.

20



From the assumption of Theorem 4.2, we can see that λ1/Cd = λ∗/Cd + ξ and

γT
1 Π

1/212 = 0. If we add the assumption that the ratio of (µ1 − µ2)
T D−1 (µ1 − µ2) and

Cd converges to ζ > 0:

(µ1 − µ2)
T D−1 (µ1 − µ2)

Cd
−→ ζ as d→∞, (4.9)

then (4.8) can be written as

p̂T
1 p1

P−→

√
κ1 − ξ(1− η21)

κ1

=

√
π1π2ζ

π1π2ζ + ξ

=

√
1

1 + ξ/(π1π2ζ)
. (4.10)

(4.10) is essentially equivalent to Theorem 2 of Tamatani et al. (2012).

4.3 Asymptotic Results for Discriminant Directions

Next we turn to the asymptotic behavior of the vectors b̂α. We define normalized versions

of direction vectors for discrimination by

b̂
∗
α =

D̂−1/2p̂α√
p̂T
αD̂

−1p̂α

, b∗α =
D−1/2pα√
pT
αD

−1pα

(4.11)

for α = 1, . . . ,K − 1. Then we have the following theorem and corollary:

Theorem 4.3 Suppose that Condition A – Condition E hold, and that d = O(nCd).

Put σmax = max1≤j≤d σjj and σmin = min1≤j≤d σjj. Then for all parameters θ ∈ Θ,

b̂
∗T
α b∗β ≤

b∗Tα b∗β
√

κα − ξ(1− η2α)√
κα − ξ(1− η2α) (1− σmin/σmax)

(1 + oP (1)), (4.12)

b̂
∗T
α b∗β ≥

b∗Tα b∗β
√

κα − ξ(1− η2α)√
κα − ξ(1− η2α) (1− σmax/σmin)

(1 + oP (1)). (4.13)
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Corollary 4.2 Let B̂∗ = [ b̂
∗
1 · · · b̂

∗
K−1 ] and B∗ = [ b∗1 · · · b∗K−1 ]. Suppose that

Condition A – Condition E hold, and that d = o(nCd). Then for all parameters

θ ∈ Θ,

B̂∗TB∗ −B∗TB∗ P−→ O.

Theorem 4.3 states that the upper and lower bounds of b̂
∗T
α b∗β are determined by the

ratio of σmax and σmin. For example, if all diagonal elements of Σ are equal, then

b̂
∗T
α b∗α − b∗Tα b∗α

√
1− ξ

κα
(1− η2α)

P−→ 0. (4.14)

If d = o(nCd) is satisfied, then the angle between b̂
∗
α and b∗α converges to 0 in probability,

which shows that the b̂
∗
α are hdlss consistent with the corresponding b∗α. However, b̂

∗
α

and b∗β may not necessarily be orthogonal for α ̸= β, since

b̂
∗T
α b∗β −

pT
αD

−1pβ√
pT
αD

−1pα

√
pT
βD

−1pβ

= oP (1).

Remark In the two-class setting, (4.12) and (4.13) can be written as

b̂
∗T
1 b∗1 ≤

1√
1 + ξ (σmin/σmax) /(π1π2ζ)

(1 + oP (1)), (4.15)

b̂
∗T
1 b∗1 ≥

1√
1 + ξ (σmax/σmin) /(π1π2ζ)

(1 + oP (1)) (4.16)

by using the additional assumption (4.9). Tamatani et al. (2012) derived the asymptotic

behavior of discriminant direction b̂
∗
1 under the constrained parameter space in their The-

orem 5. However, we can see that the asymptotic behavior of discriminant directions can

be evaluated on Θ from Theorem 4.3, and such restrictions of the parameter space Θ

utilized in Tamatani et al. (2012) are not necessary.

4.4 Upper Bound for Misclassification Rate

In this section, we study the misclassification rate of our method in a multi-class setting.

The misclassification rate for two classes has been investigated in Fan and Fan (2008) who

derived an upper bound for the misclassification rate in a hdlss setting.
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Specifically, for the results in this section we will assume that Condition A1 holds.

Condition A1. Let X = [ X11 · · · XKnK
] be a data matrix from K classes. Each

column of X can be written as

Xℓi = µℓ + εℓi,

where εℓi are i.i.d. random vectors distributed as Nd(0,Σ), d-dimensional normal distri-

bution with mean vector 0 and covariance matrix Σ.

In addition to Condition A, Condition A1 makes statements about the distribution of

X.

Suppose that X belongs to class Ck. The misclassification rate of ĝ, an estimate of the

discriminant function g in (3.3), for class Ck is defined as

Wk(ĝ, θ) = P (ĝ(X) ̸= k |Xℓi, ℓ = 1, . . . ,K; i = 1, . . . , nℓ )

= 1−
∫

D̂k

1√
|2πΣ̂k|

exp

(
−1

2
zT Σ̂−1

k z

)
dz

≡ 1− ΦK−1

(
D̂k; 0, Σ̂k

)
,

where Σ̂k is the transformed covariance matrix of size (K − 1)× (K − 1) which is defined

in (8.13) in Section 8, and D̂k is the (K − 1)-dimensional region given by

D̂k =
{
z ∈ RK−1

∣∣∣ zj < d̂kα, α ∈ {1, . . . ,K − 1}
}
,

where

d̂kα = I(α < k)d̂kα + I(α ≥ k)d̂k(α+1) and

d̂kα =
(µk − (µ̂k + µ̂α)/2)

T B̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)√
(µ̂k − µ̂α)

T B̂(B̂T D̂B̂)−1B̂TΣB̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)
.

We note that the region D̂1 results in the interval obtained in Theorem 1 in Fan and Fan

(2008) for their special case of K = 2.
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Let Θk be the parameter space associated with the misclassification rate of ĝ for class

Ck:

Θk =

{
(µ1, . . . ,µK ,Σ)

∣∣∣∣∣ minℓ ̸=k(µℓ − µk)
TD−1(µℓ − µk) ≥ Cd,

λmax(R) ≤ b0,min1≤j≤d σjj > 0

}
.

In addition to the region D̂k we also require the following region and quantities in

Theorem 4.4:

Dk,O =
{
z ∈ RK−1

∣∣ zα < dkα(1 + oP (1)), α = 1, . . . ,K − 1
}
,

where dkα = I(α < k)dkα + I(α ≥ k)dk(α+1),

dkα =
SkαΓ

[
ΓT
{
CTC + (d/n)(IK −Π1/21K1TKΠ1/2)

}
Γ
]−1

ΓTQT
kα√

λmax(R)
√

QkαΓ
[
ΓT
{
CTC + (d/n)(IK −Π1/21K1TKΠ1/2)

}
Γ
]−1

ΓTQT
kα

,

Γ = [γ1, . . . ,γK−1], Skα = Mkα/2 + (d/n)skαΠ
−1/2, Qkα = Mkα + (d/n)qkαΠ

−1/2,

Mkα = (µk − µα)
TD−1/2C,

skα = [s1, . . . , sK ] , sℓ = πℓ −
1

2
{I(ℓ = k) + I(ℓ = α)} ,

qkα = [q1, . . . , qK ] , qℓ = I(ℓ = k)− I(ℓ = α).

Furthermore, we need the following region in Corollary 4.3:

Dk,o =
{
z ∈ RK−1

∣∣ zα < d∗kα(1 + oP (1)), α = 1, . . . ,K − 1
}
,

where d∗kα = I(α < k)d∗kα + I(α ≥ k)d∗k(α+1) and

d∗kα =

√
MkαΓ (ΓTCTCΓ)−1 ΓTMT

kα

2
√

λmax(R)
.

We have the following theorem and corollary using Theorem 4.1.

Theorem 4.4 Suppose that Condition A1 and Condition B – Condition F hold,

and that d = O(nCd). Then, for all parameters θ ∈ Θk,

Wk(ĝ, θ) ≤ 1− ΦK−1

(
Dk,O; 0, Σ̂k

)
.
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Corollary 4.3 Suppose that Condition A1 and Condition B – Condition F hold,

and that d = o(nCd). Then, for all parameters θ ∈ Θk,

Wk(ĝ, θ) ≤ 1− ΦK−1

(
Dk,o; 0, Σ̂k

)
.

Note that Theorem 4.4 and Corollary 4.3 extend Theorem 1 in Fan and Fan

(2008) to the general multi-class setting considered in this paper.

Especially in the case of two-class setting, we can achieve a smaller upper bound for the

misclassification rate than has previously been established in Fan and Fan (2008) under

the assumptions implying the hdlss consistency of b̂
∗
1.

The worst case misclassification rate for g is defined as

Wk(g) = max
θ∈Θ

Wk(g, θ),

where Θ is the parameter space in (4.3). Note that we have Θ = Θ1(= Θ2) in the case of

two-class setting. The upper bound for the misclassification rate for two-class setting has

been derived by Fan and Fan (2008) as follows:

Theorem 4.5 (Fan and Fan (2008)) Suppose that Condition A1, Condition B and

Condition C hold, and that d = O(nCd). Then, for θ ∈ Θ, the misclassification rate

W1(ĝ, θ) is bounded above by

W1(ĝ, θ) ≤ 1− Φ

(√
n1n2/(dn)α

TD−1α(1 + oP (1)) + (n1 − n2)
√

d/(nn1n2)

2
√

λmax(R)
√

1 + n1n2αTD−1α(1 + oP (1))/(dn)

)
, (4.17)

where α = µ1 − µ2.

The worst case misclassification rate for ĝ is also derived in Fan and Fan (2008), and

is given under the assumption d = o(nCd). Their result is

W1(ĝ) = 1− Φ

(
1

2

√
n1n2

dnb0
Cd{1 + oP (1)}

)
.
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This results seems to be derived from the bound stated in Theorem 4.5 – part (i) of

their Theorem 1. Our calculations in Theorem 4.6 are based on the explicit assumption

d = o(nCd), which yields a tighter bound.

Theorem 4.6 Suppose that Condition A1, Condition B and Condition C hold, and

that d = o(nCd). Then, for θ ∈ Θ, the misclassification rate W1(ĝ, θ) is bounded above by

W1(ĝ, θ) ≤ 1− Φ

(√
αTD−1α

2
√

λmax(R)
(1 + oP (1))

)
,

with α = µ1 − µ2. Moreover, for the worst case misclassification rate, we have

W1(ĝ) = 1− Φ

(√
Cd

2
√
b0
(1 + oP (1))

)
.

Note that Theorem 4.5 is the result for d = O(nCd), while d = o(nCd) is assumed in

Theorem 4.6. We see that, again, the rate of growth of d relative to nCd plays an impor-

tant role. The upper bounds in Theorems 4.5 and 4.6 have the following relationship:

Corollary 4.4 Suppose that Condition A1, Condition B and Condition C hold,

and that n2/n1 = c0 + o(1) for 1 ≤ c0 < ∞. Then, as d → ∞, for any θ ∈ Θ satisfying

d = O(nCd) and, α
TD−1α/Cd = O(1), where α = µ1 − µ2,

1− Φ

(√
n1n2/(dn)α

TD−1α(1 + oP (1)) + (n1 − n2)
√

d/(nn1n2)

2
√

λmax(R)
√

1 + n1n2αTD−1α(1 + oP (1))/(dn)

)
(4.18)

> 1− Φ

(√
αTD−1α

2
√

λmax(R)
(1 + oP (1))

)
. (4.19)

Therefore, (4.19), the bound obtained in Theorem 4.6, is smaller than the bound

(4.18) of Theorem 4.5. It is interesting to observe that the assumption d = o(nCd),

which leads to the desirable hdlss consistency of b̂
∗
1 in Corollaly 4.2, is also responsible

for the smaller error bound (4.19).

26



5 Feature Selection

5.1 Feature Selection in 2-class

Koch and Naito (2010) propose feature selection in a regression context, which is based on

two different ‘ranking vectors’: the eigenvector p̂∗ of the matrix Ĉ∗Ĉ
T
∗ , and the first canon-

ical correlation vector b̂∗ = Σ̂
−1/2
1 p̂∗, where Ĉ∗ is the sample version of (2.6). Analogously,

we consider a naive Bayes discriminant function

ĝ(x) =

(
x− 1

2
(µ̂1 + µ̂2)

)T

D̂−1(µ̂1 − µ̂2)

= ĉ

(
x− 1

2
(µ̂1 + µ̂2)

)T

D̂−1/2p̂1

= ĉ

(
x− 1

2
(µ̂1 + µ̂2)

)T

b̂1

which includes feature selection based on p̂1 and on b̂1, where ĉ = ||D̂−1/2(µ̂1 − µ̂2)||.

Because ĉ (> 0) does not affect discrimination, ĝ is essentially

ĝ(x) =

(
x− 1

2
(µ̂1 + µ̂2)

)T

D̂−1/2p̂1

=

(
x− 1

2
(µ̂1 + µ̂2)

)T

b̂1.

For notational convenience we write q̂ = (q̂1, . . . , q̂d)
T to denote either p̂1 = (p̂1, . . . , p̂d)

T

or b̂1 = (b̂1, . . . , b̂d)
T as appropriate.

Let X = (X1, . . . , Xd)
T be a random vector from one of the two classes Cℓ. Put

ĝη(X) =

d∑
j=1

(
Xj −

1

2
(µ̂1j + µ̂2j)

)
b̂jI(|q̂j | > η), (5.1)

where µ̂ℓj is jth components of µ̂ℓ = (µ̂ℓ1, . . . , µ̂ℓd)
T , I is the indicator function and η > 0

is an appropriate threshold.

We interpret (5.1) in the following way. We first sort the features, that is, the variables

of X in decreasing order of the absolute value of the components q̂j of q̂, and then consider

the first m features to classify the data.
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We write the sorted components of q̂ as

|q̂i1 | ≥ |q̂i2 | ≥ · · · ≥ |q̂im | ≥ · · · ≥ |q̂id | ≥ 0. (5.2)

For the naive canonical correlation matrix Ĉ, b̂1 is the naive version of the canonical

correlation vector. In Subsection 4.3, b̂1 is the direction vector for the hdlss naive Bayes

rule; b̂1 therefore plays a dual role of ranking vector for variable selection, and of direction

vector for the naive Bayes discriminant function. We summarize our classification method

based on feature selection with b̂1 in Steps 1–5 below.

Classification and variable ranking based on b̂1

Step 1 Calculate b̂1.

Step 2 Sort the components of b̂1 in descending order of their absolute values as in (5.2):

|b̂i1 | ≥ |b̂i2 | ≥ · · · ≥ |b̂im | ≥ · · · ≥ |b̂id | ≥ 0.

Step 3 Apply the permutation τ : {1, 2, ..., d} → {i1, i2, ..., id} to the rows of X, and to

b̂1, and then put b̂1 ← τ(b̂1) and X ← τ(X).

Step 4 Find the best truncation m̂ of (4.3) in Fan and Fan (2008):

m̂ = argmax
1≤m≤d

1

λ̂max(Rm)

[∑m
j=1(µ̂1j − µ̂2j)

2/σ̂jj +m(1/n2 − 1/n1)
]2

nm/(n1n2) +
∑m

j=1(µ̂1j − µ̂2j)2/σ̂jj
,

where Rm is the correlation matrix of the truncated observations.

Step 5 Classify a new datum X by

1. putting X ← τ(X), and

2. assigning X to class C1 if

ĝm̂(X) =
m̂∑
i=1

(
Xi −

1

2
(µ̂1i + µ̂2i)

)
b̂i > 0. (5.3)
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We refer to the classification of the five steps above as the NAive Canonical Correlation

(nacc) approach, thus acknowledging the fact that Mardia et al. (1979) call b̂1 a canonical

correlation vector. For the ranking vector q̂ = p̂1 in (5.2), the rule (5.1) becomes

ĝm(X) =
m∑
j=1

(
Xij −

1

2
(µ̂1ij + µ̂2ij )

)
b̂ij

=
1

ĉ

m∑
j=1

(
Xij −

1

2
(µ̂1ij + µ̂2ij )

)
α̂ij

σ̂ijj

for some m ∈ {1, . . . , d}, where the Xij are the sorted entries of X, α̂j = µ̂1j − µ̂2j , and

σ̂jj is the jth diagonal element of D̂ given by

σ̂jj =
1

n− 2

{
(n1 − 1)S2

1j + (n2 − 1)S2
2j

}
,

and

S2
ℓj =

1

nℓ − 1

nℓ∑
i=1

(Xℓij − µ̂ℓj)
2, ℓ = 1, 2; j = 1, . . . , d.

A comparison of the feature selection induced by (5.2) with the Feature Annealed Inde-

pendence Rules (fair), which Fan and Fan (2008) propose, shows that their selection is

induced by the two sample t-statistics, namely, for jth variable

Tj =
α̂j√

σ̂jj

(
1

n1
+

1

n2

) . (5.4)

A comparison of (4.6) and (5.4) yields that Tj = Cnp̂j for all j, where the constant Cn

depends on the sample size. Hence, feature selection or variable ranking based on (5.2)

is essentially equivalent to fair, and the eigenvector p̂1 of the naive canonical correlation

matrix therefore offers a natural explanation for the variable selection in fair.

The classifications nacc and fair differ in that the initial ranking is based on different

vectors; nacc uses b̂1, while variable selection in fair is based on p̂1. As a consequence

the order of the variables and the ‘optimal’ number of variables will differ in the two

approaches.
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5.2 Feature Selection in Multi-class

In this section, we propose a method for feature selection in a hdlss multi-class set-

ting which accompanies our discriminant function. For two-class problems a number of

algorithms exist for extracting and ranking salient features, including the features an-

nealed independence rules (fair) of Fan and Fan (2008), which are based on two-sample

t-statistics. Tamatani et al. (2012) showed that fair is essentially equivalent to variable

ranking based on the absolute value of the components of p̂1. Furthermore, Tamatani

et al. (2012) proposed the naive canonical correlation (nacc) approach for feature selec-

tion, which exploits the first canonical correlation vector b̂1. Feature selection algorithms

for more than two classes have been discussed in the machine learning and bioinformatics

literature; see, for example, the comprehensive survey by Saeys et al. (2007).

Feature selection algorithms generally consist of two steps:

Step A

Variable Ranking: Using some reference vectors including information about fea-

tures(variables), we make a ranking vector ĉ, of which components satisfy

ĉj1 ≥ · · · ≥ ĉjm ≥ · · · ≥ ĉjd ≥ 0.

A variable ranking scheme for a vector X (or each column of the data matrix X) is

a permutation of the variables of X according to the order inherited from ĉ.

Step B

Number of Discriminant Features: Once the entries of X (or each column of the

data matrix X) have been ranked, we determine the number of effective features, m̂

and then only use the features Xj1 , . . . , Xjm̂ .

fair uses p̂1 as the reference vector. nacc works in a similar way, but it is based

on b̂1 instead of p̂1. Both rules minimize an upper bound for the misclassification rate

as the stopping criterion in Step B. Note that p̂1, and respectively b̂1, is the eigenvector

belonging to the unique non-zero eigenvalue for K = 2.
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We aim to extend fair and nacc to the multi-class setting. A natural extension is

the use of all K − 1 vectors p̂1, . . . , p̂K−1 or b̂1, . . . , b̂K−1 as reference vectors. Hence we

need a rule for combining the K − 1 vectors. We integrate the K − 1 reference vectors

into a component-wise ‘best’ ranking vector whose entries are chosen as described in

Table 5.1. The ranking of the variables is then inherited from the ranking vector obtained

by combining these reference vectors.

Table 5.1: The ranking vector ĉ associated with nacc and fair for K classes.

Name Component of ĉ

m-nacc ĉj = max
1≤α≤K−1

|b̂αj |, j = 1, . . . , d

m-fair ĉj = max
1≤α≤K−1

|p̂αj |, j = 1, . . . , d

The criterion for selecting the number of discriminant features is similar to that in

Fan and Fan (2008): We choose the number m̂ which minimizes the upper bound of the

misclassification rate given in Theorem 4.4. Suppose that the rows of the data matrix

X are sorted according to some ĉ, and then X is truncated into the upper m̂× n matrix.

The discrimination rule (4.2) with feature selection becomes

ĝm̂ (X) = argmin
ℓ∈{1,...,K}

(
Xm̂ − µ̂ℓ,m̂

)T
B̂m̂(B̂m̂D̂m̂B̂T

m̂)−1B̂T
m̂

(
Xm̂ − µ̂ℓ,m̂

)
, (5.5)

where Xm̂, µ̂ℓ,m̂ and each column of B̂m̂ = [ b̂1,m̂ · · · b̂K−1,m̂ ] are the corresponding first

m̂-dimensional subvectors and

D̂m̂ = diag(σ̂11, . . . , σ̂m̂m̂)

is the m̂× m̂ left-upper submatrix of D̂. Let [ · ]m denote the vector or matrix containing

the first m features, that is, for aℓ = [aℓ1, . . . , aℓd]
T ∈ Rd and A = [ a1 · · · aK ] ∈ Rd×K ,

[ aℓ ]m = [aℓ1, . . . , aℓm]T ∈ Rm, [ A ]m = [ [ a1 ]m · · · [ aK ]m ] ∈ Rm×K .

Then, we summarize the new classification method based on feature selection in the fol-

lowing steps:
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Feature Selection Algorithm m-nacc (m-fair)

Step 1 Calculate P̂ = [ p̂1 · · · p̂K−1 ] and B̂ = [ b̂1 · · · b̂K−1 ].

Step 2 Sort the components of ĉ in descending order of their absolute values as

ĉj1 ≥ ĉj2 ≥ · · · ≥ ĉjm ≥ · · · ≥ ĉjd ≥ 0,

where ĉj is based on B̂ for m-nacc, and on P̂ for m-fair (see Table 5.1).

Step 3 Apply the permutation τ : {1, 2, . . . , d} → {j1, j2, . . . , jd} to the rows of the data

X, and put Xi ← τ(Xi).

Step 4 Find the best truncation m̂ based on Theorem 4.4:

m̂ = argmax
K−1≤m≤d

K∑
k,α=1
k ̸=α

nknα

n2
d̂kα(m), (5.6)

where d̂kα(m) is calculated by

d̂kα(m) =
Ŝkα,mΓ̂

(
Γ̂T ÛmΓ̂

)−1
Γ̂T Q̂T

kα,m√
λmax(R̂m)

√
Q̂kα,mΓ̂

(
Γ̂T ÛmΓ̂

)−1
Γ̂T Q̂T

kα,m

,

Ûm =
[
Ĉ
]T
m

[
Ĉ
]
m
+

m

n
(IK −N1/21K1TKN1/2),

Q̂kα,m = [µ̂k − µ̂α]
T
m D̂−1/2

m

[
Ĉ
]
m
+

m

n
qkαN

−1/2,

Ŝkα,m =
1

2
[µ̂k − µ̂α]

T
m D̂−1/2

m

[
Ĉ
]
m
+

m

n
ŝkαN

−1/2,

ŝkα = [ŝ1, . . . , ŝK ], ŝℓ =
nℓ

n
− 1

2
{I(ℓ = k) + I(ℓ = α)}

and R̂m = (ρ̂ij)1≤i,j≤m is the appropriate m×m correlation submatrix of R̂.

Step 5 Apply the same permutation τ as in Step 3 to a new datum X ← τ(X), use the

first m̂ entries of X and apply rule (5.5) to assign X to one of the K classes.
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Note that if m̂ = d, then (5.5) is nothing other than (4.2) without feature selection.

We will refer to this methodMulti-class Diagonal Linear Discriminant Analysis (m-dlda).

We investigate the performance of m-nacc, m-fair and m-dlda for real and simulated

data in the next section.

6 Simulation

In this section, we illustrate the results of Section 4 and Section 5 via numerical ex-

periments. Subsection 6.1 includes numerical studies to validate the theories for 2-class

problems discussed in Subsections 4.2, 4.3 and 4.4. Subsection 6.2 provides a numerical

study for discriminant directions in the multi-class setting to confirm Theorem 4.3 and

Corollary 4.2. In Subsection 6.3, behavior of the upper bound of misclassification rate

in a 3-class setting is investigated. In Subsection 6.4, comparative studies for the perfor-

mance of feature selection methods discussed in Section 5 are given. For the multi-class

setting, we compare the performance of m-fair and m-nacc with that of the minimum

redundancy maximum relevance (mrmr) feature selection proposed by Ding and Peng

(2005), which maximizes an F -statistic or mutual information while minimizing a redun-

dancy criterion which is based on the correlation coefficient. It is worth noting that mrmr

is a variable ranking method which does not include any determination of the number of

ranked features as in Step B of Subsection 5.2. The ranking approach mrmr does not

exclude the integration of criteria for determining the number of features. Indeed, in the

simulations below we show how one can implement the criterion of (5.6) in mrmr, as well

as in our new method.

6.1 Simulation I – Discriminant Direction and Misclassification Rate in

2-class

In Simulation I, our interests focus on the misclassification rate W1(ĝ, θ), and the angle

between b̂
∗
1 and b∗1.
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We generate nℓ (ℓ = 1, 2) d-dimensional observations Xℓi
i.i.d.∼ Nd(µℓ,Σ) for d = 200

and d = 1000. For each value of d, we choose n = n1 + n2 and n1 = n2 such that n ≤ d.

The estimate of b̂
∗T
1 b∗1 is obtained as the sample mean over 1000 iterations. Similarly, the

estimate of W1(ĝ, θ) is calculated as the average of the leave-one out cross-validation on

the 1000 iterations.

In Simulation I, we take µ1 = 0, µ2 = t1 = [t, . . . , t]T , for t > 0. The covariance

matrix Σ = (σij) has an autoregressive (AR) covariance structure, with σij = ρ|i−j|. For

this example we take ρ = 0.6. Then we can see that

(µ1 − µ2)
TD−1(µ1 − µ2) = dt2

from D−1 = Id. Thus, for t = 1, (µ1 − µ2)
TD−1(µ1 − µ2) = d. If we take Cd = d in

(4.3), then the condition d = o(nCd) in Corollary 4.2 is satisfied. Therefore, the angle

between b̂
∗
1 and b∗1 converges to 0.

On the other hand, if t = 2/
√
n, then we can evaluate

d

n(µ1 − µ2)
TD−1(µ1 − µ2)

=
1

4
≤ d

nCd

on (4.3). Thus, the condition d = O(nCd) of Theorem 4.3 is satisfied, because we can

take Cd = 4dγ for the sequence in Condition C such that d = ndγ for γ ∈ (0, 1). It

means that the angle between b̂
∗
1 and b∗1 does not converge to 0. Furthermore, we have

σmin = σmax, ξ → 1/4 and ζ → 1. If we set π1 = π2 = 1/2, then we have

b̂
∗T
1 b∗1

P−→ 1√
2

from (4.15) and (4.16). In fact the angle between b̂
∗
1 and b∗1 will converge to 45 degrees.

Table 6.1 summarizes the results from Simulation I. The two columns pertaining to

“consistent” relate the results under the assumptions of Corollary 4.2; the column

‘Error’ gives the estimated misclassification rate W1(ĝ, θ), and the column ‘Degrees’ lists

the estimated angle

∠(b̂∗1, b∗1) =
180

π
arccos(b̂

∗T
1 b∗1)
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Table 6.1: Simulation I-I results.

n = 6

n = 8

n = 10

n = 20

n = 30

n = 40

n = 50

n = 80

n = 100

n = 120

n = 150

n = 180

n = 200

n = 30

n = 40

n = 50

n = 100

n = 150

n = 200

n = 250

n = 400

n = 500

n = 600

n = 750

n = 900

n = 1000

Consistent Not consistent

d = 200

Error Degrees Error Degrees

0.06733 61.18507 0.13767 64.44634

0.00325 51.73060 0.04938 57.08087

0.00000 45.18963 0.03200 53.64817

0.00000 31.08961 0.04190 48.12596

0.00000 25.33803 0.06390 47.01111

0.00000 21.93963 0.08670 46.36257

0.00000 19.67402 0.10786 46.05681

0.00000 15.59922 0.15870 45.55593

0.00000 13.89451 0.18283 45.55475

0.00000 12.72426 0.20403 45.22594

0.00000 11.36625 0.22650 45.19424

0.00000 10.43391 0.24979 45.19436

0.00000 9.88011 0.25898 45.04897

d = 1000

Error Degrees Error Degrees

0.00000 25.48474 0.00037 47.20665

0.00000 22.03805 0.00130 46.49089

0.00000 19.73937 0.00310 46.19724

0.00000 13.96957 0.02390 45.56207

0.00000 11.43055 0.05001 45.36467

0.00000 9.89451 0.07709 45.25663

0.00000 8.85823 0.09941 45.25595

0.00000 7.01443 0.15405 45.14002

0.00000 6.26700 0.18030 45.06217

0.00000 5.71869 0.20261 45.03024

0.00000 5.12249 0.22683 45.06256

0.00000 4.66969 0.24652 44.99821

0.00000 4.42869 0.25774 45.00964
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Figure 6.1: Kernel density estimates of angles in degrees between b̂
∗
1 and b∗1. The vertical

dashed line is the asymptotic value derived in Theorem 4.3.

in degrees. The two columns “not consistent” show analogous results under the assump-

tions of Theorem 4.3.

We note that the angle in the “consistent” columns decreases to zero, as n and d

increase. These results agree with Corollary 4.2. It is interesting to observe that the

estimated angles for n = 30, 50, 150, 200 are very similar for both values of d. In contrast,

for the “not consistent” columns, the angle clearly approaches 45 degrees, which agrees

with Theorem 4.3. Figure 6.1 complements the results in Table 6.1: here we show kernel

density estimates of the angles based on the 1000 iterations. The values of n in the top row

(for d = 200) are n = 20, 40, 80 and 180, and the bottom row shows n = 40, 100, 400
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and 900 for d = 1000. The left panels focus on the “consistent” columns in the Table

6.1, and the right panels show density estimates for the “not consistent” columns. These

figures clearly illustrate the behavior of the angle as the sample size increases.

Returning to the “Error” columns in Table 6.1, it is noticeable that the misclassification

rate is almost 0 in the “consistent” cases, and is largest when n and d are both large, that

is, as b̂
∗
1 becomes inconsistent. For these latter results, t = 2/

√
n, and this choice of t

makes the discrimination problem increasingly difficult as n increases.

6.2 Simulation II – Discriminant Directions in Multi-class

6.2.1 Simulation II-I

We focus on the investigation of the angle between b̂
∗
α and b∗β for simulated data from the

normal distribution in the case of 3-class setting. In Simulation II-I and II-II, we generate

nℓ d-dimensional observations Xℓi
i.i.d.∼ Nd(µℓ,Σ) for d = 600, 1200 and ℓ = 1, . . . ,K. For

each d and ℓ1, ℓ2 ∈ {1, . . . ,K}, we choose n =
∑K

ℓ=1 nℓ and nℓ1 = nℓ2 such that n ≤ d.

For the simulated data we calculate b̂
∗
1, . . . , b̂

∗
K−1, the angles

∠(b̂∗α, b∗β) =
180

π
arccos(b̂

∗T
α b∗β) (α, β = 1, . . . ,K − 1)

and display the distributions of these angles based on 1000 iterations.

We take Σ = (σij) to be the covariance of an AR structure. For this example we take

ρ = 0.6. In order to avoid CCT being singular, we take

[µ1 µ2 µ3] =
4√
n

 1d/2 0 0

0 1d/4 0

0 0 1d/4

 .

In this setting, it is easily confirmed that mini ̸=j (µi − µj)
TD−1(µi − µj) = 2d/n and

d

n
{
mini̸=j (µi − µj)

TD−1(µi − µj)
} ≤ d

nCd
(6.1)

under (4.3). Thus, if we take Cd = 2dγ for the sequence in Condition C such that

d = ndγ for γ ∈ (0, 1), then the condition d = O(nCd) in Theorem 4.3 is satisfied. We
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Table 6.2: Average of 1000 simulated angles between b̂
∗
i and b∗j in degrees.

n

15

30

90

150

300

450

Th.4.3

n

15

30

90

150

300

450

600

900

Th.4.3

d = 600

∠(b̂∗1, b∗1) ∠(b̂∗2, b∗2) ∠(b̂∗1, b∗2) ∠(b̂∗2, b∗1)
42.237 47.407 90.327 89.976

37.392 43.652 90.243 90.127

35.159 41.842 90.265 90.026

34.746 41.359 90.288 90.074

34.388 41.182 90.277 89.959

34.257 41.181 89.990 89.881

33.855 40.893 90.000 90.000

d = 1200

∠(b̂∗1, b∗1) ∠(b̂∗2, b∗2) ∠(b̂∗1, b∗2) ∠(b̂∗2, b∗1)
42.084 47.428 90.273 89.995

37.328 43.590 90.302 89.992

35.042 41.671 90.046 90.071

34.592 41.385 90.073 90.061

34.261 41.146 90.196 90.058

34.203 41.075 90.164 90.059

34.147 41.062 90.120 89.946

34.078 41.068 90.021 90.041

33.855 40.893 90.000 90.000

obtain the following asymptotic angles in degrees ∠(b̂∗1, b∗1)
P→ 33.855, ∠(b̂∗2, b∗2)

P→ 40.893

and ∠(b̂∗1, b∗2), ∠(b̂
∗
2, b

∗
1)

P→ 90 from (4.14) with σmax = σmin = 1.

Table 6.2 summarizes the results for Simulation II-I. The table shows that each angle

approaches the theoretical value shown in Theorem 4.3. Figure 6.2 and Figure 6.3 depict

the behavior of ∠(b̂∗1, b∗1) and ∠(b̂∗2, b∗2) using kernel density estimates. The top panel of

Figure 6.2 shows the results for ∠(b̂∗1, b∗1), and the bottom panel shows the results for

∠(b̂∗2, b∗2) for n = 15, 30, 150, 300, 450 and d = 600. Similarly, Figure 6.3 shows the

results for ∠(b̂∗α, b∗α) for n = 15, 30, 150, 600, 900 and d = 1200. These figures show that

each angle converges as the sample size increases.
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Figure 6.2: Kernel density estimates of angles in degrees between b̂
∗
α and b∗α for d = 600.

The top panel and bottom panel are for ∠(b̂∗1, b∗1) and ∠(b̂∗2, b∗2), respectively. The vertical

dashed line is the asymptotic value derived in Theorem 4.3.
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Figure 6.3: Kernel density estimates of angles in degrees between b̂
∗
α and b∗α for d = 1200.

The description of each panel is the same as in Figure 6.2.
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6.2.2 Simulation II-II

In Simulation II-II, we extend previous discussions to 4-class setting. The parameter

settings of n, d and Σ are the same as that in Simulation II-I, but with K = 4. For the

mean parameters µℓ, we utilize

[µ1 µ2 µ3 µ4] =
10√
n


1d/2 0 0 0

0 1d/4 0 0

0 0 1d/8 0

0 0 0 1d/8

 .

In this setting, we can also confirm that if we take the sequence Cd = 25dγ such that

d = ndγ for γ ∈ (0, 1), then the condition d = O(nCd) is satisfied from mini ̸=j(µi −

µj)
TD−1(µi − µj) = 25d/n and the inequality (6.1) on (4.3).

We obtain the following asymptotic angles in degrees ∠(b̂∗1, b∗1)
P→ 17.136, ∠(b̂∗2, b∗2)

P→

23.871, ∠(b̂∗3, b∗3)
P→ 29.496 and ∠(b̂∗α, b∗β)

P→ 90 (for α ̸= β) from (4.14) with σmax = σmin.

Table 6.3 summarizes the results for Simulation II-II. Similar to Simulation II-I, the

table shows that each angle approaches the theoretical value shown in Theorem 4.3.

Figure 6.4 and Figure 6.5 depict the behavior of ∠(b̂∗1, b∗1), ∠(b̂
∗
2, b

∗
2) and ∠(b̂∗3, b∗3) using

kernel density estimates. The top panel of Figure 6.4 shows the results for ∠(b̂∗1, b∗1), the

middle panel shows the results for ∠(b̂∗2, b∗2), and the bottom panel shows the results for

∠(b̂∗3, b∗3) for n = 20, 40, 120, 200, 400 and d = 600. Figure 6.5 shows the results for the

same situation for n = 20, 40, 200, 600, 1000 and d = 1200. These figures also show that

each angle approaches the theoretical value as the sample size increases.

6.2.3 Simulation II-III

In Simulation II-III, we use simulated data with a non-normal distribution. We consider

d-dimensional observation vectors Xℓi from a multivariate t-distribution

fX (x; ν,µ,Σ) =
Γ((ν + d)/2)

Γ(ν/2)(νπ)d/2
|Σ|−1/2

(
1 +

1

ν
(x− µ)TΣ−1(x− µ)

)−(ν+d)/2

,

where ν(≥ 3) is the degrees of freedom and Γ is the gamma function. Note that the

multivariate t-distribution approaches the normal distribution as ν →∞.
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For the population covariance matrix Σ = (σij), we choose a moving average covariance

structure σij = ρ|i−j|I(|i− j| ≤ 1) for 1 ≤ i, j ≤ d, where ρ = 0.5. We take ν = 3 and

[µ1 µ2 µ3 µ4] =
15√
n


1d/2 0 0 0

0 1d/4 0 0

0 0 1d/8 0

0 0 0 1d/8

 .

Then we can confirm that the condition d = O(nCd) is satisfied from

d

n
{
mini̸=j(µi − µj)

TD−1(µi − µj)
} =

4

75
≤ d

nCd
.

The setting of (nℓ, d) and purpose of Simulation II-III are the same as Simulation II-

II. We can calculate ∠(b̂∗1, b∗1)
P→ 19.597, ∠(b̂∗2, b∗2)

P→ 27.067, ∠(b̂∗3, b∗3)
P→ 33.152 and

∠(b̂∗α, b∗β)
P→ 90 (for α ̸= β) from (4.14).

Table 6.4 summarizes the results for Simulation II-III. The table shows that each angle

approaches the theoretical value shown in Theorem 4.3. The description of Figure 6.6

and Figure 6.7 are the same as in Figure 6.4 and Figure 6.5. Compared with Figure 6.4

and Figure 6.5, we see from degrees and density of each panel that the convergence speed

of ∠(b̂∗α, b∗α) with multivariate t-distribution is slower than that with multivariate normal

distribution. However, we can see that each angle converges as the sample size increases

also in this situation.

6.3 Simulation III – Upper Bound for Misclassification Rate

To appreciate the usefulness of the upper bounds which we derived in Theorem 4.4

and Corollary 4.3, we give a numerical example for the case K = 3 with parameters

d = 1200, µℓ = ℓ(1d − eℓ)/n
s (ℓ = 1, 2, 3) and Σ = (σij) to be an AR structure. For

this example we take ρ = 0.6. We see that d = O(nCd) if s = 1/2, and d = o(nCd) if

s < 1/2 (see Condition E). The empirical regions D̂1,O or D̂1,o are obtained from the

sample mean over 100 iterations.

Figure 6.8 shows estimates of the misclassification rate W1(ĝ, θ) and of the upper

bounds given in Theorem 4.4 and Corollary 4.3. Both figure panels show that the
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Figure 6.4: Kernel density estimates of angles in degrees between b̂
∗
α and b∗α for d = 600.

The top panel, middle panel and bottom panel are for ∠(b̂∗1, b∗1), ∠(b̂
∗
2, b

∗
2) and ∠(b̂∗3, b∗3),

respectively. The vertical dashed line is the asymptotic value derived in Theorem 4.3.
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Figure 6.5: Kernel density estimates of angles in degrees between b̂
∗
α and b∗α for d = 1200.

The description of each panel is the same as in Figure 6.4.
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Figure 6.6: Kernel density estimates of angles in degrees between b̂
∗
α and b∗α for d = 600.

The description of each panel is the same as in Figure 6.4.

47



20 30 40 50 60 70

0.
00

0.
10

0.
20

0.
30

d=1200, t-distribution, MA, angle(hat{b}1,b1)

Degree

De
ns
ity

n= 20 n= 40 n= 200 n= 600 n= 1000

20 30 40 50 60 70 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

d=1200, t-distribution, MA, angle(hat{b}2,b2)

Degree

De
ns
ity

n= 20 n= 40 n= 200 n= 600 n= 1000

20 30 40 50 60 70 80

0.
00

0.
05

0.
10

0.
15

0.
20

d=1200, t-distribution, MA, angle(hat{b}3,b3)

Degree

De
ns
ity

n= 20 n= 40 n= 200 n= 600 n= 1000

Figure 6.7: Kernel density estimates of angles in degrees between b̂
∗
α and b∗α for d = 1200.

The description of each panel is the same as in Figure 6.4.
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upper bounds are actually upper bounds of the error rates even for the moderate sample

sizes used in the example. The left panel refers to the case d = o(nCd), and the right

panel covers the case d = O(nCd). Note that the difference between the upper bound and

W1(ĝ, θ) is smaller for the regime d = O(nCd) than the case d = o(nCd) as sample size

increases. In both cases, the estimated misclassification rate increases with n, whereas the

upper bounds tend to flatten as n approaches 500.

Figure 6.8: Mean upper bound for the misclassification rates over 100 simulations shown

together with intervals of one standard deviation. Left panel: d = o(nCd); right panel:

d = O(nCd).
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6.4 Simulation IV – Feature Selection

6.4.1 Simulation IV-I

Simulation IV-I focuses on the performance of ĝm̂ of (5.3). The fair approach of Fan and

Fan (2008) and the nacc approach share the vector b̂1 for discrimination, but base their

feature selection on different ranking vectors: fair essentially chooses features based on

(4.6), while nacc selects features based on b̂1.

For Simulation IV-I the parameters µℓ and Σ0 are

µ2 = 0 ∈ Rd, µ1 = [µ11, . . . , µ1d]
T ∈ Rd, µ1j =

{
j/4 j ∈ {10, 20, 30},
0 otherwise,

Σ0 = A1/2ΣA1/2, A = diag(ajj), ajj = j

and Σ is an AR structure with ρ = −0.6. The mean parameters µ1 and µ2 show that

only the 10th, 20th and 30th features are large, so we expect to select these features

from the simulated data. Further we note that the diagonal elements of the covariance

matrix Σ0 are monotonically increasing. The observations about the large features and the

behaviour of Σ0 allow us to compare the performance of the fair and nacc approaches

under a non-homogeneous variance structure of the features.

For each pair (d, n) and for both fair and nacc, we calculate estimates of the mis-

classification rate as described in Simulation I. However, in this simulation, we use 100

iterations.

The estimates of the misclassification rates are tabulated in Table 6.5, with standard

deviation in parentheses. The column d = 200 of Table 6.5 shows that the error prob-

abilities of nacc are smaller than the corresponding values for fair except for n = 10,

where fair wins. For d = 1000, the superiority of nacc over fair is apparent, especially

for n = 50, 100, 150, 200. The results show the merit of feature selection with b̂1 over that

with the vector p̂1 of fair.

So far we have compared the misclassification rates of the two approaches. We now

look at the specific features that are selected in the simulations for (d, n) pairs. Figure
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Table 6.5: Estimated value of the misclassification rate.

n = 6

n = 10

n = 30

n = 50

n = 100

n = 150

n = 200

d = 200 d = 1000

nacc fair nacc fair

0.53167 0.53500 0.55167 0.56167

( 0.26025 ) ( 0.25436 ) ( 0.23414 ) ( 0.25031 )

0.51100 0.50300 0.57300 0.62500

( 0.20395 ) ( 0.21670 ) ( 0.24240 ) ( 0.22847 )

0.33933 0.35700 0.42233 0.44433

( 0.13848 ) ( 0.15500 ) ( 0.17240 ) ( 0.14688 )

0.23360 0.25940 0.35580 0.40420

( 0.08989 ) ( 0.10830 ) ( 0.13536 ) ( 0.11691 )

0.17510 0.19280 0.21360 0.30550

( 0.04237 ) ( 0.04854 ) ( 0.08423 ) ( 0.09312 )

0.17993 0.18640 0.17667 0.24360

( 0.03349 ) ( 0.03718 ) ( 0.04020 ) ( 0.08258 )

0.17035 0.17295 0.16815 0.19155

( 0.02616 ) ( 0.02658 ) ( 0.02708 ) ( 0.04728 )

6.9 shows the frequency of the selected features over 100 simulations. The top panels

show the results for (d, n) = (200, 180), and the bottom panels show similar results for

(d, n) = (1000, 180). The left panels relate to nacc, and the right panels to fair. The

figures show clearly that nacc correctly picks the large variables 10, 20 and 30 most of the

time, while fair selects many other features, typically features with a large variance. The

feature selection of nacc is based on b̂1 and thus on (µ̂1j − µ̂2j)/σ̂jj . Our results suggest

that feature selection with b̂1 captures the data structure better than fair, in particular

for larger values of d.

The results of Simulation IV-I illustrate the superiority of nacc over fair in two ways:

the misclassification rates are mostly smaller, and feature selection is more pertinent,

especially for higher values of d.
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Figure 6.9: Frequency of obtained features.
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6.4.2 Simulation IV-II

Simulation IV-II focuses on the performance of the proposed discriminant function with

feature selection. We consider data Xℓi
i.i.d.∼ Nd(µℓ,Σ0) from K = 10 classes with:

µℓ = [µℓ1, . . . , µℓd]
T ∈ Rd, µℓj =

{
11− ℓ j = ℓ,

0 otherwise,
and Σ0 = A1/2ΣA1/2,

where A = diag(ajj) with ajj = j and Σ has an AR covariance structure with ρ = −0.6.

The mean parameters µℓs show that only the first 10 features differ, and we therefore,

expect to select these features in the simulated data. Furthermore, we note that the

diagonal elements of the covariance matrix Σ0 are monotonically increasing.

We compare m-nacc with mrmr, and use the same m̂ for both methods, which we

calculate for m-nacc as described in (5.6). A similar comparison is given for m-fair and

mrmr. For d = 1000 and nℓ = 50 (with ℓ = 1, . . . , 10), we obtained estimates for the

misclassification rate based on 100 iterations.

In this simulation study we introduce another measure for comparing feature selection

methods. We can see from definition of the µℓ that the set of features {1, . . . , 10} should

be picked with a suitable feature selection. We now want to determine how successful the

features selection (5.6) is in choosing the correct features. Let {j(t)1 , . . . , j
(t)
m̂(t)} be a set of

selected features based on the tth simulated data set, where m̂(t) is the number of selected

features determined by the tth data set. For i ∈ {1, . . . , 10}, let CSR(i) be the correct

selection rate for feature i and put

CSR(i) =
1

100

100∑
t=1

I
(
i ∈ {j(t)1 , . . . , j

(t)
m̂(t)}

)
.

The CSR counts how often the set of selected features contains the features which should

be selected. A CSR(i) close to 1 means that feature i is frequently selected by the feature

selection method which is good. We calculated CSR(i) for m-nacc, m-fair and mrmr

in this study. For the mrmr-based discriminant function with feature selection we did

not calculate estimates of the misclassification rate, since mrmr is just a competitor for

variable ranking.
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Table 6.6: Results for Simulation II. CSR(i) and estimates for the misclassification rate

of each method. 1: mrmr with m̂ determined by m-fair. 2: mrmr with m̂ determined

by m-nacc.

Feature(i) 1 2 3 4 5 6 7 8 9 10

m-fair 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.47 0.03

mrmr1 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.68 0.20 0.02

m-nacc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84 0.14

mrmr2 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.42 0.08 0.00

m-fair m-nacc

No. of selected features 24.31 9.22

Training error (%) 27.46 30.94

Test error (%) 31.84 28.21

The results of the simulations are given in Table 6.6, which shows the correct selection

rate as well as the estimated misclassification rate for each method. The estimate for the

error based on (5.5), and called training error here, was obtained as the sample mean

over 100 iterations, while the estimate for the test error was calculated as the average of

the leave-one out cross-validation over 100 iterations. Table 6.6 shows that the CSR(i)-

values of m-nacc are typically higher than those of mrmr, and a similar tendency can

be verified for m-fair. m-nacc recorded CSR(i) < 1 for i = 9, 10, while m-fair resulted

in CSR(i) < 1 for i = 8, 9, 10. Further CSR(9) and CSR(10) of m-fair are smaller than

those of m-nacc. As far as the mean number of selected features m̂ is concerned, we note

that m-fair has a tendency to select more (and indeed by far too many) features than

m-nacc, and m-nacc selects the correct features more frequently than m-fair.

In view of training error, m-fair is slightly superior to m-nacc, which can be under-

stood by its number of selected features. However it is worth noting that m-nacc recorded

a smaller test error than m-fair and used fewer features.
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7 Application to Real Data

7.1 Lung Cancer data

In this section, we consider the lung cancer data that were analysed in Gordon et al. (2002).

These data are available at http://levis.tongji.edu.cn/gzli/data/mirror-kentri

dge.html. The data have two classes: malignant pleural mesothelioma (MPM) and ade-

nocarcinoma (ADCA). There are 12553 genes, the variables, and 181 samples (31 MPM

and 150 ADCA). Gordon et al. (2002) considered a training set of 16 MPM and 16 ADCA

samples, and used the remaining 149 samples for testing. We use the same training and

testing subsets.

For the lung cancer data, we compare fair with nacc. Table 7.1 shows the classifi-

cation results of the two approaches. fair selected 14 genes, and resulted in 0 training

errors and 8 test errors, while nacc selected only 7 genes which yielded 0 training errors

and 8 test errors. Both approaches select features 2039 and 11368. These features may be

of interest to medical experts, but we are not concerned with this aspect in the present

analysis. The results show that both classification approaches have the same number of er-

rors, so perform equally well, but nacc finds a more parsimonious set of features. Indeed,

nacc requires only half the number of features in order to achieve the misclassification

that fair achieved.

7.2 SRBCT data

We apply our method to the small round blue-cell tumors (SRBCT) data that were ana-

lyzed in Khan et al. (2001), and are available at http://statweb.stanford.edu/~tibs/

ElemStatLearn/ (see Hastie et al. (2001)). The data have four classes: neuroblastoma

(NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family

of tumors (EWS). There are 2308 genes and a total of 83 samples: 63 training samples

(12 NB, 20 RMS, 8 NHL and 23 EWS) and 20 test samples (6 NB, 5 RMS, 3 NHL and 6

EWS).
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Table 7.1: Results for the Lung Cancer data. Numbers in bold show common selected

genes in each approach.

selected genes

No. of selected genes

training error

test error

nacc fair

1955 2039 2928

4345 8928 11238

11368

34 1136 2039

3250 3844 4336

7249 7765 8537

9474 11015 11368

11841 12248

7 14

0/32 0/32

8/149 8/149

We applied m-nacc, m-fair and mrmr with feature selection to the SRBCT data,

and also applied m-dlda (without feature selection) to the same data. The results for

approaches with feature selection, including selected gene numbers, training error and test

error are summarized in Table 7.2. We observe from Table 7.2 that m-fair selected 13

genes which resulted in a training error of 0 and a test error of 2, while m-nacc selected

12 genes which yielded a training error of 0 and a slightly higher test error of 3. 20 genes

were selected by mrmr, which yielded a 0 training error and a test error of 2. Although

m-fair and mrmr resulted in the same test error, it should be noted that m-fair achieved

this accuracy with a smaller number of features. m-dlda recorded 1 training error and 5

test errors, both of these are worse than the error rates obtained with m-nacc, m-fair

and mrmr. This reveals that feature selection works well for this data set, and is superior

to similar methods without feature selection.

7.3 Isolet data

The last example deals with the Isolet data studied in Weinberger et al. (2006), which

are available at http://archive.ics.uci.edu/ml/datasets/ISOLET. The data have 26

classes corresponding to the letters of the alphabet. There are 617 genes and and a total
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Table 7.2: Results for the SRBCT data. Numbers in bold show common selected genes

in each approach.

selected genes

m-fair 1955 2050 1954 1194 1158 174 1003

1389 246 107 1645 951 1980

m-nacc 1955 481 1158 1954 1194 1888 951

879 1003 174 1389 246

509 107 867 879 1708 1955 2050

mrmr 1194 246 742 1003 1389 819 851

338 368 1706 1319 2 545

m-fair m-nacc mrmr m-dlda

No. of selected genes 13 12 20 2308

Training error 0/63 0/63 0/63 1/63

Test error 2/20 3/20 2/20 5/20

of 7797 samples: 6238 training samples (238 samples from class 6, and 240 samples from

each of the other classes), and 1559 test samples (59 samples from class 13, and 60 samples

from each of the other classes).

As our setting is that of hdlss, we randomly picked 20 samples form each class of the

training data. We applied each of the four methods considered in Subsection 7.2 to the

520 samples of the new training data, and evaluated their performances on the full test

data consisting of 1559 samples. We repeated the above procedure 100 times. Boxplots of

the test errors and the number of selected features are shown in Figure 7.1. The left panel

of Figure 7.1 shows the number of selected features. Figure 7.1 exhibits that the number

of selected features of m-fair is smaller than that of the other approaches. However,

there seems to be an unstable trend in the misclassification rate arising from the m-fair

calculations, as can be observed in the right panel. This could be a consequence of the

small number of selected features. On the other hand, the number of selected features

of m-nacc and mrmr result in about the same number, however, the test error of m-

nacc is smaller than that for mrmr and m-fair. The detailed values of the boxplots

are summarized in Table 7.3. From these values we can see that the average test error of
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m-nacc is almost equal to that of m-dlda, but m-nacc obtains the same accuracy with

only one-third of the number of features.

M−FAIR M−NACC MRMR
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Figure 7.1: Isolet data. The left panel shows boxplots of the number of selected features

for m-nacc, m-fair and mrmr over 100 iterations. m-fair is smallest, and the number

of its outliers (open circles) is zero. The number of outliers for m-nacc is two, and that

of mrmr is six. The right panel shows boxplots of test errors of m-nacc, m-fair, mrmr

and m-dlda using the simulated data of the left panel. m-fair is not as stable as the

other approaches because there are many outliers and large errors. m-nacc and m-dlda

are superior to other approaches.
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Table 7.3: Results for the Isolet data. Descriptive statistics of the number of selected

features and test error for each method over 100 iterations.

No. of selected features

m-fair m-nacc mrmr m-dlda

SD 43.69 33.38 52.31 0.00

min 25.00 139.00 25.00 617.00

1st quartile 74.00 166.80 171.80 617.00

median 102.00 181.50 189.50 617.00

average 99.33 185.60 205.10 617.00

3rd quartile 130.50 198.00 227.20 617.00

max 197.00 420.00 368.00 617.00

Test error

m-fair m-nacc mrmr m-dlda

SD 0.13361 0.01483 0.04152 0.01242

min 0.12190 0.11030 0.13410 0.10780

1st quartile 0.15190 0.13710 0.16340 0.14110

median 0.16900 0.14820 0.17670 0.14820

average 0.22500 0.14770 0.18200 0.14850

3rd quartile 0.20510 0.15590 0.19500 0.15520

max 0.61390 0.18410 0.52020 0.18220

8 Proofs

Proof of Lemma 4.1

By Condition A, for fixed ℓ ≤ K we have

µ̂ℓ − µ̂ = (µℓ − µ) + (εℓ − ε) +
K∑
ℓ=1

(nℓ

n
− πℓ

)
µℓ,

where εℓ = (1/nℓ)
∑nℓ

i=1 εℓi and ε = (1/n)
∑K

ℓ=1

∑nℓ
i=1 εℓi. Thus,

M̂0N
1/2 −M0Π

1/2 = M0(N
1/2 −Π1/2) + M̃(N −Π)1K1TKN1/2 + E0N

1/2,

where M̃ = [ µ1 · · · µK ] and E0 = [ ε1 − ε · · · εK − ε ].
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Therefore, ĈT Ĉ can be written as

ĈT Ĉ

=
(
N1/2 −Π1/2

)
MT

0 D̂
−1M0

(
N1/2 −Π1/2

)
+
(
N1/2 −Π1/2

)
MT

0 D̂
−1M̃ (N −Π)1K1TKN1/2

+
(
N1/2 −Π1/2

)
MT

0 D̂
−1E0N

1/2 +
(
N1/2 −Π1/2

)
MT

0 D̂
−1MΠ1/2

+N1/21K1TK(N −Π)M̃T D̂−1M0

(
N1/2 −Π1/2

)
+N1/21K1TK(N −Π)M̃T D̂−1M̃(N −Π)1K1TKN1/2

+N1/21K1TK(N −Π)M̃T D̂−1E0N
1/2 +N1/21K1TK(N −Π)M̃T D̂−1M0Π

1/2

+N1/2ET
0 D̂

−1M0

(
N1/2Π1/2

)
+N1/2ET

0 D̂
−1M̃(N −Π)1K1TKN1/2

+N1/2ET
0 D̂

−1E0N
1/2 +N1/2ET

0 D̂
−1M0Π

1/2

+Π1/2MT
0 D̂

−1M0

(
N1/2 −Π1/2

)
+Π1/2M0D̂

−1M̃(N −Π)1K1TKN1/2

+Π1/2MT
0 D̂

−1E0N
1/2 +Π1/2M0D̂

−1M0Π
1/2. (8.1)

From Condition B, it follows that D̂ = D(1+ oP (1)) (see Fan and Fan (2008)), and this

leads to the following expressions

MT
0 D̂

−1M0 =
(
(µk − µ)TD−1(µℓ − µ)

)
1≤k,ℓ≤K

(1 + oP (1)) = 1K1TKO(Cd),

MT
0 D̂

−1M̃ =
(
(µk − µ)TD−1µℓ

)
1≤k,ℓ≤K

(1 + oP (1)) = 1K1TKO(Cd),

M̃T D̂−1M̃ =
(
µT
kD

−1µℓ

)
1≤k,ℓ≤K

(1 + oP (1)) = 1K1TKO(Cδ
d) + IKO(Cd)

by Condition E. From the evaluation of the term I3 on p.2626 of Fan and Fan (2008),

we have

MT
0 D̂

−1E0 = 1K1TKoP (Cd), M̃T D̂−1E0 = 1K1TKoP (Cd).
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Consider the matrix ET
0 D̂

−1E0 of ĈT Ĉ. We have

ET
0 D̂

−1E0 = ET
0 D

−1E0(1 + oP (1))

=
(
(εk − ε)TD−1(εℓ − ε)

)
1≤k,ℓ≤K

(1 + oP (1)).

In particular, we need to evaluate the variance term V
[
(εk − ε)TD−1(εℓ − ε)

]
.

If k = ℓ, this variance can be obtained as

V
[
(εℓ − ε)TD−1(εℓ − ε)

]
= tr

{
(D−1 ⊗D−1)E

[
(εℓ − ε)(εℓ − ε)T ⊗ (εℓ − ε)(εℓ − ε)T

]}
−
{
tr(D−1Σ∗)

}2 (8.2)

by using Theorem 9.18 of Schott (1996), where ⊗ is Kronecker product, that is, for A ∈

Rm×n and B ∈ Rp×q,

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

 ∈ Rmp×nq,

and Σ∗ = V [εℓ − ε] = (1/nℓ − 1/n)Σ. Thus, we have
{
tr(D−1Σ∗)

}2
= d2(1/nℓ − 1/n)2.

Since D−1 ⊗D−1 is a diagonal matrix, (8.2) can be written as

V
[
(εℓ − ε)TD−1(εℓ − ε)

]
= tr

{
(D−1 ⊗D−1)E

[
diag

{
(εℓ − ε)(εℓ − ε)T ⊗ (εℓ − ε)(εℓ − ε)T

}]}
− d2

(
1

nℓ
− 1

n

)2

,

by the property of the trace of the relevant matrix. The diagonal elements can be written

as

D−1 ⊗D−1E
[
diag

{
(εℓ − ε)(εℓ − ε)T ⊗ (εℓ − ε)(εℓ − ε)T

}]
= diag (v1, . . . , vd2) , (8.3)

where

vj =



E
[
(εℓs − εs)

4
]

σ2
ss

, for j = (s− 1)d+ s, s ∈ {1, . . . , d},

E
[
(εℓs − εs)

2 (εℓt − εt)
2
]

σssσtt
, for all other values of j < d2, and s ̸= t,
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and εℓs and εs are sth element of εℓ and ε respectively.

Next, we expand εℓs − εs. This difference can be written as

εℓs − εs =
1

nℓ

nℓ∑
i=1

εℓis −
1

n

K∑
k=1

nk∑
i=1

εkis

=

(
1

nℓ
− 1

n

) nℓ∑
i=1

εℓis −
1

n

∑
k ̸=ℓ

nk∑
i=1

εkis.

Using the properties E [εℓsεks] = E [εℓs]E [εks] and E [εℓs] = 0, we have

E
[
(εℓs − εs)

4
]

=

(
1

nℓ
− 1

n

)4

E

( nℓ∑
i=1

εℓis

)4
+

1

n4
E

∑
k ̸=ℓ

nk∑
i=1

εkis

4

+
6

n2

(
1

nℓ
− 1

n

)2

E

( nℓ∑
i=1

εℓis

)2
E

∑
k ̸=ℓ

nk∑
i=1

εkis

2 .

In particular, we find that

E

( nℓ∑
i=1

εℓis

)4
 = nℓE

[
ε4ℓis
]
+ 3nℓ(nℓ − 1)

{
E
[
ε2ℓis
]}2

= nℓξss + 3nℓ(nℓ − 1)σ2
ss,

E

∑
k ̸=ℓ

nk∑
i=1

εkis

4 =
∑
k ̸=ℓ

nkE
[
ε4kℓs

]
+ 3

∑
k ̸=ℓ

nk(nk − 1)
{
E
[
ε2kℓs

]}2
= (n− nℓ)ξss + 3

∑
k ̸=ℓ

nk(nk − 1)σ2
ss,

E

( nℓ∑
i=1

εℓis

)2
 = V

[
nℓ∑
i=1

εℓis

]
= nℓσss,

E

∑
k ̸=ℓ

nk∑
i=1

εkis

2 = V

∑
k ̸=ℓ

nk∑
i=1

εkis

 = (n− nℓ)σss.

where ξst = E
[
ε211sε

2
11t

]
. Therefore, the ((s−1)d+s)th diagonal element of (8.3) becomes

E
[
(εℓs − εs)

4
]

=
(n− nℓ)(3n

2
ℓ − 3nnℓ + n2)

n3n3
ℓ

ξss +
3

n4

∑
k ̸=ℓ

nk(nk − 1)σ2
ss

+3

(
1

nℓ
− 1

n

)2 (n− nℓ)(nℓ(nℓ + 1) + n(nℓ − 1))

nℓn2
σ2
ss.
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From tedious but direct calculations we have

E

[(
nℓ∑
i=1

εℓis

)(
nℓ∑
i=1

εℓit

)]
= nℓσst,

E

( nℓ∑
i=1

εℓis

)2
∑

k ̸=ℓ

nk∑
i=1

εkit

2 = nℓ(n− nℓ)σssσtt,

E

∑
k ̸=ℓ

nk∑
i=1

εkis

( nℓ∑
i=1

εℓis

)∑
k ̸=ℓ

nk∑
i=1

εkit

( nℓ∑
i=1

εℓit

) = nℓ(n− nℓ)σ
2
st,

E

( nℓ∑
i=1

εℓis

)2( nℓ∑
i=1

εℓit

)2
 = nℓξst + nℓ(nℓ − 1)σssσtt + τℓσ

2
st,

E

∑
k ̸=ℓ

nk∑
i=1

εkis

2∑
k ̸=ℓ

nk∑
i=1

εkit

2 = (n− nℓ)ξst + (n− nℓ)(n− nℓ − 1)σssσtt + τ−ℓσ
2
st,

where τℓ and τ−ℓ are the numbers of combinations that arose throughout the calculations,

and whose orders are O(n2). The different expressions above lead to

E
[
(εℓs − εs)

2 (εℓt − εt)
2
]

=

(
1

nℓ
− 1

n

)4

E

( nℓ∑
i=1

εℓis

)2( nℓ∑
i=1

εℓit

)2


+

(
1

nℓ
− 1

n

)2 1

n2
E

( nℓ∑
i=1

εℓis

)2
∑

k ̸=ℓ

nk∑
i=1

εkit

2

+4

(
1

nℓ
− 1

n

)2 1

n2
E

∑
k ̸=ℓ

nk∑
i=1

εkis

( nℓ∑
i=1

εℓis

)∑
k ̸=ℓ

nk∑
i=1

εkit

( nℓ∑
i=1

εℓit

)

+

(
1

nℓ
− 1

n

)2 1

n2
E

∑
k ̸=ℓ

nk∑
i=1

εkis

2(
nℓ∑
i=1

εℓit

)2


+
1

n4
E

∑
k ̸=ℓ

nk∑
i=1

εkis

2∑
k ̸=ℓ

nk∑
i=1

εkit

2
=

(n− nℓ)(3n
2
ℓ − 3nℓn+ n2)

n3n3
ℓ

ξst −
(n− nℓ)(n

2
ℓn+ 3n2

ℓ − nℓn
2 − 3nℓn+ n2)

n3
ℓn

σssσtt + τσ2
st,
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where τ = (1/nℓ − 1/n)4τℓ + (1/n)4τ−ℓ + 4 (1/nℓ − 1/n)2 nℓ(n − nℓ)/n
2. Combining the

above calculations results in

V
[
(εℓ − ε)TD−1(εℓ − ε)

]
= O

(
d2

n3

)
+O

(
1

n2

)∑
s,t

ρ2st,

where ρst is the (s, t) component of the correlation matrix R. The sum is evaluated as

∑
s,t

ρ2st = 1Td (R⊙R)1d ≤ λmax(R)

{
max
1≤s≤d

ρss

}
1Td 1d ≤ b0d

by the definition of the parameter space Θ in (4.3), where ⊙ is the Hadamard product;

that is, if A and B are m× n matrices, then

A⊙B =


a11b11 · · · a1nb1n

...
. . .

...

am1bm1 · · · amnbmn

 .

Therefore, (8.2) can be evaluated as

V
[
(εℓ − ε)TD−1(εℓ − ε)

]
= O

(
d2

n3

)
.

Using Chebyshev’s inequality, for any ε > 0, we have

P

(∣∣∣∣∣(εℓ − ε)TD−1(εℓ − ε)− E
[
(εℓ − ε)TD−1(εℓ − ε)

]
Cd

∣∣∣∣∣ > ε

)
≤ O

(
d2

n3C2
d

)
= o(1).

Hence, (εℓ − ε)TD−1(εℓ − ε) can be evaluated as

(εℓ − ε)TD−1(εℓ − ε) =

(
1

nℓ
− 1

n

)
d+ oP (Cd).

Next, we evaluate V
[
(εℓ − ε)TD−1(εk − ε)

]
for ℓ ̸= k. Using Theorems 7.7 and 7.14–

7.16 of Schott (1996), we get

V
[
(εℓ − ε)TD−1(εk − ε)

]
= tr

{
(D−1 ⊗D−1)E

[
diag{(εℓ − ε)(εk − ε)T ⊗ (εℓ − ε)(εk − ε)T }

]}
−
{
tr(D−1E

[
diag(εℓ − ε)(εk − ε)T

]}2
.
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We first calculate the jth diagonal element of (εℓ − ε)(εk − ε)T . By noting that

εℓj − εj =
1

nℓ

nℓ∑
i=1

εℓij −
1

n

K∑
k=1

nk∑
i=1

εkij

=

(
1

nℓ
− 1

n

) nℓ∑
i=1

εℓij −
1

n

nk∑
i=1

εkij −
1

n

∑
h ̸=ℓ,k

nh∑
i=1

εhij ,

we have E [(εℓj − εj)(εkj − εj)] = −σjj/n. Consequently, we obtain

{
tr(D−1E

[
diag(εℓ − ε)(εk − ε)T

]}2
=

d2

n2
.

Next, we consider the diagonal matrix

(D−1 ⊗D−1)E
[
diag{(εℓ − ε)(εk − ε)T ⊗ (εℓ − ε)(εk − ε)T }

]
= diag (u1, . . . , ud2) ,

where

uj =



E
[
(εℓs − εs)

2 (εks − εs)
2
]

σ2
ss

, j = (s− 1)d+ s for s ∈ {1, . . . , d},

E [(εℓs − εs) (εks − εs) (εℓt − εt) (εkt − εt)]

σssσtt
, for all other values of j < d2,

and s ̸= t.

If j = (s− 1)d+ s, then we have

E
[
(εℓs − εs)

2(εks − εs)
2
]

=
n(nℓ + nk)− 3nℓnk

nℓnkn3
ξss + κ(ℓ, k)σ2

ss,

where κ(ℓ, k) is the coefficient of σ2
ss. Note that the order of κ(ℓ, k) is O(1/n2) which we

state here without giving a detailed proof. On the other hand, we have

E [(εℓs − εs) (εks − εs) (εℓt − εt) (εkt − εt)]

=
n(nℓ + nk)− 3nℓnk

nℓnkn3
ξst +

{
3

n3
− 1

n2

(
1

nℓ
+

1

nk

)
+

1

n2

}
σssσtt + τσ2

st

when ℓ = k, where τ = O(1/n2). From the above calculations, we have

V
[
(εℓ − ε)TD−1(εk − ε)

]
= O

(
d2

n3

)
+O

(
1

n2

)∑
s,t

ρ2st

= O

(
d2

n3

)
.
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Chebyshev’s inequality now implies that (εℓ − ε)TD−1(εk − ε) = −d/n + oP (Cd), and

consequently,

N1/2ET
0 D̂

−1E0N
1/2

= N1/2
(
(εℓ − ε)TD−1(εk − ε)

)
1≤ℓ,k≤K

N1/2(1 + oP (1))

= N1/2

(
d

(
1

nℓ
− 1

n

)
δℓ,k −

d

n
(1− δℓ,k) + oP (Cd)

)
1≤ℓ,k≤K

N1/2(1 + oP (1))

=
d

n
(IK −N1/21K1TKN1/2) + 1K1TKoP (Cd).

The previous calculations can now be summarized and lead to the desired expansion of

ĈT Ĉ/Cd, namely

ĈT Ĉ

Cd
=

CTC

Cd
+

d

nCd
(IK −N1/21K1TKN1/2) + 1K1TKoP (1)

=
CTC

Cd
+ ξ(IK −Π1/21K1TKΠ1/2) + 1K1TKoP (1).

�

Proof of Lemma 4.2

From Weyl’s inequality (see e.g. Bhatia (1997)), λα can be evaluated as

max

{
λ∗
α+1

Cd
+ ξ,

λ∗
α

Cd

}
≤ λα

Cd
≤ λ∗

α

Cd
+ ξ, (8.4)

for α = 1, . . . ,K − 1 and 0 ≤ λK/Cd ≤ λ∗
K/Cd+ ξ = ξ. In particular, it follows from (8.4)

that

λ∗
α+1

Cd
+ ξ <

λα

Cd
≤ λ∗

α

Cd
+ ξ

by Condition D. Therefore, λα/Cd should be simple. �

Proof of Theorem 4.1

Put ΓK = [γ1, . . . ,γK ], where γℓ is eigenvector of CTC/Cd + ξ(IK − Π1/21K1TKΠ1/2)

belonging to the ℓth largest eigenvalue. By Lemma 4.1, we obtain

ΓT
K

ĈT Ĉ

Cd
ΓK = diag

(
λ1

Cd
, . . . ,

λK

Cd

)
(1 + oP (1)).

66



Let Ĥ = [ ĥ1 · · · ĥK ], where ĥℓ is eigenvector of Γ
T
K

(
ĈT Ĉ/Cd

)
ΓK belonging to the ℓth

largest eigenvalue. Since all eigenvalues λα (for α = 1, . . . ,K − 1) are simple by Lemma

4.2, it follows that Ĥ
P−→ IK . From the equation ΓT

K

(
ĈT Ĉ/Cd

)
ΓKĥℓ = (λ̂ℓ/Cd)ĥℓ we

can see that

ΓT
K

ĈT Ĉ

Cd
ΓKĥℓ =

λ̂ℓ

Cd
ĥℓ

=⇒ ĈT Ĉ

Cd

(
ΓKĥℓ

)
=

λ̂ℓ

Cd

(
ΓKĥℓ

)

=⇒ ĈĈT

Cd

{
Ĉγℓ

||Ĉγℓ||
(1 + oP (1))

}
=

λ̂ℓ

Cd

{
Ĉγℓ

||Ĉγℓ||
(1 + oP (1))

}
. (8.5)

On the other hand,

ĈĈT

Cd
p̂ℓ =

λ̂ℓ

Cd
p̂ℓ (8.6)

follows from the definition in Subsection 4.1. Now, from (8.5), (8.6) and Lemma 4.2, we

conclude that the linear span of the p̂α is asymptotically equal to that of the Ĉγα/||Ĉγα||.

Since eigenvectors have unit length, ||pα|| = 1 and sgn (p̂α1) = sgn
((

Ĉγα/||Ĉγα||
)
1

)
,

where (·)1 denotes the first component of the vector. Therefore, we have

p̂α =
Ĉγα

||Ĉγα||
(1 + oP (1)) =⇒ p̂T

α

Ĉγα

||Ĉγα||
= 1 + oP (1).

�

Proof of Theorem 4.2

From Theorem 4.1 and (4.7), the inner product of p̂α and pβ is given by

p̂T
αpβ =

γT
α Ĉ

TCγβ(1 + oP (1))√
γT
αĈ

T Ĉγα

√
γT
βC

TCγβ

=
γT
αΠ

1/2M̂T
0 D

−1M0Π
1/2γβ(1 + oP (1))√

γT
α Ĉ

T Ĉγα

√
γT
βC

TCγβ

. (8.7)

The numerator of (8.7) can be evaluated as

γT
αΠ

1/2M̂T
0 D

−1M0Π
1/2γβ = γT

αΠ
1/2MT

0 D
−1M0Π

1/2γβ(1 + oP (1))

= γT
αC

TCγβ(1 + oP (1))
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by Chebyshev’s inequality. By Lemma 4.1, γT
α Ĉ

T Ĉγα of (8.7) becomes γT
αĈ

T Ĉγα =

λα(1 + oP (1)) . Notice that γT
βC

TCγβ of the denominator of (8.7) can be written as

γT
βC

TCγβ

= γT
β

{
(CTC + Cdξ(IK −Π1/21K1TKΠ1/2))− Cdξ(IK −Π1/21K1TKΠ1/2)

}
γβ

= λβ − Cdξ(1− γT
βΠ

1/21K1TKΠ1/2γβ).

Therefore, we obtain

p̂T
αpβ =

κβδαβ − ξ(δαβ − ηαηβ)
√
κα
√

κβ − ξ(1− η2β)
(1 + oP (1)). (8.8)

�

Proof of Corollary 4.1

From (8.8) in the proof of Theorem 4.2, and the assumptions of Corollary 4.1, it

follows that

p̂T
αpβ =

κβδαβ√
κα
√
κβ

(1 + oP (1))

=

{
1 + oP (1) if α = β,

oP (1) if α ̸= β,

since ξ → 0. �

Proof of Theorem 4.3

The inner product of b̂
∗
α and b∗β becomes

b̂
∗T
α b∗β =

p̂T
αD̂

−1/2D−1/2pβ√
p̂T
αD̂

−1p̂α

√
pT
βD

−1pβ

=
γT
αĈ

T D̂−1/2D−1/2Cγβ√
γT
α Ĉ

T D̂−1Ĉγα

√
γT
βC

TD−1Cγβ

(1 + oP (1)). (8.9)
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using Theorem 4.1, (4.7) and (4.11). The numerator of (8.9) can be evaluated as

γT
αĈ

T D̂−1/2D−1/2Cγβ = γT
αC

TD−1Cγβ(1 + oP (1)).

Using (8.1), ĈT D̂−1Ĉ of (8.9) is given by

ĈT D̂−1Ĉ = CTD−1C +N1/2ET D̂−2EN1/2 + 1K1TKo(Cd).

Therefore, we have

γT
α Ĉ

T D̂−1Ĉγα

≤ γT
αC

TD−1Cγα +
1

σmin
γT
αN

1/2ET D̂−1EN1/2γα(1 + oP (1)) + o(Cd)

= γT
αC

TD−1Cγα

×

(
1 + Cdξ

1

σmin

1− γT
αΠ

1/21K1TKΠ1/2γα

γTαC
TD−1Cγα

(1 + oP (1)) + o

(
Cd

γT
αC

TD−1Cγα

))

≤ γT
αC

TD−1Cγα

×

(
1 + Cdξ

σmax

σmin

1− γT
αΠ

1/21K1TKΠ1/2γα

γT
αC

TCγα

(1 + oP (1)) + o

(
Cd

γT
αC

TCγα

))

= γT
αC

TD−1Cγα

×
(
1 + Cdξ

σmax

σmin

1− η2α
λα − Cdξ(1− η2α)

(1 + oP (1)) + o

(
Cd

λα − Cdξ(1− η2α)

))

= γT
αC

TD−1Cγα

κα − ξ(1− η2α) (1− σmax/σmin)

κα − ξ(1− η2α)
(1 + oP (1)),

where σmax = max1≤j≤d σjj and σmin = min1≤j≤d σjj . Hence it follows that

b̂
∗T
α b∗β ≥ b∗Tα b∗β

√
κα − ξ(1− η2α)√

κα − ξ(1− η2α) (1− σmax/σmin)
(1 + oP (1)). (8.10)

Similarly, we obtain

b̂
∗T
α b∗β ≤ b∗Tα b∗β

√
κα − ξ(1− η2α)√

κα − ξ(1− η2α) (1− σmin/σmax)
(1 + oP (1)). (8.11)

�
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Proof of Corollary 4.2

From the assumption d = o(nCd) that (8.10) and (8.11) can be evaluated as

b̂
∗T
α b∗β ≥ b∗Tα b∗β

√
κα − ξ(1− η2α)√

κα − ξ(1− η2α) (1− σmax/σmin)
(1 + oP (1))

= b∗Tα b∗β(1 + oP (1))

and

b̂
∗T
α b∗β ≤ b∗Tα b∗β

√
κα − ξ(1− η2α)√

κα − ξ(1− η2α) (1− σmin/σmax)
(1 + oP (1))

= b∗Tα b∗β(1 + oP (1))

respectively. Therefore, we have b̂
∗T
α b∗β = b∗Tα b∗β(1 + oP (1)). �

Evaluation of the Misclassification Rate W (ĝ, θ)

Suppose that the random vector X belongs to Ck. The correct classification rate of ĝ for

class Ck is defined as

W k(ĝ, θ) = P ( ĝ(X) = k | Xℓi, ℓ = 1, . . . ,K; i = 1, . . . , nℓ )

= P ( ĝ(X) = k | X ) .

We have

W k(ĝ, θ) = P

 ∩
α ̸=k

{
ω ∈ Ω

∣∣∣∣∣
(
X(ω)− 1

2
(µ̂k + µ̂α)

)T

ŵkα > 0

} ∣∣∣∣∣∣ X



= P

 ∩
α ̸=k

{
ω ∈ Ω

∣∣∣ δ̂kα(X(ω)) > 0
} ∣∣∣∣∣∣ X

 ,

where ŵkα = B̂T (B̂D̂B̂T )−1(µ̂k − µ̂α). We can easily see that

δ̂kα(X) ∼ N

((
µk −

1

2
(µ̂k + µ̂α)

)T

ŵkα, ŵT
kαΣŵkα

)
, α ̸= k.

Therefore, W k(ĝ, θ) can be written as

W k(ĝ, θ) = P

 ∩
α ̸=k

{
ω ∈ Ω

∣∣∣Ẑkα(ω) > −d̂kα
} ∣∣∣∣∣∣ X

 ,
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where Ẑkα =
(
δ̂kα(X)− E

[
δ̂kα(X)

])/√
V
[
δ̂kα(X)

]
∼ N(0, 1) and

d̂kα =
E
[
δ̂kα(X)

]
√

V
[
δ̂kα(X)

]

=
(µk − (µ̂k + µ̂α)/2)

T B̂T (B̂D̂B̂T )−1B̂(µ̂k − µ̂α)√
(µ̂k − µ̂α)

T B̂T (B̂D̂B̂T )−1B̂ΣB̂T (B̂D̂B̂T )−1B̂(µ̂k − µ̂α)
. (8.12)

Next, we evaluate the (i, j)th element of the covariance matrix of (Ẑk1, . . . , ẐkK)T , where

i, j ∈ {1, . . . ,K} − {k} and i ̸= j. From δ̂kα(X) − E
[
δ̂kα(X)

]
= (X − µk)

T ŵkα,

Cov(Ẑki, Ẑkj) can be written as

Cov(Ẑki, Ẑkj) =
ŵT

kiΣŵkj√
ŵT

kiΣŵki

√
ŵT

kjΣŵkj

.

Therefore, the covariance matrix of Ẑk = (Ẑk1, . . . , Ẑk(K−1))
T is

Σ̂k = Ŵ T
k ΣŴk, (8.13)

where Ẑkα = I(α < k)Ẑkα + I(α ≥ k)Ẑk(α+1),

Ŵk =

 ŵk1√
ŵT

k1Σŵk1

· · ·
ŵk(K−1)√

ŵT
k(K−1)Σŵk(K−1)


and ŵkα = I(α < k)ŵkα + I(α ≥ k)ŵk(α+1). Now consider the region

D̂k =
{
z ∈ RK−1

∣∣∣ zj < d̂kα, α ∈ {1, . . . ,K − 1}
}
,

where d̂kα = I(α < k)d̂kα+I(α ≥ k)d̂k(α+1). Since −Zk is also distributed asNK−1(0, Σ̂k),

the correct probability can be obtained as

W k(ĝ, θ) = P

(
K−1∩
α=1

{
ω ∈ Ω

∣∣∣ −Ẑkα(ω) < d̂kα

} ∣∣∣∣∣ X

)

=

∫
D̂k

1√
|2πΣ̂k|

exp

(
−1

2
zT Σ̂−1

k z

)
dz

= ΦK−1

(
D̂k; 0, Σ̂k

)
.
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Therefore, the misclassification rate of ĝ for class Ck becomes

Wk(ĝ, θ) = 1−W k(ĝ, θ) = 1− ΦK−1

(
D̂k; 0, Σ̂k

)
.

�

Proof of Theorem 4.4

By Theorem 4.1, B̂ is given by

B̂ = D̂−1/2P̂ = D̂−1M̂0N
1/2ΓL̂−1(1 + oP (1)),

where L̂ = diag
(
||Ĉγ1||, . . . , ||ĈγK−1||

)
. Using D̂ = D(1+oP (1)), (8.12) can be evaluated

as

d̂kα =
(µk − (µ̂k + µ̂α)/2)

T B̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)√
(µ̂k − µ̂α)

T B̂(B̂T D̂B̂)−1B̂TΣB̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)

≥ 1√
λmax(R)

I1N
1/2Γ(ΓTN1/2I2N

1/2Γ)−1ΓTN1/2IT3√
I3N1/2Γ(ΓTN1/2I2N1/2Γ)−1ΓTN1/2IT3

(1 + oP (1)),

where I1 = (µk − (µ̂k + µ̂α)/2)
T D−1M̂0, I2 = M̂T

0 D
−1M̂0 and I3 = (µ̂k − µ̂α)

TD−1M̂0.

We first calculate I3. Note that I3 can be decomposed as

I3 = (µ̂k − µ̂α)
TD−1M̂0

=
[
(µ̂k − µ̂α)

TD−1(µ̂1 − µ̂), . . . , (µ̂k − µ̂α)
TD−1(µ̂K − µ̂)

]
. (8.14)

From Condition A, a typical component of (8.14) can be expressed as

(µ̂k − µ̂α)
TD−1(µ̂ℓ − µ̂)

=

K∑
h=1

nh

n

[
(µk − µα)

TD−1(µℓ − µh) + (εk − εj)
T D̂−1(µℓ − µh)

+(µk − µα)
TD−1(εℓ − εh) + (εk − εα)

TD−1(εℓ − εh)
]
.

Then we have

(εk − εα)
TD−1(µℓ − µh) = oP

(
(µℓ − µh)

TD−1(µℓ − µh)
)

(µk − µα)
TD−1(εℓ − εh) = oP

(
(µk − µα)

TD−1(µk − µα)
)
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by p.2625 of Fan and Fan (2008). Next we examine
∑K

h=1(nh/n)(εk − εα)
TD−1(εℓ − εh),

which can be written as

K∑
h=1

nh

n
(εk − εα)

TD−1(εℓ − εh) = εTkD
−1εℓ − εTkD

−1ε− εTαD
−1εℓ + εTαD

−1ε.

By an argument similar to that given on p.2627 of Fan and Fan (2008), we obtain

K∑
h=1

nh

n
(εk − εα)

TD−1(εℓ − εh) =



d

nk
+ oP

(√
d

n

)
if ℓ = k,

− d

nα
+ oP

(√
d

n

)
if ℓ = α,

oP

(√
d

n

)
otherwise.

We also need to evaluate the asymptotic order of (µk−µα)
TD−1M0, which can be written

as

(µk − µα)
TD−1M0

=

[
K∑
ℓ=1

πℓ(µk − µα)
TD−1(µ1 − µℓ), . . . ,

K∑
ℓ=1

πℓ(µk − µα)
TD−1(µK − µℓ)

]

= 1TKΠF,

where F = [ f1 · · · fK ] = ((µk − µα)
TD−1(µi − µj))1≤i,j≤K . Using Condition E and

Condition F, ℓth component of (µk − µα)
TD−1M0 has the following form

1TKΠf ℓ

=



Cd

−∑
h ̸=k

√
πh

µT
kD

−1µk

Cd
−
√
πα

µαD
−1µα

Cd
+
∑
β ̸=k

cβk
Cd

 if ℓ = k,

Cd

√πkµkD
−1µk

Cd
+
∑
h ̸=α

√
πh

µT
αD

−1µα

Cd
+
∑
β ̸=α

cβα
Cd

 if ℓ = α,

Cd

√πkµkD
−1µk

Cd
−
√
πα

µαD
−1µα

Cd
+
∑
β ̸=ℓ

cβℓ
Cd

 otherwise.

= O(Cd),
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where cβℓ = O(C
ζβℓ
d ) and ζβℓ ∈ (0, 1) for all β, ℓ. Therefore, we have

(µk − µα)
TD−1M0 = 1TKΠF = O(Cd)1

T
K .

Using the above calculations, we have

(µ̂k − µ̂α)
TD−1(µ̂ℓ − µ̂)

= (µk − µα)
TD−1(µℓ − µ)(1 + oP (1)) +

K∑
h=1

nh

n
(εk − εα)

TD−1(εℓ − εh)

+oP

(
max

h∈{1,...K}

{
(µℓ − µh)

TD−1(µℓ − µh), (µk − µα)
TD−1(µk − µα)

})

=



{
(µk − µα)

TD−1(µℓ − µ) +
d

nk

}
(1 + oP (1)) if ℓ = k,{

(µk − µα)
TD−1(µℓ − µ)− d

nα

}
(1 + oP (1)) if ℓ = α,

(µk − µα)
TD−1(µℓ − µ)(1 + oP (1)) otherwise,

by Condition D. Thus, it follows that

I3 =
(
(µk − µα)D

−1M0 + βkα

)
(1 + oP (1)),

where βkα = (0, . . . , 0, d/nk, 0, . . . , 0,−d/nα, 0, . . . , 0) . Next, we consider I1. We find that

I1 =

(
µk −

1

2
(µ̂k + µ̂α)

)T

D−1M̂0 = −εTkD−1M̂0 +
1

2
(µ̂k − µ̂α)

TD−1M̂0. (8.15)

Similarly, (8.15) becomes

−εTkD−1M̂0 +
1

2
(µ̂k − µ̂α)

TD−1M̂0

=



d

n

(
1− n

nk

)
+

1

2

{
(µk − µα)

TD−1(µℓ − µ) +
d

nk

}
(1 + oP (1)) if ℓ = k,

d

n
+

1

2

{
(µk − µα)

TD−1(µℓ − µ)− d

nα

}
(1 + oP (1)) if ℓ = α,

d

n
+

1

2
(µk − µα)

TD−1(µℓ − µ)(1 + oP (1)) otherwise,

=


[
1

2
(µk − µα)

TD−1(µℓ − µ) +
d

n

(
1− n

2nℓ

)]
(1 + oP (1)) if ℓ = k, α,[

1

2
(µk − µα)

TD−1(µℓ − µ) +
d

n

]
(1 + oP (1)) otherwise.
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Therefore, we have

I1 =

[
1

2
(µk − µα)

TD−1M0 +
d

n
αkα

]
(1 + oP (1)),

where

αkα =

(
1, . . . , 1, 1− n

2nk
, 1, . . . , 1, , 1− n

2nα
, 1, . . . , 1

)
.

Finally, we consider I2. It can be written as

I2 = M̂0D
−1M̂0 =

(
(µ̂α − µ̂)TD−1(µ̂β − µ̂)

)
1≤α,β≤K

. (8.16)

Each component of (8.16) can be decomposed as

(µ̂α − µ̂)TD−1(µ̂β − µ̂) =
{
(µα − µ)TD−1(µβ − µ) + J1 + J2

}
(1 + oP (1)) + J3, (8.17)

where J1 = (εα−ε)TD−1(µβ−µ), J2 = (µα−µ)TD−1(εβ−ε) and J3 = (εα−ε)TD−1(εβ−

ε). From calculations similar to those carried out in the derivation of I1 and I3, we get

J1 = oP
(
(µβ − µ)TD−1(µβ − µ)

)
, J2 = oP

(
(µα − µ)TD−1(µα − µ)

)
,

J3 = (εα − ε)TD−1(εβ − ε) =


d

n

(
n

nα
− 1

)
+ oP

(√
d

n

)
if α = β,

−d

n
+ oP

(√
d

n

)
if α ̸= β.

Consequently, (8.17) results in

(µ̂α − µ̂)TD−1(µ̂β − µ̂)

=


{
(µα − µ)TD−1(µα − µ) +

d

n

(
n

nα
− 1

)}
(1 + oP (1)) if α = β,{

(µα − µ)TD−1(µβ − µ)− d

n

}
(1 + oP (1)) if α ̸= β.

Therefore, we have

I2 =

{
MT

0 D
−1M0 +

d

n

(
N−1 − 1K1TK

)}
(1 + oP (1)).
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In summary, the components of d̂kα can be evaluated as

I1N
1/2 =

[
1

2
(µk − µα)

TD−1M0 +
d

n
αkα

]
N1/2(1 + oP (1))

=

[
1

2
Mkα +

d

n
skαΠ

−1/2

]
(1 + oP (1))

= Skα(1 + oP (1)),

N1/2I2N
1/2 = N1/2

[
MT

0 D
−1M0 +

d

n

(
N−1 − 1K1TK

)]
N1/2(1 + oP (1))

=

[
CTC +

d

n

(
IK −Π1/21K1TKΠ1/2

)]
(1 + oP (1)),

I3N
1/2 =

[
(µk − µα)D

−1M0 + βkα

]
N1/2(1 + oP (1))

=

[
Mkα +

d

n
qkαΠ

−1/2

]
(1 + oP (1))

= Qkα(1 + oP (1))

since N = Π(1 + oP (1)). Therefore, we have

d̂kα

≥
SkαΓ

[
ΓT
{
CTC + (d/n)

(
IK −Π1/21K1TKΠ1/2

)}
Γ
]−1

ΓTQT
kα(1 + oP (1))√

λmax(R)
√

QkαΓ
[
ΓT
{
CTC + (d/n)

(
IK −Π1/21K1TKΠ1/2

)}
Γ
]−1

ΓTQT
kα

. (8.18)

This completes the proof of Theorem 4.4. �

Proof of Corollary 4.3

Using Mkα = 1TKO(Cd) and CTC = 1K1TKO(Cd), Skα of (8.18) becomes

Skα =
Mkα

2
+ Cd

(
d

nCd

)
skαΠ

−1/2

=
Mkα

2
+ 1TKo(Cd)

=
Mkα

2
(1 + oP (1)).

Similarly, we can obtain Qkα = Mkα(1 + oP (1)) and U = CTC(1 + oP (1)). �
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Proof of Theorem 4.6

The right side of (4.17) can be written as

1− Φ

(√
n1n2/(dn)α

TD−1α(1 + oP (1)) + (n1 − n2)
√

d/(nn1n2)

2
√

λmax(R)
√

1 + n1n2αTD−1α(1 + oP (1))/(dn)

)

= 1− Φ

( √
n1n2/(dn)α

TD−1α
[
(1 + oP (1)) + {d/(nαTD−1α)}{(n1 − n2)/n1}

]
2
√

λmax(R)
√

n1n2αTD−1α/(dn)
√
(n/n1){d/(n2αTD−1α)}+ (1 + oP (1))

)

= 1− Φ

( √
n1n2/(dn)α

TD−1α [(1 + oP (1)) + o(1)O(1)]

2
√

λmax(R)
√

n1n2/(dn)
√
αTD−1α

√
O(1)o(1) + (1 + oP (1))

)

= 1− Φ

(
αTD−1α

2
√

λmax(R)
(1 + oP (1))

)
by the assumption d = o(nCd). Therefore, we have

W1(ĝ) = max
θ∈Θ

W1(ĝ, θ) = 1− Φ

(
Cd

2
√
b0
(1 + oP (1))

)
.

�

Proof of Corollary 4.4

We derive (4.18) as follows:

1− Φ

(√
n1n2/(dn)α

TD−1α(1 + oP (1)) + (n1 − n2)
√

d/(nn1n2)

2
√

λmax(R)
√

1 + n1n2αTD−1α(1 + oP (1))/(dn)

)

= 1− Φ

(√
αTD−1α[(1 + oP (1)) + {d/(n2Cd)}(Cd/α

TD−1α)(1− n2/n1)]

2
√

λmax(R)
√

(n/n1){d/(n2αTD−1α)}+ (1 + oP (1))

)

= 1− Φ

(√
αTD−1α[(1 + oP (1)) + {d/(n2Cd)}(Cd/α

TD−1α){1− (c0 + o(1))}]
2
√

λmax(R)
√

(n/n1){d/(n2αTD−1α)}+ (1 + oP (1))

)

≥ 1− Φ

(√
αTD−1α[(1 + oP (1)) + {d/(n2Cd)}(Cd/α

TD−1α)o(1)]

2
√

λmax(R)
√

(n/n1){d/(n2αTD−1α)}+ (1 + oP (1))

)

= 1− Φ

( √
αTD−1α {(1 + oP (1)) +O(1)O(1)o(1)}

2
√

λmax(R)
√

O(1)O(1)O(1) + (1 + oP (1))

)

> 1− Φ

(√
αTD−1α

2
√

λmax(R)
(1 + oP (1))

)
.

�

77



9 Conclusion

In this paper, we discussed the asymptotic theories of the multi-class linear discriminant

function in a hdlss context. In Section 3, we constructed the linear discriminant function

based on naive canonical correlation in the context of multi-class problem. In Section 4, we

derived the asymptotic behavior of eigenvectors of the naive canonical correlation matrix

corresponding to positive eigenvalues. In the asymptotic theory, both the dimension d

and the sample size n grow, and provided d does not grow too fast, we showed that all

eigenvectors and discriminant directions are hdlss consistent. Under suitable conditions,

we were able to derive an upper bound for the worst case misclassification rate in the

multi-class setting. In Section 5, we proposed a feature selection method for hdlss data,

called nacc approach, using a discriminant direction. Further, for the general multi-class

setting, we proposed and discussed two methods for feature selection, called m-nacc and

m-fair, which extend their respective two-class analogues. If the variance is large relative

to the difference between the means, we illustrate in Subsection 6.4 that nacc and m-

nacc performed better than fair and m-fair respectively. Applications to real data sets

demonstrate that nacc and m-nacc performed well.

In recent years, other discriminant method for hdlss data has been studied by many

authors: Marron et al. (2007) proposed Distance-Weighted Discrimination (DWD) which

improves the performance of Support Vector Machine (SVM) in the hdlss setting, Fan

et al. (2012) proposed Regularized Optimal Affine Discriminant (ROAD) which uses the

L1-constraint in the Fisher’s criterion (2.3), Ahn et al. (2012) proposed a hierarchical

clustering algorithm based on the MDP distance by referring to Ahn and Marron (2010).

Other possible research directions include extensions of our theoretical results to the “ker-

nel method” in linear discrimination described in Mika et al. (1999).

Our approach exploits the naive Bayes rule and replaces Σ̂−1 by the diagonal matrix

D̂−1. On the other hand, replacing D̂−1 by a certain type of band matrices could also

yield efficient linear discriminant functions in a hdlss setting. Such discriminant functions
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are of interest in practice, especially when relevant correlation information between the

observations is lost in the replacement of Σ̂−1 by the diagonal matrix D̂−1. Theoretical

research of k0-banded matrix has been considered in Bickel and Levina (2008), and their

results are expected to apply to linear discriminant function in hdlss settings. Further-

more, we can explore issues of discriminant function based on invertible k0-banded matrix:

asymptotic behavior of misclassification rate, the selection criteria of k0, the algorithm for

preprocessing correlation of hdlss data before discrimination.
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