
Mem. Gra. Sci. Eng. Shimane Univ.
Series B: Mathematics
47 (2014), pp. 63–71

ASYMPTOTICS FOR PENALIZED SPLINES IN ADDITIVE
MODELS

TAKUMA YOSHIDA

Communicated by Kanta Naito

(Received: December 19, 2013)

Abstract. This paper is based on the author’s thesis, “Asymptotic theory of
penalized spline regression”. The focus of the present paper is on the penalized
spline estimators obtained by the backfitting algorithm in additive models. The
convergence of the algorithm as well as the uniqueness of its solution are shown.
Asymptotic equivalence between the penalized spline estimators by the backfit-
ting algorithm and the convenient estimators proposed by Marx and Eilers [9] is
addressed. Asymptotic normality of the estimators is also developed.

1. Introduction

The additive model is a typical regression model with multidimensional covari-
ates and is usually expressed as

yi = f1(xi1) + · · ·+ fD(xiD) + εi,

for given data {(yi, xi1, · · · , xiD) : i = 1, · · · , n}, where each fd(d = 1, · · · , D) is a
univariate function with a certain degree of smoothness.
The additive model has become a popular smoothing technique and its funda-

mental properties have been summarized in literature such as Buja et al. [2] and
Hastie and Tibshirani [7]. Buja et al. [2] proposed the so-called backfitting algo-
rithm, which is efficient for nonparametric estimation of fd(d = 1, · · · , D). The
backfitting algorithm is a repetition update algorithm and its convergence and the
uniqueness of its solution are not always assured. Buja et al. [2] showed the suffi-
cient condition for convergence of the backfitting algorithm and the uniqueness of
its solution for some smoothing methods.
In this paper, we discuss the asymptotic properties of the penalized spline es-

timator for the additive model. Penalized spline estimators have been discussed
in O’Sullivan [10], Eilers and Marx [5], Marx and Eilers [9], Aerts et al. [1] and
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Ruppert et al. [11]. Despite its richness of application, the asymptotics for spline
smoothing seem to have not yet been sufficiently developed.
For the univariate model (D = 1), Hall and Opsomer [6] gave the mean squared

error and proved consistency of the penalized spline estimator. The asymptotic
bias and variance of the penalized spline estimator were obtained in Claeskens et
al. [3]. Kauermann et al. [8] worked with the generalized linear model. Wang et al.
[14] showed that the penalized spline estimator is asymptotically equivalent to a
Nadaraya-Watson estimator. Thus, it seems that developments of the asymptotic
theories of the penalized splines are relatively recent events and we note that those
works are mainly regarding the univariate model.
The penalized spline estimators for the additive models are obtained by using

the penalized least squares method. However there is one problem in that the loss
function L is not strictly convex. Therefore it is difficult to find the minimizer
of L since its Hessian is not invertible. Though the backfitting algorithm yields
a solution that makes the gradient of L equal to zero, there is no guarantee that
the solution obtained by this method minimizes L. It has been known that the
backfitting algorithm does converge, but the uniqueness of the obtained solution
cannot be proved in general.
On the other hand, Marx and Eilers [9] proposed a new loss function to avoid this

singularity problem. They proposed to use Lγ which consists of L plus an additional
small ridge penalty. This Lγ is strictly convex, hence the global minimum of Lγ

is equivalent to a unique local minimum which can be easily obtained. Of course
there is a gap between the minimizer of Lγ and that of L. In this paper, the
estimator obtained by minimizing Lγ is called the ridge corrected penalized spline
estimator (RCPS) and the penalized spline estimator obtained by the backfitting
algorithm is denoted as the backfitting penalized spline estimator (BPS). Because
we are interested in the estimator obtained by using L, we mainly focus on BPS.
The aim of this paper is to derive the asymptotic distribution of the BPS in

the general D-variate additive model. First we show the asymptotic distribution
of the RCPS. Next, it is shown that the difference of the RCPS and the BPS
asymptotically vanishes. As a result, it demonstrates that the asymptotic normality
of the BPS and that the solution of the backfitting algorithm is asymptotically
unique. As will be seen in the subsequent section, although the closed form of the
BPS can not be written, its asymptotic properties can be shown in each iteration
of the algorithm. The properties of the band matrices play an important role as a
mathematical tool in asymptotic considerations.
This paper is organized as follows. In Section 2, our model settings and estimat-

ing equation in the penalized least squares method are discussed, and the RCPS
and the BPS are constructed. Section 3 provides the asymptotic bias and variance
of the RCPS, and then its asymptotic normality is developed. Furthermore, we
show that the BPS is asymptotically equivalent to the RCPS and the solution of
the backfitting algorithm is asymptotically unique. In Section 4, we give some
comments. Proofs of all mathematical results are omitted.
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2. Model setting and penalized spline estimator

2.1. Additive spline model. Consider a D-variate additive regression model

yi = f1(xi1) + · · ·+ fD(xiD) + εi(1)

for the data {(yi,xi) : i = 1, · · · , n}, where xi = (xi1, · · · , xiD) is the D-variate
explanatory variables, fj(·) is an unknown regression function and εi’s are indepen-
dent random errors with E[εi|X i = xi] = 0 and V [εi|X i = xi] = σ2(xi) <∞. We
assume E[fj(Xj)] = 0(j = 1, · · · , D) to ensure identifiability of fj. Let qj(xj) be the
density of Xj and q(x) = q(x1, · · · , xD) be the joint density of X = (X1, · · · , XD).
We assume without loss of generality that xi ∈ (0, 1)D for all i ∈ {1, · · · , n}, where
(0, 1)D is the D-variate unit cube.
Now we consider the B-spline model

sj(xj) =
Kn∑

k=−p+1

B
[p]
k (xj)bj,k

as an approximation to fj(xj) at any xj ∈ (0, 1) for j = 1, · · · , D. Here, B
[p]
k (x)(k =

−p+ 1, · · · , Kn) are the pth degree B-spline basis functions defined recursively as

B
[0]
k (x) =

{
1, κk−1 < x ≤ κk,
0, otherwise,

B
[p]
k (x) =

x− κk−1

κk+p−1 − κk−1

B
[p−1]
k (x) +

κk+p − x

κk+p − κk
B

[p−1]
k+1 (x),

where κk = k/Kn(k = −p + 1, · · · , Kn + p) are knots and bj,k(j = 1, · · · , D, k =

−p + 1, · · · , Kn) are unknown parameters. We denote B
[p]
k (x) as Bk(x) in what

follows since only the pth degree is treated. The details and many properties of
the B-spline function are clarified in de Boor [4]. We aim to obtain an estimator
of fj via the B-spline additive regression model

yi = s1(xi1) + · · ·+ sD(xiD) + εi(2)

instead of model (1). Model (2) can be expressed as

y = Z1b1 + · · ·+ ZDbD + ε = Zb+ ε

by using the notations y = (y1 · · · yn)′, bd = (bd,−p+1 · · · bd,Kn)
′, b = (b′1 · · · b′D)

′,

Zd = (B−p+j(xid))ij, Z = [Z1 · · · ZD] and ε = (ε1 · · · εn)′. The estimator b̂ of b
is defined as the minimizer of

L(b) = (y − Zb)′(y − Zb) +
D∑
j=1

λjnb
′
jQmbj

= (y − Zb)′(y − Zb) + b′Qm(λn)b,(3)

where λjn(j = 1, · · · , D) are the smoothing parameters, Qm is the mth order
difference matrix and Q(λn) = diag[λ1nQm · · · λDnQm]. This estimation method
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is called the penalized least squares method and it has been frequently utilized in
spline regression. For a fixed point xj ∈ (0, 1), the estimator f̂j(xj) of fj(xj) is

f̂j(xj) =
Kn∑

k=−p+1

Bk(xj)b̂j,k

and is called the penalized spline estimator of fj(xj). The predictor of y at a fixed
point x ∈ (0, 1)D is defined as

ŷ = f̂1(x1) + · · ·+ f̂D(xD).(4)

Since E[fj(Xj)] = 0 is assumed for fj, the estimator of each component fj is

usually centered. Hence, f̂j(xj) is rewritten as

f̂j,c(xj) = f̂j(xj)−
1

n

n∑
i=1

f̂j(xij),

as discussed in Wang and Yang [13]. In this paper, however, we do not examine f̂j,c
because our interests are in asymptotics for f̂j and ŷ, and asymptotic distributions

of f̂j(xj) and f̂j,c(xj) become equivalent.

2.2. The Ridge Corrected Penalized Spline Estimator. In general, b̂ =

(b̂
′
1 · · · b̂

′
D)

′ is a solution of

∂L(b)

∂b
= 0.(5)

However, this method has one defect: the L(b) is not strictly convex as a function of
b in general. Hence, the solution of (5) does not necessarily become the minimizer
of (3). Actually, because each column sum of Zj equal to 1, Z ′Z + Qm(λn), the
Hessian matrix of L(b), has eigenvalue 0. Marx and Eilers [9] also noted this point
as a typical problem of the additive spline regression. They studied a new method
such that the loss function has strict convexity for obtaining the estimator of b.
Let Lγ(b) = L(b)+γb′b, where γ > 0 is very small constant. Since Lγ(b) is strictly

convex, the solution b̂γ = (b̂
′
1,γ · · · b̂

′
D,γ)

′ of

∂Lγ(b)

∂b
= 0

can be obtained uniquely as

b̂γ = (Z ′Z +Q(λn) + γI)−1Z ′y.

The RCPS of fj(xj) can be written as

f̂j,γ(xj) = B(xj)
′b̂j,γ,

where B(xj) = (B−p+1(xj) · · · BKn(xj))
′. If γ = 0, b̂γ cannot be calculated

because Z ′Z +Q(λn) is not invertible.
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2.3. The Backfitting Penalized Spline Estimator. The merit and usage of
the backfitting algorithm are clarified in Hastie and Tibshirani [7]. The ℓ-stage

backfitting estimator b
(ℓ)
j of bj is defined as

b
(ℓ)
j = Λ−1

j Z ′
j(y − Z1b

(ℓ)
1 − · · · − Zj−1b

(ℓ)
j−1 − Zj+1b

(ℓ−1)
j+1 − · · · − ZDb

(ℓ−1)
D ),

where b
(0)
j ’s are initial values. The ℓ-stage backfitting estimator f

(ℓ)
j (xj) of fj(xj)

at xj ∈ (0, 1) is defined as

f
(ℓ)
j (xj) =

Kn∑
k=−p+1

Bk(xj)b
(ℓ)
j,k = B(xj)

′b
(ℓ)
j , j = 1, · · · , D.

For D = 2, the explicit form of b
(ℓ)
j can be obtained (see Yoshida and Naito

[15]). However, for general D, the exact form of b
(ℓ)
j is too complicated to be

written down. A mathematical property of the backfitting algorithm is that b(∞) =

((b
(∞)
1 )′, · · · , (b(∞)

D )′)′ ≡ limℓ→∞((b
(ℓ)
1 )′, · · · , (b(ℓ)D )′)′ satisfies

∂L(b)

∂b

∣∣∣
b=b(∞) = 0.

It is shown by Theorem 9 of Buja et al. [2] that b
(ℓ)
j converges to b

(∞)
j , but those

b
(∞)
j (j = 1, ..., D) are depending on initial values b

(0)
j (j = 1, ..., D). This means

that the convergence property of the backfitting estimator is guaranteed, but the
uniqueness of the solutions is not trivial. We will study the asymptotic behavior of

f̂j(xj) = f
(∞)
j (xj) = B(xj)

′b
(∞)
j , as well as the relationship between b̂j,γ and b

(∞)
j .

3. Asymptotic theory

We prepare some symbols and notations to be used hereafter. Define the (Kn +
p)× (Kn + p) square matrix Gk = (Gk,ij)ij with its (i, j)-component

Gk,ij =

∫ 1

0

B−p+i(x)B−p+j(x)qk(x)dx

for k = 1, · · · , D and the (Kn + p)× (Kn + p) square matrix Σk = (Σk,ij)ij having
the (i, j)-component

Σk,ij =

∫
[0,1]D

σ2(x)B−p+i(xk)B−p+j(xk)q(x)dx

for k = 1, · · · , D. Let b∗j be a best L∞ approximation to the true function fj. This
means that b∗j satisfies

sup
x∈(0,1)

∣∣fj(x) + bj,a(x)−B(x)′b∗j
∣∣ = o(K−(p+1)

n ),

where

bj,a(x) = −
f
(p+1)
j (x)

Kp+1
n (p+ 1)!

Kn∑
k=1

I(κk−1 ≤ x < κk)Bp+1

(
x− κk−1

K−1
n

)
,
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I(a < x < b) is the indicator function of an interval (a, b) and Bp(x) is the pth
Bernoulli polynomial, see Zhou et al. [17]. For a random sequence Un, E[Un|Xn]
and V [Un|Xn] designate the conditional expectation and the conditional variance
of Un given (X1, · · · ,Xn) = (x1, · · · ,xn), respectively.
In spline smoothing, the smoothing parameter λjn is usually selected as λjn → ∞

with n → ∞ because a spline curve often yields overfitting for large n. In the
following, we assume that λjn = o(nK−1

n ).
In this section, first we discuss the asymptotic distribution of the RCPS. Next we

show that the difference of the BPS and RCPS asymptotically vanishes, by which
we finally obtain the asymptotic distribution of the BPS.

3.1. Asymptotic distribution of the RCPS. We will show the asymptotic
property of f̂j,γ(xj)(j = 1, · · · , D). By using the result of the partitioned ma-

trix of Z ′Z + Qm(λn) + γI and its asymptotic property, the form of f̂j,γ(xj) and
its asymptotic expression can be clarified. As a result, we obtain the following
Theorem.

Theorem 3.1. Let fj ∈ Cp+1(j = 1, · · · , D). Suppose that Kn = o(n1/2) and
λjn = o(n/Kn)(j = 1, · · · , D). Then, for j, k = 1, · · · , D,

E[f̂j,γ(xj)|Xn]− fj(xj) = bj,λ(xj) + bj,γ(xj) + oP (K
−1
n ) + oP (λjnKnn

−1),

V [f̂j,γ(xj)|Xn] =
1

n
B(xj)

′G−1
j ΣjG

−1
j B(xj)(1 + oP (1)) = OP (Knn

−1),

Cov(f̂j,γ(xj), f̂k,γ(xk)) = OP (n
−1), j ̸= k

where

bj,λ(x) = −λjn
n

B(xj)
′G−1

j Qmb
∗
j = O(λjnKnn

−1)

and

bj,γ(xj) = −γ
n
B(xj)

′G−1
j b∗j = O(Knn

−1).

In Theorem 3.1, the influence of γ appears only in bj,γ(xj), which is in fact of
negligible order. Furthermore, compared to Theorem 2 of Claeskens et al. [3],

f̂j,γ(xj) is asymptotically equivalent to the penalized spline estimator based on
the dataset {(yi, xij) : i = 1, · · · , n} in the univariate regression model. By using
Theorem 3.1 and Lyapunov’s condition of the central limit theorem, we obtain the
asymptotic joint distribution of [f̂1,γ(x1) · · · f̂D,γ(xD)]

′.

Theorem 3.2. Suppose that there exists δ ≥ 2 such that E[|εi|2+δ|Xi = xi] < ∞
and fj ∈ Cp+1. Furthermore, Kn and λjn satisfy Kn = o(n1/2), n1/3 = o(Kn) and
λjn = o((nK−1

n )1/2). Then, for any fixed point x ∈ (0, 1)D, as n→ ∞,

√
n

Kn

 f̂1,γ(x1)− f1(x1)
...

f̂D,γ(xD)− fD(xD)

 d−→ ND (0,Ψ) ,
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where Ψ = diag[ψ1(x1) · · · ψD(xD)] and

ψj(xj) = lim
n→∞

1

Kn

B(xj)
′G−1

j ΣjG
−1
j B(xj), j = 1, · · · , D.

3.2. Asymptotic distribution of the BPS. It is easily confirmed that the BPS
f̂j(xj) can be expressed as

f̂j(xj) = f
(1)
j (xj) + lim

ℓ→∞

ℓ−1∑
k=1

{f (k+1)
j (xj)− f

(k)
j (xj)}.

We show that for all k ∈ N, f (k+1)
j (xj) − f

(k)
j (xj) asymptotically vanishes, from

which we find that f̂j(xj) is asymptotically dominated by f
(1)
j (xj) for j = 1, · · · , D.

These properties are summarized in the following two Propositions.

Proposition 3.3. Let fj ∈ Cp+1. Suppose that Kn = o(n1/2) and λjn = o(Knn
−1).

Then, as n→ ∞,

f
(k+1)
j (xj)− f

(k)
j (xj) = OP (K

−k
n ) +OP

(
K−(k−1)

n (Knn)
−1/2

)
, k = 1, 2, · · · .

Proposition 3.4. Under the same assumption as Proposition 3.3, as n→ ∞,

f̂j(xj) = f
(1)
j (xj) +OP (K

−1
n ) + oP

(√
Kn

n

)
.

By its simple form of f
(1)
j (xj), it is easy to show that f

(1)
j (xj) is asymptotically

equivalent to f̂j,γ(xj). Thus, Propositions 3.3 and 3.4 yield that the asymptotic

equivalence between f̂j(xj) and f̂j,γ(xj). Consequently, Theorem 3.2 implies the
asymptotic distribution of BPS summarized as follows:

Theorem 3.5. Under the same assumption as Theorem 3.2, for any fixed point
x ∈ (0, 1)D, as n→ ∞,

√
n

Kn

 f̂1(x1)− f1(x1)
...

f̂D(xD)− fD(xD)

 d−→ ND (0,Ψ) ,

where Ψ is that given in Theorem 3.2.

From Theorem 3.5, for i ̸= j, f̂i(xi) and f̂j(xj) are asymptotically independent.

Asymptotic normality and the independence of f̂i(xi) and f̂j(xj) in kernel smooth-
ing also hold, as shown in Wand [12]. Thus, the penalized spline estimator and
the kernel estimator for the additive model have the same asymptotic property.
Asymptotic normality of ŷ in (4) can be shown as a direct consequence of Theorem
3.5. Though the BPS depends on the initial value, the effect of the initial value on
the distribution of the BPS vanishes as n→ ∞, which means that the uniqueness
of the BPS is asymptotically satisfied. Furthermore, Theorem 3.6 indicates that
b̂ = b(∞) minimizes L(b).
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Theorem 3.6. Let H(L) be the Hessian matrix of L(b). Then, H(L) is asymp-
totically positive definite.

We now give the optimal order of Kn and λjn in the context of minimization

of MSE of f̂j(xj). Note that Kn controls the trade-off between the bias and the
variance of the estimator, both of which have been obtained by Proposition 3.4 and
Theorem 3.1.

Corollary 3.7. Under the same assumption as Proposition 3.3, it follows that

MSE(f̂j(xj)) = E[{f̂j(xj)−fj(xj)}2|Xn] = OP

({
Knλjn
n

+
1

Kn

}2
)
+OP

(
Kn

n

)
.

Furthermore taking Kn = O(n1/3) and λjn = O(nν), ν ≤ 1/3 leads to the rate of

convergence, MSE(f̂j(xj)) = OP (n
−2/3).

Asymptotic normality in Theorem 3.2 also holds even if the optimal orders Kn =
O(n1/3) and λjn = O(nν), ν ≤ 1/3 in Corollary 3.7 are utilized, however the mean
of the asymptotic distribution is not zero in such cases, that is, the bias terms given
in Theorem 3.1 do not vanish. We see that the centered asymptotic distribution can
be obtained by the assumptions for the orders of Kn and λjn as given in Theorem
3.2.

4. Discussion

In this paper, the asymptotic behavior of the penalized spline estimators in
the additive models was investigated. The BPS and the RCPS have been shown
to be asymptotically equivalent. For practical purposes, we compare the RCPS
with the BPS from the view point of computation. We have to calculate the
inverse of MD = Z ′Z + Qm(λn) + γI in order to obtain the RCPS. Since the size
of MD is {D(Kn + p)} × {D(Kn + p)}, the computation of M−1

D is O({D(Kn +
p)}3). On the other hand, the ℓ-stage backfitting algorithm requires O(ℓD{Kn+p})
computations. Therefore when D is large, the BPS can be computed more quickly
than the RCPS. Even for D = 2, the RCPS requires O(8(Kn + p)3) computations
which is larger than the BPS. The same conclusion holds for a large sample size n,
which is also detailed in Hastie and Tibshirani [7] as the advantage of the backfitting
algorithm. So it might be better to utilize the BPS in additive penalized spline
smoothing.
On the other hand, it is known that the BPS can be constructed by using a

blend of backfitting and scoring algorithms also in the generalized additive models
(GAM). However, since the backfitting algorithm is required to be implemented
within each iteration of the scoring algorithm, the computation of the BPS finally
becomes a heavy task. Therefore in GAM, the RCPS, the direct method without
the backfitting cycle, might be better and its asymptotic theory should be investi-
gated. Actually, Yoshida and Naito [16] showed that the RCPS has the asymptotic
normality in GAM. Such theoretical research is a generalization of the works by
this paper and Kauermann et al. [8].
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