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ABSTRACT. In a topological connection theory, we introduce the notion of flat for
a parallel displacement and investigate holonomy groups of flat parallel displace-
ments. Moreover, we assert a classification theorem in a category of principal
bundles with flat parallel displacements, and give a sufficient condition for the
existence of an initial object in the category.

1. INTRODUCTION AND THE MAIN RESULT

In the previous paper [5] we have considered, in a topological connection theory,
parallel displacements (along admissible sequences), introduced the notion of holo-
nomy group of a parallel displacement, and clarified some fundamental properties
for holonomy groups. This paper is a sequel to [5]. In this paper, we introduce
the notion of flat for a parallel displacement and study holonomy groups of flat
parallel displacements. The main purpose of this paper is to demonstrate Theorem
1.3 (below).

Let us state the main Theorem 1.3 after generalizing the notion of flat in the
smooth category to that in the topological one. For smooth connections, we can
assert Proposition 3.9 (see Section 3) which provides a one-to-one correspondence
between flat smooth connections and special smooth slicing functions. Motivated
by Proposition 3.9 we introduce the notion of flat for a continuous slicing function
as follows (see Definition 3.1 also):

Definition 1.1. Let 7 : £ — X be a bundle, U a subset of X? containing the
diagonal set Ay, and C a covering of X. For an invertible (continuous) slicing
function w in 7 over U, we say that w is C-flat if it satisfies

Wyy O Wy 2z = Wy »
for any C' € C and any z,y,z € X with (x,v), (v, 2), (z,2) € UNC2.
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This is a generalized notion of flat in the smooth category. We here establish
Definition 1.1 from a viewpoint of slicing functions. In fact, Proposition 4.5 enables
us to rephrase Definition 1.1 as the following definition, from a viewpoint of parallel
displacements (see Section 4 for notation):

Definition 1.2. Let 7 : E — X be a bundle, & an admissible sequence space over
X, and C a covering of X. For a parallel displacement P along & in 7, we say that
P is C-flat if it satisfies

Px = Plpee (x)0(x))
for any C' € C and any x € 6 N C” with (pss(x), po(x)) € S1.

Now, we are in a position to state the main theorem:

Theorem 1.3. Let 7w : E — X be a principal G-bundle, C a covering of X, and P a
C-flat G-compatible parallel displacement along (Uc) in 7w, where U := Jpee O X C.
Suppose that C is (C-N) or C C Ox, and X is (Ug)-connected. Then, the following
(i) and (ii) hold for v € E :

(i) If ®“ is the strong holonomy group, then it is a discrete group.

(ii) If m is the strong holonomy bundle, then it is a ®*-bundle.

Note that Theorem 1.3 is no longer true if one removes the supposition “strong”
from the statement (i), see Example 4.14. In the smooth category, the holonomy
group of a flat connection is discrete. We can think of Theorem 1.3 as a general-
ization of this fact.

This paper is organized as follows: In Section 2 we prepare notation and some
topological facts. Section 3 is devoted to recalling the definition of slicing function
and proving Proposition 3.9. In Section 4 we first consider relation between par-
allel displacements and slicing functions, next conclude Proposition 4.5 and lastly
demonstrate Theorem 1.3 (in Subsection 4.2). Finally in Section 5 we assert a
classification theorem in a category of principal bundles with flat parallel displace-
ments (see Theorem 5.2), and furthermore, we give a sufficient condition for the
existence of an initial object in the category (see Theorem 5.3).

Acknowledgment. The author would like to express his sincerely gratitude to the
referee for valuable suggestions and comments.

2. PRELIMINARIES

First, let us prepare notation and some topological facts.

2.1. Let f: X — Y be a map. Take subsets A C X, B C Y satisfying f(A) C B.
Then there exists a unique map k : A — B such that f oiy x = ipy ok, where
iax is the inclusion. Denote by g|f|a, f|a and g|f, the maps k, y|f|4 and g|f|x,
respectively. If there is no confusion, we denote by f|4 or f : A — B the map
B|f|a as usual.

For two maps f: X — Y and g : Z — W, we denote the composition (g|ynz) o
(vnz|flf-1(vnz)) simply by go f. Remark here that if YNZ = 0, then gof : ) — W.
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Now, suppose that X = Z. Let § : X — X x X be a diagonal map. We denote by
fxg the composition (f x g)od: X — Y x W. Explicitly,

(f%g)() = (f(x),g(x)) forz € X.

If X and Y are topological spaces and f : X — Y is a continuous map, then g|f|a
is also continuous with respect to the relative topologies. We call f : X — Y an
identification if the topology of Y is {U € P(Y) | f~1(U) € Ox}, that is, the
identification topology with respect to f, where P(Y) is the power set of Y and
Ox 1is the topology of X. Needless to say, a surjective continuous open map is an
identification.

The following lemmas are frequently used in this paper:

Lemma 2.1. A surjective map f : X — Y is an identification if and only if
syl fla s A— f(A) is also an identification for any open (or closed) subset A C X
such that f~*(f(A)) = A.

Lemma 2.2. A map f : X — Y is an open map if and only if a|f];-1(a) :
f~YA) — A is an open map for any subset A CY.

2.2. We mostly follow the terminology of [4] with slight changes in notation. Thus,
we are going to set up notation for bundles. For a continuous map 7 : £ — X, we
call the map 7 : E' — X itself a bundle while usually the triple £ = (E, 7, X) or the
total space E is referred to as a bundle. Let 7 : ¥ — X and 7’ : B/ — X’ be two
bundles. For continuous maps h: E — E" and f: X — X', wecall (h, f):7m — 7’
a bundle morphism if 7 oh = fom. If X = X', we call (h,idx) : 7 — 7 an
X-morphism and denote it simply by h. For Y C X, put
Ely:=m"'Y), nly:=y|r|r1v).

We call 7[y: E[y— Y the restricted bundle of m to Y. For a continuous map
f: Z — X, the induced bundle or pull-back of 7 is denoted by f*nm : f*E — Z,

where

[fE=Zxx E:={(z,u) e Zx E| f(z) =n(u)}

is a fiber product of Z Iy X & E. The canonical bundle map is denoted by (f, f).
For topological spaces X and F', a bundle pr; : X x F©' — X is called a product
bundle. If m is X-isomorphic to a product bundle, we say that 7 is trivial. We say
that 7 : £ — X is locally trivial if 7 is locally V-isomorphic to a product bundle
pr; : V. x F — V for some open subset V' C X. A V-isomorphism 7[y— pr; is
called a local trivialization.

2.3. Let us recall the notion of G-space. Let G be a topological group. A right G-
space is a topological space E equipped with a continuous right action p: £ x G —
E. We often denote u(u,a) simply by ua. For w € E and a € G, one can define
maps [, : G — E, r,: E— E by

L,(b) :=ub, ry(v):=va,

respectively. A left G-space is defined in a similar way. Remark that by a G-space
we mean a right G-space, unless otherwise mentioned. Now, let E be a G-space.
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We call E a free G-space if the right action is free. Denote by E/G the orbit space,
and by ¢ : E — FE/G the natural projection, where the topology of E/G is the
identification topology (that is, the quotient topology) induced by ¢5. Note here
that ¢Z is a surjective open map. A translation function T : E* — G is a (not
necessarily continuous) map such that u7'(u,v) = v for any (u,v) € E*, where

E* = {(u,ua) € E* | a € G}.

Suppose that E is a free G-space. Then, we get a translation function T": £* — G
by setting
T(u,v) :=a

because for any (u,v) € E* there exists a unique a € G satisfying v = ua. It
follows that

(1) T(u,u) = 1¢ for any u € E;

(2) (ua,vb) € E* and T(ua,vb) = a='T(u,v)b for any (u,v) € E*, (a,b) € G

(3) T(u,v)T (v, w) =T (u,w) for any (u,v,w) € E* with (u,v), (v,w) € E*.
We call E a principal G-space if T is continuous.

2.4. Let m: E — X be a bundle such that E is a G-space. We call m a G-bundle
if g€ and 7 are isomorphic by (idg, f), where f is a unique continuous map such
that fog¢Z = moidg. Denote by /¢ the map f. The following lemma provides a
rather practical condition for a bundle to be a G-bundle.

Lemma 2.3. Let m be a bundle whose total space is a G-space. Then 7 is a G-
bundle if and only if the map 7/ is well-defined and a homeomorphism.

Let m (resp. ©’) be a G (resp. G')-bundle. For a continuous group homomorphism
p: G — G and a bundle morphism (h, f) : # — 7', we call a triple (h, f,p) :
(m,G) — (7',G") a homomorphism if h(ua) = h(u)p(a) for (u,a) € E x G. If
G = G', we call (h, f,idg) a G-morphism and denote it simply by (h, f). We call
h:(m,G)— (7',G) an (X, G)-morphism if it is an X-morphism and a G-morphism.
We call a G-bundle 7 : E — X a principal G-bundle if E is a principal G-space. Let
m: F — X be a principal G-bundle. Lemma 2.2 implies that the restricted bundle
7]y is a principal G-bundle. The induced bundle f*r is a principal G-bundle in
the natural way.

Let us recall the notion of associated bundle. Let G and G’ be topological groups,
p: G — G a continuous group homomorphism, and E a G-space. It is natural that
the product space E x G’ is a G-space by a right action (u,a)b := (ub, p(b)'a).
We denote by EP the orbit space (F x G')/G. The orbit space E? is a G'-space
by a right action [u,b]c := [u, bc]. This action is continuous. We call E? a G'-space
associated with E. If E is a free G-space, then E* is a free G'-space. If E is a
principal G-space with the translation function 7', then E* is a principal G’-space
with the translation function given by

T?([u,al,[v,b]) == a " p(T(u,v))b for ([u,al,[v,b]) € (EP)*.

Lemma 2.2 assures that T” is continuous. Now, let 7 : F — X be a principal
G-bundle, and 7” : E# — X the map such that n* o quG = 7o pry. In this case
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7P is a principal G’-bundle. We call ©” the principal G'-bundle associated with .
Define a map 6” : E — E” by

0°(u) := [u,1g/] foru € E.

This (07, p) : (7,G) — (7*,G’) is a homomorphism. Let 7’ : ' — X be a principal
G’-bundle and (h,p) : (7,G) — (7',G’") an X-morphism. A map h* : Ef — E’ is
given by

h*([u,a]) := h(u)a for [u,a] € EP.
Then h? : (7*,G') — (7',G") is an (X,G’)-morphism and h = h” o 6. From
Theorem 3.2 in [4, Chapter 4] and the succeeding observation, we have

Lemma 2.4. If 7’ is a principal G'-bundle, then h* is an (X, G')-isomorphism.

Let E 5 X be a G-bundle. We say that 7 is locally G-trivial or simply locally
trivial if 7 is locally (V, G)-isomorphic to a product G-bundle pr, : V x G — V for
some open subset V' C X. A (V,G)-isomorphism (7[y,G) — (pry,G) is called a
local trivialization. For a local trivialization « : (7[y, G) — (pry, G), put U, := V.
For local trivializations a and f3, the transition function g, : U,NUg — G is given
by

gaﬁ(x) = (pr2 oao ﬁ_l)(I, 1G)
Note that a locally trivial G-bundle is a principal G-bundle. For a local trivial-
ization a, let s, : U, — E[y, be the local section given by s,(z) := a™(z, 1¢).
Then T o (84X83) = gap holds. If 7 is a locally trivial G-bundle, then both 7[y
and f*m, " are locally trivial.

3. SLICING FUNCTIONS

Our aim in this section is to recall the definition of slicing function, to construct
a flat slicing function by fixed local trivializations or transition functions, and to
prove Proposition 3.9 which leads us to introduce the notion of flat for a continuous
slicing function as Definition 1.1.

3.1. Definition of slicing for a continuous map. Let 7 : E — X be a bundle,
Ax the diagonal set of X, and U C X? with Ax C U. For each i € {0,1}, we

define a map p : X% = X by

P (w1, 20) = 1; for (1, 10) € X2
Definition 3.1 (cf. [5], [7]). (I) Let w : ()" |)*E — E be a continuous map, and
let wy, == w(z,y,): B, = E for (z,y) € U. We call w a slicing function in m over
U if it satisfies the following (1) and (2):

(1) (w,pgl)]U) : (p(()l)|U)*7r — 7 is a bundle morphism;

(2) Wy =idp, for any z € X.
(IT) Suppose that U is symmetric, that is, (y,z) € U for all (z,y) € U. In this
case, a slicing function w is said to be invertible if it satisfies

Wye =w,, forany (z,y) € U.
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(III) In the case where 7 is a G-bundle, we say that w is G-compatible if (w,pgl) lv)
is a G-morphism. Henceforth, we denote by SF(mw,U), SFi (7, U), and SF(m,U)q
the sets of slicing functions, invertible slicing functions, and G-compatible slicing
functions on 7 over U, respectively. In addition, we set

SFu(m,U)g := SFu(m, U)NSE(m,U)g,
SFefiar(m,U) :={w € SFy(m,U) | wis C-flat},
SFefar(m, U)g = SFefar(m,U) N SFy(m,U)g,

where C is a covering of X (recall Definition 1.1 for the word “C-flat”).

Let us give an example of C-flat slicing function.

Example 3.2. Let S! be the unit circle in C and 7’ : R — S* be a bundle (universal
covering space) given by 7'(t) := > for t € R. We give an atlas of S* by using
7', Put

11 13 1 1

U1+ = /((_171))7 Uy = 77‘,((1—1’ Z))’ U2+ = W/((Ovﬁ))v Uy = 7T/((§71))>
of = (urlr'l 1) 7 or = (o1l a) ™
o3 = (uzI7'l0) ™" @2 = (uy 17l a) ™

Then {¢; | j € {1,2}} is an atlas of S*. For j € {1,2}, maps 67 : U;” x U;" —
11 .
(—5, 5) are given by Gf(x,y) = @f(az) — gpj[(y) Put U := U]E{LZ}(U;r X Uf) U
11
(U x Uy ) and let 0 : U — (—5,5) be a map defined by 0(z,y) = Qf(x,y) if
(z,y) € U;- x U;~. Note that 6 is well-defined and smooth. Let T2 := S x S* be
the torus and pr, : T? — S! the product bundle. For o € R, put

wal@,y, (y,0)) := (z, ae®™ V)

for (z,y,(y,a)) € (p|y)*T? and C := {U | j € {1,2}}. Then we can sce that
Wqo € SFC_ﬂat(prl, U)Sl.

In [5] we confirmed that slicing functions induced Asada’s connections. The
following example implies that flat slicing functions induce Asada’s connections
which have a property of flatness:

Example 3.3 (cf. [1, 2, 3|, [5]). Let m be a G-bundle, and let C'(7,U)q denote
the set of continuous maps s : E%[y— G such that

(1) s(u,u) =1g for u € E,

(2) s(ua,vb) = a 's(u,v)b for (u,v) € E*[y and a,b € G.
Considering elements of the inductive limit ligU C*(m,U)q over all neighborhoods

U of Ax in X? as connections in 7, Asada [1, 2, 3] has constructed a connection
theory in a category of topological fiber bundles. We denote by C{ (7, U)¢ the set
of s € C*(m,U)g such that

s(u,v) = s(v,u)"* for (u,v) € E*[y.
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Suppose that 7 is a principal G-bundle. Then, w € SF(w,U)g corresponds bijec-
tively to s¥ € C*(m, U)g with

s (u,v) = T(u,w(r(u), 7(v),v)).

Note here that SF,(m, U)g corresponds to C}

2 o(m,U)g. For a covering C of X, we
denote by C} 4..(m, U)g the set of s € CL (7,U)g such that

s(u,v)s(v,w) = s(u,w)

for any C' € C and any w,v,w € E with (u,v), (v,w), (w,u) € E*[ync2. Then,
SFegat(m,U)g corresponds to Cf 4. (m,U)g.

In the previous paper [5] we gave several examples of slicing functions. Let us
pick up an example from them.

Example 3.4 (cf. [7]). Let X be a polyhedron of a countable connected simplicial
complex K in the weak topology. Put Ux = U,cx 7| X |7], XY = U,z X"
(topological sum), and

Sk :={(n,...,10) € X" | (x;,2,-1) € Uk for all i € {1,...,n} when n > 1}.

An equivalence relation in G is generated by the relations

(Tpy e ooy Ty oe oy @) ~ (T ooy Ty oo, Tp)
whenever either x; = x; 1 or z;;1 = x;_1, where the symbol z denotes deletion.
We denote by [z, ..., x| the equivalence class of (x,,...,xo). Fix a vertex vy of
K. Put

éK = 6[(/ ~,

E = {[tn, ..., 21,70 € &k | 20 = w0},

Gy = {[xn, ..., z1,00] € Ex | , = vo},

where a topology of G is the quotient topology, and we consider Ex and G as
subspaces, respectively. A unary operation -~ on S is defined by

[Ty 21, To]” = [0, T1, -, Ty
for [x,,..., 21, 70] € Sk. A partial binary operation on S is defined by
[xnw"ax()][ymw'wy()] = [xN7"'7anym7"'7y0]

for ([xn, ..., %o, [Ym, .-, W0]) € S X S such that 2o = y,,. Remark here that G

is a topological group with respect to these operations. A bundle 7k : Ex — X is
defined by

Tr([Tny -y T1,00)) = Xy
We can see that 7 is a locally trivial principal G k-bundle and a universal bundle,
that is, Fx is co-connected. For (z, Ym, [Ym, - -, Y1, 00]) € (p(()l)|UK)*EK, put
('DK('IJ Ym, [ym) < Yt UOD = [17, ymHy’ﬂw < Yt UO]'
Then Wy € SEnv(ﬁ'K, UK)GK'
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3.2. Flat slicing functions, local trivializations and transition functions.
We want to show that one can construct a flat slicing function by fixed local
trivializations or transition functions.

Let 7 : E — X be a locally trivial G-bundle and A an atlas (a system of local
trivializations). Fix any w € SF(m,U)g. Then, we get a family (g,5)(a,8)e42 of
continuous maps g, : (Ua X Ug) NU — G by setting

Fap(T,y) = (Pry 0 0wy 0 f7)(y, 1c)
for (z,y) € (Uy x Ug) NU (see [7]). This family satisfies the following condition:

(A) §a5($7y> = gaa’(x)galﬁ’(xvy)gﬁ’ﬁ(y) for any O{,B,O/,B, € A and (ZE,y) S
(Ua X Ug) N (Ua/ X Ug/) NnU.
Conversely, if a family (,5)(,ea2 of continuous maps g5 : (Us x Ug) NU — G
satisfies the condition (A), then a G-compatible slicing function w is defined by

w(mv Y, u) = a_l(xagaﬂ(xa y)(pr2 © 5)(“))

for (z,y,u) € (pél)|U)*E with (z,y) € (U, x Ug) NU. Here, we can assert that G-
compatible slicing functions w over U correspond bijectively to families (,5)(a,8)c42
satisfying the condition (A). Moreover, C-flat G-compatible slicing functions w over
U correspond bijectively to families (g,5)(a,8)eca2 satisfying, in addition to (A), the
condition:

(B) Gup(®,9)75,(y, 2) = oy (2, 2) for z,y,2z € X such that (x,y) € (U, x Ug) N
UNC? (y,2) € (Usg xU,)NUNC?, (z,2) € (Uy x Uy) NUNC2
Mishchenko and Teleman [9] have constructed an almost flat quasi-connection by
almost flat transition functions on a continuous vector bundle over simplicial space.
In our context, assuming that G is a discrete group, we can construct a flat slicing

function by fixed local trivializations or transition functions.

Proposition 3.5 (cf. [9]). Let X be a polyhedron of a simplicial complex K in the
weak topology, ™ : E — X a locally trivial G-bundle, and {Vk(z) | v € X} the set
of all open star neighborhoods. For each x € X, since Vi (x) is contractible, there
exists a local trivialization @, : By, = Vi(x)xG. Then, if G is a discrete group,
there exists a Ci-flat G-slicing function wg in m over Ug. Moreover, wg 1S unique
for A. Here A= {p, | x € X}, Cx :={|7| | 7 € K}, and Ux := U, || X |7|.

Proof. For any z,w € X, since Vik(z) N Vk(w) is connected and G is a discrete
group, the transition function g, : Vi (2) N Vk(w) — G is constant. Thus, we can
uniquely continuously extend g¢.,, on stx(z) N sty (w), where stx(2) = J{|7| | z €
|7],7 € K} is the star neighborhood of z. Denote by ¢, the extension of g.,.
For z,w € X, amap 7,,, : (Vk(2) X Vk(w)) NUx — G is defined as follows. Let
(z,y) € (Vk(2) x Vk(w)) N Uk. Since (z,y) € Uk, there exists 7 € K such that
x,y € |7|. Since (z,y) € Vk(z) X Vk(w), there exist 0,0’ € K such that z € |o|
and x € Into, and w € |¢o’| and y € Into’. Then, we have z € Into N |7|. Since any
two simplexes do not intersect with each other at the interior of the other, we get
o < 7. Similarly, we have ¢’ < 7. Thus, we get x,y, z,w € |7|. Let v € |7| be an
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arbitrary point. Then, put

G () = 9y ()G (0)-

Note that = € sty (z) Nstg(v) and y € stx(v) Nstrx(w). This definition does not
depend on the choice of v € |7|. Indeed, for another point v’ € |7|, we have

9w (2) 9o (U) = 920 (2)Gour (2) 91 (4) G (Y)
= 920(%) G ()90 (€) 91 (¥) = 920 (%) G0 (9)-
To show that the condition (A) holds, let z, 2/, w,w" € X and (z,y) € (Vk(z) X
Vi (w)) N (Vg (2') x Vk(w')) N Ug. From the same argument above, there exists
7 € K such that x,y, z, 2/, w,w’ € |7|. Let v € |7|. Then,

Gow(@,9) = 620 (0) 900 (¥) = 2o (£)920, (€) G (4) Guurn (9)
= oo (2) Gt (T, 9) Guorao (Y) = G2 (€) G (2, Y) Gur ().
To show that the condition (B) holds, let |7| € Ck, z,w,z € X, and (y2,y1,%0) €
(Vi (2) x Vig(w) x Vi(x)) N |7[2. Then, we have
9w (yQ, yl)gwm (yh yO) = g;v (yQ)g;w(yl)g:vv (yl)g;z (y())

- g;v(yQ)g'lu:c(yO) - gzx(y27 yO)

Therefore, a Cx-flat G-compatible slicing function w4 can be defined from the
family (7..,,)(zw)ex2. Next, we will show that (g,.,,)(,w)ex2 is unique for A. To this
end, let (§zw)(zw)ex2 be another family satisfying the conditions (A) and (B). Let
z € X and (z,y) € Vik(2)? N Uk. Then, there exists 7 € K such that z,y € |7|.
Since G is a discrete group and Vi (z) N|7| is connected, g..(x,y) = §..(x,x) = 1.
Therefore, we get

gzw (177 y) = gzv(w)gvv<mv y)ng(y>
= 920(2)Gow(Y) = 920 (2) G (V) = To (2, ).
This completes the proof. O

If a covering C of the base space of a locally trivial principal bundle with discrete
structure group satisfies appropriate condition, there exists a C-flat slicing function.

Proposition 3.6 (cf. [5]). Let 7 : E — X be a locally trivial G-bundle and A
a bundle atlas (a system of local trivializations). Suppose that for any (o, ) €
A% U, N Ug is connected. Then, if G is a discrete group, there exists a Ca-flat
G-compatible slicing function wq in ™ over Us. Moreover, wa is unique for A.

Here Uy :=J,eq Ua X Uy and Cy := {U, | v € A}.
Proof. For (z,y,u) € (p(()l)|UA)*E with (z,y) € U, x Uy, put

UJA(I, Y, U) = 0671<ZC, (prg @) Oé)(’d))
This definition does not depend on the choice of o. Indeed, for any 5 € A and
(z,y,u) € (p(()l)|UA)*E, we have

BNz, (pry 0 B)(u) = a™ (z, (pry 0 a0 B7) (@, (pry 0 B o a™)(y, (pry 0 @)(u))))
= o™ (2, gas(2)gsa (y) (P12 0 @) (1)) = o' (, (pry © @) (u)).
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We can see that wa € SF(m,Ua)g. By the definition, we have

(Wa)zy © (Wa)y,: = (Wa)z,»
for any « € A and x,y,z € U,. Namely, wy is Cs-flat. We show that C,-flat
slicing function is unique for A. To this end, let ' € SFi (7, Ua)g and (x,y,u) €
(p(()l)]UA)*E with (x,y) € U, x U,. Since G is a discrete group and U, is connected,
Toa(Z,Y) = Gpu(x,2) = 1g. Thus, we have

W' (2,y,u) = a7 (2, Goa 2, y) (Pry 0 @) (1))
="}z, (pry 0 a)(u)) = wa(@, y, u).

This completes the proof. [l

3.3. Smooth category. We want to explain that a (continuous) slicing function
is a generalization of the connection in the smooth category.

Let # : E — X be a smooth principal G-bundle, where G is a Lie group. A
connection (invariant horizontal subbundle) H in m is a smooth subbundle of TE
such that

(1) T,E = Kermy, & H, for u € E,

(2) Tasu(Hy) = Hyq for (u,a) € E X G,
where 7, is the differential of 7 (e.g. [6]) and r, : E — F is given by r,(v) := va (see
Section 2). Let H be a connection and ¢ : [0,1] — X a piecewise smooth curve. For
each u € F,(), there exists a unique curve ¢ : I — E such that ¢(0) = u, moé =,
and dé/dt(t) € Hgyy for t € I, that is, ¢ is the horizontal lift of ¢ starting from u.
From now on, let us assume that X is a Riemannian manifold. A subset V in X is
said to be strongly convex if for any (x,y) € V' x V there exists a unique geodesic
~(t) in V joining y to z such that the length of ~ is equal to the distance d(z,y),
where 7(t) = exp,tv and (1) = x. Now, fix an open covering V of X which consists

of strongly convex sets. Put Uy := [J,cp, V X V. Let (z,y,u) € (p(()l)|Uv)*E and
v the geodesic in some V' joining y to x. Let 74 be the horizontal lift of v starting
from u. Put

(3.3.1) W (z,y,u) == 7(1).

Then wf € SF,.(m Uy)e and it is smooth. This implies that one can obtain
many invertible G-compatible slicing functions from a smooth connection H in
m: F — X, where X is a Riemannian manifold.

The following comes from (3.3.1):

Proposition 3.7. Let m : E — X be a smooth principal G-bundle over a Rie-
mannian manifold X, where G is a Lie group, and H a connection in w. Let
wi € SFy,(m, Uy) be the smooth slicing function constructed as in (3.3.1), where

V is an open covering of X consisting of strongly conver sets. Suppose that H is
flat. Then W is V-flat.

Let m : E — X be a smooth principal G-bundle, where G is a Lie group. A
connection 1-form 6 is a 1-form with values in the Lie algebra G of G satisfying the
following conditions:
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(1) 6, (A)=Afor Aeg,

(2) Ouq © Tauu = Ady-141,, © 0y, for (u,a) € E x G,
where A* is the fundamental vector field corresponding to A, and for b € G, Ad,
is the inner automorphism of G' given by Ady(c) := bcb™! for ¢ € G. Note that the
invariant horizontal subbundles correspond bijectively to connection 1-forms (e.g.

[6]). Let s € C*(w,U)g and suppose that it is smooth. Then a connection 1-form
0° is given by for u € E and W € T, F,

0, (W) := —s(-, 1) (W),
If s is invertible, then 03 (W) = s(u, ).« (W). The vertical projection v?" and the

horizontal projection h?" are given by

v (W) = —lusag (s ) (W), B (W) =W — v (W)

u

for u € F and W € T, F, respectively.
The following proposition assures that smooth flat slicing functions (smooth flat
Asada’s connections) induce flat connections in the smooth category:

Proposition 3.8. Let C be an open covering of X. If s is C-flat, then 6° is flat,
that s,

9° + %[98,98] — 0.

Proof. Let ©° := df* + (1/2)[0?%,6°]. Note that ©%(W,Y) = —0%([n® (W), h?" (Y)])
for all WY € I'(TE). Let u € F and f € C*°(G). Then, we have

= O ([n” (W), " (Y)]u) ()

= s(,wa([B” (W), 1" (V)] () = [B7 (W), 1" (Y)]u(f o s(-,u)

= 1" (W)u(h” (Y)(f 0 5(,u))) = b (V)u(B" (W)(f 0 5(-,u))).
Let w € E and C € C with (u,w) € E?|ync2. Then, for v € E with (v,u), (v,w) €

E?|yncz, we have s(ws(w,v),u) = s(v,w)s(w,u) = s(v,u). Thus, we get s(-,u) o
Ly o s(w,-) = s(-,u) and s(-, %)y 0 V% = 5(-,u)4p. Then, we have

VT (V)w(f o s w) = () (vl (Vo)) () = 8(, 0 (Yo ) (f) = Yol f 0 5(w)).
Thus, we get b (Y)(fos(-,u)) = (Y — 0" (Y))(f o s(-,u)) = 0. Similarly, we have

R (W)(f o s(-,u)) = 0. Therefore, ©°(W,Y) =0 O

In Proposition 3.1 [5], for a smooth slicing function w € SF(m, U)s we defined
an invariant horizontal subbundle H* as follows:

Hi = {0 m(u), )ur() (v) | 0 € T X}

for u € E, and we have shown that H*" = H for a given connection H (see (3.3.1)
for w#). The following proposition implies that w” = w if w is flat:

Proposition 3.9. Let X be a Riemannian manifold and V an open covering of X

consisting of strongly convex sets. If w is V-flat, then w” = w.
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Proof. Let V. €V, (z,y) € V2, w € E, and v : [0,1] — V be the geodesic joining
y to x. Put 4(t) :== w(v(t),y,u) for t € [0,1]. For z € V, since w is V-flat, we have

(Z,y,lb) ( ) © W(r(t), y))(“) = w(zv/‘}/(t%;&(t))
Thus, w(-, y,u) = w(-,y(t), (¢ )) Then, we get

dry . dry w
1)y (T (8)) = (10 A0 (T (0) € H
Thus, 7 : [0,1] — V is the horizontal lift of v. Therefore, we get
W (z,y,u) = F(1) = w(y(1),y,u) = w(z,y, u).
]

Proposition 3.1 [5], together with the above Propositions 3.8 and 3.9, allows us
to conclude

Proposition 3.10. Let X be a Riemannian manifold. Then, the map
{H | H is a flat connection in 7} — lingFv_ﬂat(w, Uy)a
v

given by assigning [w*] to H is bijective, where the codomain is the inductive limit
over all open coverings V of X consisting of strongly convez sets.

4. PARALLEL DISPLACEMENTS AND HOLONOMY GROUPS

The main purpose in this section is to state Proposition 4.5 and demonstrate
Theorem 1.3 (See Subsection 4.2).

4.1. Parallel displacements. First, let us recall the definitions of admissible
sequence space and parallel displacement. Let X be a topological space and X" :=
Unso X "1 the topological sum. Two maps pg, peo : X- — X are defined by

pO(xna s ,ZE()) = Zo, poo(xn7 s 7I0) = Tn

for (x,,...,20) € X". A binary operation e on X" is defined by

o(x,y):=x0y :=(Tp,...,T1,Ym,---,Y0)
for (x,y) = ((xn,---,20); Ym, .-, %)) € X x X Let X" xx X" be a fiber

product of X" 2% X &= XU Hereafter, we denote by the same symbol e the re-
striction of the binary operation e to X" x x X", which is a partial binary operation
on X“. A unary operation -~ on X" is defined by

x = (xg,T1,...,2,) for x = (x,,...,71,T0).

For x € X", we say that the length of x is n if x € X"+, For any subset & C X"
and n > 0, put

G(n) =GN X",
Note that for & C X", we have & = J,,Sn). We can see that (X", e) is
associative and generated by X UX?, and maps py, poo, ®, and -~ are all continuous.
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Definition 4.1 (cf. [5]). (I) We call a subspace & C X" an admissible sequence
space over X if it satisfies the following conditions:
(a) o(&?N (XY xx XY)) C &;
(b) XU AX C 6;
(c){x | xe 6} C6.
(IT) Let & be an admissible sequence space over X. We say that X is &-connected
if (PooXpo)(&) = X2, that is, for any (z,y) € X?, there exists x € & satisfying
po(x) =y and po(x) = z. Henceforth we use the following notation:
AS(X) : the set of admissible sequence spaces over X,
G4 = (Poo|esXpols) H(A) for a subset A C X2,
Gay = G(ay) for (z,y) € X*, &, = Gy,
(U) = {(zn,...,20) € X"|(zj,x;-1) €U foranyiec{l,...,n}ifn>1}
for a symmetric subspace U C X? with Ay C U,

For any x € X, there exists V € Ox(x)
— 2 )
Sx2(Ax) = {U cX such that V x {z} C U [’ where

Ox(x) is the set of all open neighborhoods of z.

Note that for z € X, Sxxzy = (pols) ({z}) and Spyxx = (pols)*({2}),
and that the above condition (a) implies (&) C 6.

Definition 4.2 (cf. [5]). (I) Let # : E — X be a bundle, & € AS(X) and
P : (pyls)"E — E a continuous map. Put

Py :=P(x,") : Epyx) =+ E for x € 6.
We call P a parallel displacement along G in 7 if it satisfies the following:

(1) (P,pxls) : (po|ls)*m — 7 is a bundle morphism;

(2) Py =idg, for any (z,2) € &(y;

(3) Pxey = Pxo P, for any (x,y) € &* N (X" xx X");

(4) Py- = P! for any x € &.
(IT) Let G be a topological group. Suppose that 7 is a G-bundle. Then, P is
said to be G-compatible if (P, py|s) is a G-morphism. Hereafter, we denote by
PD(n,6) and PD(w, &) the set of all parallel displacements and G-compatible
parallel displacements along & in 7, respectively. In addition,

PDefar(m,S) :={P € PD(m,S) | P: C-flat},
P,Dc_ﬁat(ﬂ', 6)@ = P,DC_ﬂat(ﬂ-, 6) N 'P’D(ﬂ', G)G,
where C is a covering of X (refer to Definition 1.2 for the word “C-flat”).

A parallel displacement is induced by a given invertible slicing function in a
natural manner as follows.

Proposition 4.3 (cf. [5], [7, p. 283]). Let w € SFy(m,U) and & = (U). Put

Pw((xna s 7330)7 u) = (wxn,xn—l ©---0 wxlyﬂﬁo)(u)

for ((zp, ... ,x0),u) € (polg)*E. Then P¥ € PD(m,S). If w is G-compatible, so is
P(JJ
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Example 4.4 (cf. [5], [7]). Let x be the universal bundle which we reviewed in
Example 3.4. A map Pk : (poley)* Ex — Ej is defined by

PK((wny cee 7x17ym)7 [ym> cee 73/17”0]) = [xna s 7x1>ym][ym7 e 7y17/00]

for ((xna s 7x17ym)7 [yma - Y, UO]) S (p()lGK)*EK- Then PK € PD(ﬁ—Ka GK)G‘K
Since

14

K (Tny s T, Ym)s [Yms - -5 U1, V0)) = [Tny -+ o 21, Y [Yms - - -5 Y1, V0]
= [Tn; Tnoa] - (21, Y] [Yms - - -5 Y1, 0]
= (@K )an,z01 © " O (WK )21 g0 ) ([Yms - - -+ Y1, o))
= P (2,5 21, Ym);s [Yms - -+ 1, 00))

for ((Zns - -, 1, Ym)s [Yms - - - Y1, v0]) € (Polsy ) Ex, we have Pr = P¥K.
Now, we are in a position to state

Proposition 4.5. A bijection from SFe ga(m,Uc) onto PDepa(m, (Ue)) is given
by w = P¥, where Ue := Jpee C x C.

All P[y, f*P, and P? inherit the flatness from a flat parallel displacement P:

Proposition 4.6 (cf. [5]). The following items (i) and (ii) hold:
(i) Suppose that P € PDc.figt(m,6). Then, Ply€ PDery (v, S[y) for all
Y C X, and f*P € PD(c)-ae( f*7, [*6) for any continuous map f : X' —
X. Here C[y:={CNY | C €C} and f*(C):={f1(C) | C eC}.
(ii) If P € PDc.fia(m,S)q, then PP € PDe_pau(n?, S)e, where p: G — G’ is a
continuous group homomorphism.

Flat parallel displacements have the following fundamental property:

Proposition 4.7. Let P € PDec ar(m, (Uc)) and (z,,...,x0) € (Ue). If there
exist C'€ C and i € {1,...,n} such that x4y, 2, 2,1 € C, then P,
Pio,.... i,....00) holds. Here the symbol &; denotes deletion.

Ty iy 0)

Proof. We have

We end this subsection with giving an example of flat parallel displacement:

Example 4.8. Let pr; : 7?2 = S' x S — S' be the product bundle and
Wa € SFegat(pry, U)g as in Example 3.2. For ((2,...,20), (20,a)) € (polw))*T?,
we have PY((x,,...,10), (z0,a)) = (x,,ae?™*Xi=10@x2-1)  For example, for
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(2, ..., m0) € (U) N (U;)Y, since
Ze(xkaxk—l) = 01 (2, T 1) 4 -+ + 07 (21, 20)
k=1
= (1 (2n) = 7 (@n1)) + - + (1 (21) — @] (20))
= @1 (xn) = ¢ (x0) = 0(n, 20),
we get
Pee((, ..., x0), (20, a)) = (2, ae?™te0@no)),

Thus, P¥* € PDe.gar(pry, (U))st.
4.2. Holonomy groups and Proof of Theorem 1.3.

Definition 4.9. (I) Let C be a covering of X, z € X, and A C X such that x € A.
We say that (A, x) is C-compatible if it satisfies the following conditions:

(C1) A x {x} C Ug;

(C2) zeCnNC, for any C,C" € C with ANC NC" # 0.

(IT) We say that C is (C-N) if for any x € X, there exists an open neighborhood V'
of  in X such that (V,z) is C-compatible.

The following example gives us a (C-N) covering:

Example 4.10. Let X be a polyhedron of a simplicial complex K in the weak
topology and put Ux := |J,cx 7| X |7|. For € X, let V() be the open star
neighborhood of z in X. Then, (Vk(z), z) satisfies Vi (z)x{z} C Uk. For 1,0 € K,
suppose that Vi (x) N |r| N o] # 0. If y € Vk(z) N |7| N o], there exists p € K
such that y € Intp and = € |p|. Since any two simplexes do not intersect with each
other at the interior of the other, y € Intp N |7| N |o| implies p < 7 and p < o.
Thus, z € |7| N |o| holds. Therefore, (Vi (z),z) is Cx := {|7| | 7 € K}-compatible
and Cr is (C-N).

We review the definitions of strong holonomy group and strong holonomy bundle.

Definition 4.11 (cf. [5]). (I) Let # : E — X be a principal G-bundle, P €
PD(m,8)¢, and u € E. We call the subgroup ®* = P"(&,(,) of G the strong
holonomy group of P with reference point u if it is endowed with the identification
topology induced by P*: &) — ®“.

(IT) We call the subbundle 7% : E* — X the strong holonomy bundle through u if
the topology of E* is the identification topology induced by P(:,u) : & xxr(w)} —
E".

We will prove the main Theorem 1.3 after preparing the following lemmas:

Lemma 4.12 (cf. [5, (ii) in Proposition 4.2]). Let S € AS(X). If X is &-connected
and &1y € Sx2(Ax), then pOO|GXX{$} : Gxxfzy — X is an identification for every
reX.
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Lemma 4.13. Let X be a topological space and C a covering of X. Let X' be a set
and q : (Uc) — X' a map such that for any (z,,...,x9) € (Uc) andi € {1,...,n},
if there exists C € C such that x; 1,z 2,1 € C, then q(Tp, ..., x5 .., 2) =
q(Tn,y ... Tiy ..., x0), where * means a deletion. Then, the following items hold:

(i) Let (zp,...,m0) € (Uc) and (A,,..., Ag) € P(X)"™! such that (A, x;) is
C-compatible for any i € {0,...,n}. Then q(y) = ¢(Yn, Tn_1,--.,21,2o) for
anyy = (Yny, Yn—1,---,Y1,%0) € (Ap x -+ x Ag) N {(Ue), and if y, = x,,, then
q(y) = q(x).

(ii) Suppose that C is (C-N) or C C Ox. Then for any x = (xp,...,To) €
(Uc), there exists an open neighborhood W of x in (Ug) such that W C
(Ue)my: a(¥)=a(Yn, Tn—1, ..., %1,%0) for any y=(Yn, Yn-1,---,Y1,%0) € W,
and if y, = x,, then q(y) = q(x).

Proof. First, we will show (). Let y = (Yn, Yn—1, - - -, Y1, Z0) € (AnXx---xXAg)N(Uc).
Since (y1, o) € U, there exists C' € C such that y;,z9 € C. On the other hand,
since (y1,21) € Ay X {x1} C Ug, there exists C" € C such that y;,z; € C'. Then,
since y; € A;NCNC, (C2) implies x; € CNC". Thus, y1,21,29 € C holds.
Therefore, ¢(y) = q(yn,--.,y1,T1,20). Since (y2,71) € Ue, there exists C” € C
such that yo,7; € C”. Then, since y; € A;NC' N C", (C2) implies 1 € C' N C".
Thus, ¥, y1, x1 € C” holds. Therefore, q(yn, - - -, Y2, Y1, 1, T0) = ¢(Yn, - - -, Y2, T1, o)
holds. Repeating the same argument, we get ¢(y) = q¢(Yn, Tn—1,-..,21,%0). As a
result, if v, = z,,, q(y) = ¢(x) holds.

Next, we will show (ii). Suppose that C is (C-N). Let x = (x,,...,x0) € (Ue).
For i € {0,...,n}, fix an open neighborhood V; of z; in X such that (V;, z;) is
C-compatible. Put

W= (V, x -+ x Vo) N (Ue).

Then, W is an open neighborhood of = in (Ug) and the conclusion is followed
from (i). Now, suppose that C C Ox. Let x = (z,,...,29) € (Uc). For any
i € {1,...,n}, there exists U; € C such that x;,x; 1 € U;. Put

W' = (Un X (Un N Un—l) X X (U2 n Ul) X Ul) A <UC>

Let y = (Yn, Yn-1,-- -, Y1, T0) € W'. Then, since y;,z1,x¢9 € Uy and ys, 41,21 € Us,
we have

q<y) - Q(y'ru <o Yt fL'l,fE()) = Q(yna <oy Y2, 21, l’o).
Repeating this operation, we get ¢(y) = ¢(yn, Tn_1,.-.,21,20) and ¢(y) = q(x) if
Yn = Tn-

From now on, let us demonstrate Theorem 1.3.

Proof of Theorem 1.3. First, we will show (i). Note that the topology of ®“ is the
identification topology induced by P* from (U¢) r(uy. We will show that (P*)~!({a})
is an open set in (Uc)r@). Let x € (P*)7'({a}), where py(x) = poo(x) = m(u). Since
Cis (C-N) or C C Oy, from Proposition 4.7 and (ii) of Lemma 4.13, there exists an
open neighborhood W of x in (U¢)~(u) such that for any y € W, P*(y) = P"(x) =
a. Thus, we have W C (P*)"'({a}).
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Next, we will show (ii). Let u: E x G — E be the continuous right action. At
first, we show that E* is a ®“-space, that is, gu|p|puxee : E* X ®* — E* is contin-
uous. Since ®" is a discrete group, it is sufficient to show that (pu|p|guxes)(:, a) :
E" — E" is continuous for any a = P"(x) € ®*. Indeed, since

(E“|M|E“x®")('7 CL) © P('a u) = P(?“) © .('7X)
and P(-,u) is an identification, (gu|p|puxeu)(:,a) is continuous. Next, we show
that 7* is a ®“-bundle. Let s* : X — E*/®" be the map so that the equality
5" 0 Pool(Ue)x ;= au © P(-,u) holds. Then, we have s = (7“/*")~!. Note
that if C C Oy, then Us € Sx2(Ax). Thus, whenever C is (C-N) or C C Oy,
from Lemma 4.12, pcc|<Uc>xX{ﬁ(u)} : (Ue) xxfr(u)} — X is an identification. Then s*

. . U . .
is continuous. Thus, 7*/®" is a homeomorphism. From Lemma 2.3, we have the
conclusion. ]

The following example implies that Theorem 1.3 is no longer true if one removes
the supposition “strong” from the statement (i):

Example 4.14. Let pr; : 7% = S! x S* — S! be the product bundle and
P> € PDc_gat(pry, (U))s1 as in Example 4.8. Fix an arbitrary (zg,a) € T? and
put xp = Ty_1e3t for k € {1,...,10}, where 219 = x5 = xy. Then, we have
(Pwa)(xo,a) (1.107 o ,ZE()) — e27ria2i0:1 O(zr,rp—1) — 627ria-2 and

(I)(aco,a) _ {627ri04k: ’ ke Z}

If o is a rational number, then ®®% is a finite set while if a is an irrational
number, it is dense in S* and is not discrete with respect to the relative topology.

4.3. Local holonomy groups of parallel displacements. In Subsection 4.2,
we have completed the proof of the main Theorem 1.3. Here Theorem 1.3 is
concerned with the strong holonomy groups of flat parallel displacements. In this
subsection, we would like to assert Proposition 4.16 which is concerned with the
local holonomy groups of flat parallel displacements.

We introduced in [5] the notion of local holonomy group of a parallel displacement
and studied its fundamental properties. We will review the definition of local
holonomy groups. For a symmetric subspace U C X2 with Ay C U and z € X,
put

(Y ={(z,2n1,...,21,2) € (U)s | (x1,2) €U forall k € {1,...,n —1}}.
Then (U)! is a submonoid of (U),.

Definition 4.15 (cf. [5]). Let 7 : £ — X be a principal G-bundle and P €
PD(m,&)g. For u € E, we call a subgroup

o= dY(P) = Pu(<6(1)>711'(u))
of ®" the local holonomy group of P with reference point u.

In the smooth category, local holonomy groups are trivial if there exists a flat
connection. As an analogue of this fact, we see that the local holonomy groups
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of parallel displacements are trivial if there exist a certain covering C of X and a
C-flat parallel displacement.

Proposition 4.16. Let C be a covering of X, P € PDc_pa(m, (Ue))a, and v € E.
Suppose that C satisfies the following condition:

cne’'nC” #£40)
for any C,C",C" € C with CNC"# 0, C"NC" # 0 and C"NC # (. Then, the

local holonomy group ®%“* is trivial.

Proof. Let x = (m(u),zp_1,...,71,7m(u)) be an element of (Ucﬁ(u)- Since
(z1,7(w)), (v, 21), (22, m(u)) € Ue, there exists (C,C",C") € C? such that
x1,m(u) € C, x9,21 € C', and z9, w(u) € C”. Thus, x;1 € CNC', x5 € C'NC", and
n(u) € C"NC. Then, from the assumption, CNC'NC" # (. Let y € CNC'NC".
Then, from Proposition 4.7, we have

Px = P(ﬂ(u),xn_l,...,xz,xl,y,ﬂ(u))
- P(W(u),xn_l,...,xz,yﬂr(u)) - P(Tr(u),a:n_l,...,xgﬂr(u))'
Repeating this operation, we get Px = Pr(,). Therefore, P*(x) = lgu1. d

5. A CLASSIFICATION THEOREM

The main purpose in this section is to assert a classification theorem in a category
of principal bundles with flat parallel displacements (see Theorem 5.2), and to give
a sufficient condition for the existence of an initial object in the category (see
Theorem 5.3).

Throughout in this section, we assume that X is a topological space, vy € X, and
C is a covering of X. At first, we introduce the following category Ce_a(X, vo, S).
Objects in Ce_gat (X, v9, ) are such quadruples (7, G, P,u), where 7 : E — X is
a principal G-bundle, P € PDc_ga(m, S)g is a C-flat parallel displacement, and
u € E,,. Morphisms in Ce¢ gat(X,v9,S) are such homomorphisms (h,idx,p) :
(m,G, P,u) — (7', G’, P',u') preserving P and P’, that is,

h(P(x,v)) = P'(x, h(v))
for (x,v) € (pols)*E, and satistying h(u) = u'. We denote by (h,p) the mor-

phism (h,idy, p), and by Cec.gat (X, v0, ) (resp. Ce.gat(X, vo, &)1) the collection
of objects (resp. morphisms) in Ce_gat (X, v9, G).

Remark 5.1. Note that Cegat (X, v, &) is an isomorphism-closed full subcategory
of the category C(X, vy, &) of principal bundles with parallel displacements intro-
duced in [5, Section §].

Let G be the category of topological groups. We denote by Gg (resp. Gy) the
collection of objects (resp. morphisms). Let G € Gy. An equivalence relation on
{p € G; | domp = G} is defined as follows. Two morphisms p,p’ € G; with

domp = domp’ = G are equivalent if there exists a topological group isomorphism
7 : codp — codp’ such that p’ = 70 p. We denote by [p] the equivalence class of p.
Once it is shown that an initial object exists, we obtain the following theorem:
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Theorem 5.2 (Classification Theorem (flat version)). Suppose that there exists an
initial object (7, G, P,u) in Ce_par( X, v0,6) with 7 : E — X. Two maps

{p € Gy | domp = G} X Co gl X, 00,6) S {p € Gy | domp = G}
are defined as follows. For p € Gy with domp = @, put
N(p) == @, codp, P?, [0, Leoay))-

For an object (m,G, P,u) in Cec.au(X, v, &) with the unique morphism (h,p) :
(%,@,ﬁ,ﬂ) — (m,G,P,u) in Ceau(X,v0,6), put ©'(m,G,P,u) = p. Then
© o A =id, and both N'(©'(7,G, P,u)) and (w,G, P,u) are isomorphic for each
(m,G, P,u) € Cepa(X,v0,8)g. Moreover, for p,p’ € Gy with domp = domp’ = (A}',
p and p' are equivalent if and only if N'(p) and N (p') are isomorphic. Thus, the
mduced map

{[p] | p e ledomp = a} L {[(W7G7 P7 U)] | (W,G, P7 U) € CC.ﬂat<X, Vo, 6)0}
is bijective, where [(w, G, P,u)] is the isomorphic class of (7, G, P, u).

Proof. The proof of this theorem is similar to that of Theorem 8.1 (Classifica-
tion theorem) in [5]. For (p : G — G) € Gy, let (62,p) : (7,G,P,0) —
(7*,G, Pr ,[u, 1¢]) be the morphism in Ccgat(X, v, &) given by 6°(v) := [v, 1¢]
for v € E (see Section 2). Since (T, G, P,0) is an initial object, (67,p) is
the unique morphism from (7, G,P,0) to (7*,G, P*,[4,1¢]). Thus ©'(A(p)) =
o' (7*,G, P* [u, 1g]) = p.

Let (m,G, P,u) € Cegat(X,v0,8) and (h,p) : (7,G,P,0) — (r,G, P,u) be
the unique morphism in Ce_ga (X, vo, S). Let (h*,idg ) (% G) — (7, G) be the
(X, G)-morphism given by h?([v,a]) := h(v)a for [v,a] € E? (see Section 2). From
Lemma 2.4, (h*,idg) : (77, G, P?,[0,15]) — (7, G, P,u) is
A(©O(7, G, P,u)) and (7, G, P,u) are isomorphic.

Suppose that [p: G — G] = [/ : G — G'] and let 7 : G — G’ be a topological
group isomorphism such that p = 70 p. A map k : Ef — EF is defined by
k([v,a)) := [v,7(a)] for [v,a] € E°. We can see that (k,7) : (7°,G, P?,[i,1¢]) —
(7', G, ]3'”/, [t, 1g/]) is an isomorphism.

Conversely, let (k,7) : (7°,G, P*, [, 1q]) — #,G, pr [, 1¢r]) be an iso-
morphism. Then (ko 67,70 p) : (, G,P,u) — (7/,G,P” [i,1¢]) is a mor-
phism. Since (7, G P ,u) is an initial object, the uniqueness of morphism implies
(ko0 Top) = (Qp,p). Thus [p] = [¢]. O

an isomorphism. Thus

In the smooth category, flat principal G-bundles over a fixed base space are clas-
sified by group homomorphisms from the fundamental group of the base space to G
(e.g. [8, 10]). We can think of Theorem 5.2 as one of the topological counterparts
of the classification theorem for flat bundles in the smooth category.

Next, we construct an initial object in Ce_gat(X, vo, (Uc)). We assume the fol-
lowing conditions:
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(D1) C = (Cp)nen is a countable (C-N) compact covering, and (Uc) is a closed
set in X", where Ug = (J,,cpy Cn X Cn,

(D2) X is a Hausdorff space which has the weak topology with respect to C, and
(Uc)-connected.

An equivalence relation in (Ug) is generated by the relations
(Tpy ey @iy ooy 0) ~ (s oo By, T0)

whenever either z; = x;,_1, x;,.1 = x;_1, or there exists n € N such that
Zit1,Ti, i1 € C), where the symbol & denotes deletion. The natural projection is
denoted by ¢'. Put [x,,...,x0) := ¢ (xn,...,20) and

(Ue)e = (Ue)/ ~,
EC = {[xnv e 7;5171‘0}/ S <UC>C ’ Ty = /UO}a
@C = {[ﬁn, - ,ZL‘l,’U()], € E\c | Ty = Uo},

where a topology of @C is the quotient topology and consider Ec and éc as

subspaces. We can see that two maps ¢” (Ue) x x{vo} — E. and

= q,|<UC>X><{v0} :
7" = q'lwe)w, * (Uc)vo = Ge are identifications. A map 7¢ : Ec — X is defined by
Te([x]') == poo(x). Since Te 0 ¢" = pPoo|(e) Xxequgy 20d ¢" is an identification, 7¢ is a
continuous map, that is, 7rc is a bundle. Since X is (Uc¢)-connected, 7rc is surjective.

A binary operation v : Gc X Gc — GC and a unary operation -} Gc — GC are
" "

defined so that Vo (q’” X q’”) =¢" oeand -7 o¢” = ¢" o -~ hold respectively. A

right action p : Ec X Gc — Ec is defined so that o (¢” x ¢"") = ¢” o e holds. For
the sake of simplicity, we denote the restrictions

ECXXEC|(q xq )|<UC>X><{UO}><X<UC>X><{UO}
and

Weyxx Be | (1wey X @) |(Ue) < x Ue) xwgug
liy (¢"%q") o B, and (id(ue) x ") ((Uc>><xEc respectively. Amap T¢ : EcXx Ee —
G is defined so that

Igo (q// X q”) [EcXXEc: q”’ ceo <._ X id<UC>X><{vo})

holds. A map ﬁc (Ue) xx Ec — Ec is defined so that

1/

Fe o (idwe) X 4 peyxnpe= 4 ©®
holds.
Under the conditions (D1) and (D2), we have the following theorem:

Theorem 5.3. Suppose the following conditions hold:
(D1) C = (Cy)nen is a countable (C-N) compact covering, and (Ue) is a closed
set in X", where U = J,,cp Cn X Ch,
(D2) X is a Hausdorff space which has the weak topology with respect to C, and
(Uc)-connected.
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Then, the quadruple (7c, @C, ﬁc, [vo]") is an initial object in Ce_at(X, vo, (Uc)). In
particular, 7e is locally trivial.

We prepare the following lemmas for proving the above theorem.

Lemma 5.4 (cf. [5, (ii) in Theorem 4.4]). Let G be a topological group, m: E — X
a principal G-bundle, and P € PD(m, &)q. Suppose that X is S-connected and
Say € Sx2(Ax). Then m is a locally trivial G-bundle.

We denote by C a category of principal G-bundles with parallel displace-
ments introduced in [5], and by Cj its objects. In [5, Definition 7.1], we call a
quadruple (7%, ®*, P[gu,u) the strong holonomy reduction of (w,G, P,u) € Cy if
(r*, ®", P pu,u) € Cy when &% (resp. E) is the strong holonomy group (resp. the
strong holonomy bundle).

Lemma 5.5 (cf. [5, Theorem 7.1]). Let (mw, G, P,u) (resp. (n',G',P',u'))€e C,,
where m © E — X (resp. @ : E' — X) is a principal G (resp. G')-bundle,
P € PD(m,8)¢ (resp. P' € PD(n',&")¢) is a parallel displacement, and u € E
(resp. u' € E'). Suppose that X is &-connected and (7%, ®", Pl gu,u) is the strong
holonomy reduction of (m,G, P,u). Let f : X — X' be a continuous map preserving
S and &', and satisfying f(m(u)) = 7'(u). If f*(KerP*) C KerP™, then there
exists a unique morphism (h**, f, p**) : (7%, ®*, P[gu,u) — (7', G', P, ') in C.
In particular, h**(E*) C E™ and p**(d*) C &v.

Lemma 5.6 (cf. [5, Lemma 7.7]). Let X and X' be Hausdorff spaces. Suppose that
X (resp. X') has a weak topology with respect to a compact covering (X,)nen (resp.
(X! )men). Then, for any Hausdorff spaces Y, Y’ and identifications f : X —
Y, f/: X' =Y, the product f x f': X x X' =Y x Y’ is an identification.

Lemma 5.7 (cf. [5, Lemma 7.8]). Let X be a Hausdorff space and & € AS(X).
Suppose that X has the weak topology with respect to a countable compact covering,
and & is a closed set in X. Then for any x € X, &, Sxy(s}, and &, have the
weak topology with respect to countable compact coverings respectively.

Lemma 5.8. Ec 15 a Hausdorff space.

Proof. Let [x]',[y]' € Ee with x = (2,...,v) and y = (yum, ..., vo) such that
[x]" # [y|. First, suppose that z,, # y,,. Since X is a Hausdorff space, there exist
open neighborhoods U,,, and U,,, of x,, and y,, respectively such that U,, NU,,, = 0.
Then, 7, (U,,) and 7' (U,,,) are open neighborhoods of [x]" and [y]’ respectively,
and 7 *(U,, ) N7 1 (U,,,) = 0. Next, suppose that x,, = ,,. Since C is (C-N), there
exists V,, € Ox(x,) such that (V,, ,x,) is C-compatible. Put

Upgr = ¢"((Ve, X {wn}) ® {x}).

Then, [x]' € Upyp. We will show that Upy is an open set in Eo. Let z =
(Zry .., 00) € ¢"(Uxy). Then, we have z, € V,, and z ~' (z,,2,) ®x. From
Lemma 4.13 (ii), there exists an open neighborhood W of z in (Uc) x x {v,} such that
W C ((Uc)x xfwo})(r) and for any w = (w,,...,v) € W, w ~ (wy, zp—1,...,21,00).
Put W' = (V,, x X") N W. Then, W’ is an open neighborhood of z in
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(Ue)xxqwo}- Let w = (w,,...,v9) € W'. Then, we have w, € V,, and
w ~ (Wp, 21, ..., 21,00). Since (w,,z,—1) € Ug, there exists k& € N such that
Wy, 2p—1 € Cy. Since (w,,x,) € V, x {z,} C Ue, there exists | € N such
that w,,x, € C;. Then, w, € V, N CyNC; and (C2) imply z, € Cp N C;.
Thus, we get wy, T, 2,—1 € Cy and (W, Zp—1, ..., 21,V0) ~ (Wp, Ty Zp—1, ..., 21,00)-
By the same argument, there exists k¥ € N such that z,,z., 2.1 € Cy and
(Wyy Ty Zp1y oy 21,00) ~' (Wyy Ty Zey Zr—1, - - -, 21,V0). Then, we have equivalence
relations
W~ (Wyy Ty 2oy Zp 15+ 21,00) = (Wyy Ty, 20) @ Z

~ (U}T,l'n, Zr) 4 (men) ox ~/ (wra xn) ® X.

Therefore, w € ¢"~*(Upy) and ¢"~'(Upy) is an open set in (Ue) x x{uo}. Similarly,
put Uyy := ¢"(Vy,, x {y}). Then Uy is an open neighborhood of [y]’. Note that
NOW Y = &,. Suppose that Uy N Uy # 0 and let [z]" € Uy N Uy with z =
(2, -500) € (Ue)xx{w}- Then, we have (z,,2n,...,%) ~ 2 ~ (2, Ym, ..., 00).
Thus, we get equivalence relations

X ~ ('Z‘n? Bry Ly -« - 7U0> = (xn7 ZT) b (ZTJ Tny - 7U0)
~ (yma zr) d (Zra Ym, - - 7”0) =Y.

This contradicts [x]" # [y]’. Therefore, we have Uy N Uy = 0. This completes
the proof of Lemma 5.8. U

Proof of Theorem 5.3. First, we will show that (%c,éc,ﬁc, [vp]") is an object in
Cefiat (X, vo, (Uc)). Note that X is a Hausdorff space and has the weak topology
with respect to the compact covering C = (C,),en and (Ue) is a closed set in X",
From Lemma 5.7, (Uc)xx{v} and (Uc)., have the weak topology with respect to
countable compact coverings rAespectively. From Lemma 5.8, Eg is a Hausdorff

space, and consequently, so is G¢. Thus, from Lemma 5.6, idy.y x ¢", ¢", ¢" x ¢",

and ¢ x ¢" are all identifications. Using Lemma 2.1, we can see that (¢” X
q”)|_EC><XEc and (idy.) % ¢") |_<UC>><XE\C are identifications. Therefore, v, 71, pu, fc,
and IBC are all continuous. We can see that 7¢/ Ge is a homeomorphism. Thus, 7
is a principal (A}c—bundle. By the definition, ﬁc is a C-flat @c—compatible parallel
displacement. Moreover, from Lemma 5.4, 7¢ is locally trivial.

Next, we will show that the quadruple (7, CAJC, ]3(3, [vp]') is an initial object in
CC—/ﬂ\at(Xa Vo, <AUC>)' Note that (EC)[vo]’ = EC and <I>[”°]'(]3c) = A@C’ and the topology
of E¢ (resp. Ge) is the identification topology induced from Pe(-, [vo]’) = ¢” (resp.
(P)l" = ¢). Thus, (7¢, Ge, Pe, [vo]') is the strong holonomy reduction of itself,
that is,

((Fe)™", BV (Pe)[ 5, wor [v0]') = (R, Ge, Pe, [vo)') € Ceunar(X, v, (Uc))o-

Let (7, G, P,u) € Cegar(X,v0, (Uc))o. Once we have Ker(Pg)) ¢ KerP, from
Lemma 5.5, there exists a unique morphism (R pulvl"y : (7, Ge, Pe, [vo]') —
(m,G, P,u), and we obtain the conclusion. Thus, we will show Ker(Pp)™!" c
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KerP¥. Let (v, p_1,...,%1,0) € Ker(ﬁc)[voy. Then, [vy, Tp_1, ..., 21, V0] = [vo],
that is, (vo, Tp_1,...,21,v0) ~" vo. By the definition of ~, there exists m € NU{0}
and a sequence (vg,ZTp_1,...,%1,V) = Xo,X1,...,Xm = vg such that for any

j€{1,...,m} at least one of the following conditions hold:
(1) there exist k € N and ¢ € {1,...,k} such that x;,_1 = (Y, ..., ¥, -, %),
X; = (Yks - Ui+, Y0) and y; = Yi—1, Yit1 = Yi—1, or there exists C' € C
such that y; 11, y;,y:-1 € C.
(2) there exist k € N and ¢ € {1,...,k} such that x;_1 = (Yk,.--, ¥, ---,Y0),
X; = Yk, Yir---»Y0) and y; = Yi—1, Vi1 = Yi—1, or there exists C' € C
such that y;1,yi,yi-1 € C.
In case (1), whether v; = y;—1, Yit1 = vi—1, or there exists C' € C such that
Yit1, Ui, Yi—1 € C, we have

Py s = Plypo) = Plyrwie) © 7 © Plyisrwn) © Plyiyicn) © -+ © Plyrge)
= Plyewn—) © © Plyisrwin) © 0 © Plyrwo) = Plopriinn o) = Pxy-
In case (2), similar to the case (1), we get Py, | = P,. Then, we have
Py=Py=-=P,.

Therefore, (v, Tp—1,...,21,v9) € KerP*. This completes the proof of Theorem
5.3. ]

From this theorem and Proposition 3.5, we have the following corollary:

Corollary 5.9. Let X be a polyhedron of countable connected simplicial complex
Kin the weak topology. Any locally trivial G-bundle m over X 1is, if the topology of
G is discrete, associated with 7e,., where Cr == {|7| | T € K}.

Proof. From Proposition 3.5, there exists wx € SF¢, fiat(m, Ur). Then, for any u €
E, (m,G,Ps u) € Cepiat(X,v0, (Uk))o. Thus, there exists a unique morphism
(Rulvol’ | pulvol”y (%cwécwﬁcw [vo]) — (7, G, P“% u), and 7 is associated with
Ty by pilol 0

We will show that if the base space is a polyhedron of a countable connected
simplicial complex K in the weak topology, then 7y := 7¢,. is a universal covering
space.

Put <UK>K = <UCK>CK’ EK = E\CK, and @K = G\CK- A map a/ . éK — <UK>K
is given by @'([#n; . . ., %0]) := [T, ..., 2o) fOr [T0, ..., 20] € GK. Put hyei= g |7

and px = g, |hla,-

Ex

Proposition 5.10. Let X be a polyhedron of a countable connected simplicial com-
plex K in the weak topology. Then, T is a universal covering space associated with
Milnor’s universal bundle T (see Example 3.4).

Proof. Since ¢ is an identification and ¢’ is continuous, § is continuous. Since
q is continuous and ¢’ is an identification, g’ is an identification. Since 7 is an
identification and Ef is a closed set in G such that (7)~'(7(Ex)) = Ex, from
Lemma 2.1, hg is also an identification, and by a similar argument, so is pg.
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We can see that a unary operation -~ on (Uk), is the one induced by one on

Sr. Similarly, a partial binary operation on (Uk) is the one induced by one
on S. Namely, these two operations are compatible with §. Thus, px is a
group homomorphism and (hg, px) : (7x, Gx) — (%K,é k) is a homomorphism.
Therefore, T is associated with 7x.

Next, we will show that 7x is a universal covering space. By an elementary
argument of homotopy theory, we can see that G K 18 isomorphic to 7y (X Vo) as a
topological group (see Lemma 5.13). S1nce EK is connected and hg : EK — EK
is a surjective continuous map, so is EK Since X is locally pathwise connected
and T is a homeomorphism locally, EK is locally pathwise connected. Thus,
Tk is a covering space. Note that for any covering space 7 : £ — X, if it is
a principal (X, z)-bundle, the total space E is simply connected (see Lemma
5.14). Therefore, E k is simply connected and we have the conclusion. O

In the smooth category, the restricted holonomy group is the subgroup of the
holonomy group consisting of parallel displacements arising from all loops which
are homotopic to zero. As an analogue of this definition, we can think of Kerpg as
the restricted holonomy group of Pr.

Proposition 5.11. The kernel Kerpg is an open set in Gy = ®! and the induced
map py - Gi/Kerpx — G = (X, 1) is a homeomorphism.
Proof. The equation ¢~ (Kerpx) = ¢~ ({[vo]'}) implies that Kerpg is an open set

in Gg. Since Gy is a discrete group, Pk is an open map, and consequently, induced
map pg is a homeomorphism. O

Remark 5.12. Since (%CK,CAJCK,}ADCK,[UO]’) is also an object in the category
C(X, v, (Uk)) of principal bundles with parallel displacements introduced in [5,
Section 8], and (7x,Gk, Px, [vo]) is an initial object in C(X, v, (Uk)), there
exists a unique morphism from (7, Gx. Pi, [vo]) to (Fey, Geyr Py, [vo]'). For
(x,[y]) € (poluk)*Ex, we have

hic(Px(x,[y])) = hi([x], [y]) = hx([x o y])
= [xoy] = [x]'ly] = Pr(x, hx([y]).

Then, hy preserves Px and ﬁK Thus, (hg,pr) : (ﬁK,éK,fDK,[UO]) —
(ﬁcK,@cK,ﬁcK, [vo]’) is the unique morphism. Moreover, for any (7,G, P,u) €
Ceye-fiat (X, 0, (Ug))o, the unique morphism (Aol pulvol) (7, Gk, Pk, [vo]) —
(7, G, P,u) is written as a composition of two morphisms as (bl pulvol) =
(ol gty o o (hi, px).

APPENDIX

We provide two Lemmas 5.13 and 5.14. Proofs are rather elementary, yet we
supply them for the sake of completeness.

Lemma 5.13. Gy is isomorphic to w(X, vg)
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Proof. Put
nx):= J M@y,

(z,y)eX xX

where M (z,y) is the set of all homotopic classes of curves joining y to x. Then,
II(X) is a fundamental groupoid. A map (Ux) — II(X) is defined as follows. Let
(Tny -, 20) € (Uk) and c(a,.....z0) : {m) — X be amap given by c(,....z0) (%) = ; for

777777777

i €{0,1,...,n}, where I, is a division of I = [0,1] into n equal intervals. Then,
assign to (x,,...,xo) a homotopy class [E(xn 77777 xo)} of induced map ¢, .. 0o 1 I —
X of ¢(z,,..00)- We can see that if (v, 2n-1,...,21,20) ~ (Tn, Ym-1,--., Y1, %0),

Clanen1rmwrwo) A Clap yin 1,y m0) ar€ homotopic. Therefore, a map 7 : (Uk) i —

I(X) is well defined. For [x]',[y]' € {Un) . we can see n([x)[y}) = n(x)n([y])
whenever [x]'[y]" is defined. Thus, 7 is a pseudo group homomorphism. We will
show that n : (Uk), — II(X) is bijective.

First, we will show that 7 is surjective. Let [y] € II(X) with a continuous map
v : I — X. From simplicial approximation theorem, there exists a division /(,) of I
and a s1mp11c1al map ¢ : I,y = K such that for each i € {0,...,n}, (Vl(n)(n)) C
Vi (o(%)). Put

x 1= (7(0),0(0), (1), ..., o(=1), ¢(1),7(1)) € (Uk).

Then, we have n([x]") = [¢x] = [7].

Next, we will show that 7 is injective. Let x = (xo,Zp_1,...,21,20) € (Uk)
with [¢x] = [es]. Then, there exists a homotopy F' : I x I — X such that
F(t,0) =¢x(t) for any ¢t € I and F(({0,1} x I)U(I x{1})) = {xo}. From simplicial
approximation theorem, there exists a division (1 x I)(nz,m) of I x I and a simplicial
map G : (I X I)pkm) — K such that for each (4,7) € {0,...,nk} x {0,...,m},
F(‘/(IXI) y _)) - VK(G(nk7_)) Put

(nk,m)(nk’
XD 1= (@, 60(1), 2 (252), . (), Bl ), 0), ).

Then, we get x ~' x(=1. Put

x0 = (29, G(1,0), G("E2,0),...,G(Z,0),G(=,0),G(0,0), z).

nk
Since tx(-5) = F(-%,0) € VK(G(nk,O)) for i € {0,...,nk} and x© € (Ug), from

Lemma 4.13, we have x(=1) ~/ x(© Put

xM = (9, G(1,0), G(2£L0),...,G(Z

nk ?

O) G( 0>7G<07l> x(])

nk’ nk’ m

Since G is a simplicial map, there exists 7 € K such that G(0,0), G(0, =),z € |7].
Then, we get

X(O) = ($0,...,G(nk70) G(0,0),xo) ~ (QZOV'" (Lk ) ( ) ( ) )
0),

Similarly, since there exists 7/ € K such that G(=,0),G(0,0),G(0, L) € ||, we

have
(2o, .., G(,0),G(0,0),G(0, L), zg) ~ x),

nk
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that is, x© ~/ x(M. Put
x®) = (29, G(1,0), G(™£ZL0), ..., G(Z

nk

2 0) G( L)aG(O’%)’xO)'

nk’ nk’

/

Then, by similar argument, we get x() ~/ x(®). Repeating the same operation

(nk + 1)m times, we have

x((k+0m) . (20 (1, 1),G(”fl;1, 1),....G(;

1), G55, 1), G(0, 1), o)

nk’

—

(o) and 1 : (Ug), — II(X) is

((nk+1)m /

and x )~ (20,...,70). Thus, we get x ~/
ﬁ—’

nk+3
bijective. Therefore, it follows that restrictions 0|z : Ex — U,cx M(z,v9) and
nla, + Gk — m(X,vo) are bijective. Especially, if m1(X, vp) is a discrete group,
7| &, 1s a topological group isomorphism. O

Lemma 5.14. Let 7 : E — X be a covering space. If it is a principal
(X, xo)—bundle (zg € X), then E is simply connected.

Proof. Since 7 (X, zg) acts m (X, zo) freely on the left, for any [y] € (X, z),
the isotropy subgroup (X, x¢)}, is equal to {1}. On the other hand, by general
argument, isotropy subgroup (X, x¢)}, of this action is equal to m,(m (E, Zo)),

where &, € E,,. Since 7, is injection, we have m(E, Zo) = {1}. O
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