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Abstract. In a topological connection theory, we introduce the notion of flat for
a parallel displacement and investigate holonomy groups of flat parallel displace-
ments. Moreover, we assert a classification theorem in a category of principal
bundles with flat parallel displacements, and give a sufficient condition for the
existence of an initial object in the category.

1. Introduction and the main result

In the previous paper [5] we have considered, in a topological connection theory,
parallel displacements (along admissible sequences), introduced the notion of holo-
nomy group of a parallel displacement, and clarified some fundamental properties
for holonomy groups. This paper is a sequel to [5]. In this paper, we introduce
the notion of flat for a parallel displacement and study holonomy groups of flat
parallel displacements. The main purpose of this paper is to demonstrate Theorem
1.3 (below).
Let us state the main Theorem 1.3 after generalizing the notion of flat in the

smooth category to that in the topological one. For smooth connections, we can
assert Proposition 3.9 (see Section 3) which provides a one-to-one correspondence
between flat smooth connections and special smooth slicing functions. Motivated
by Proposition 3.9 we introduce the notion of flat for a continuous slicing function
as follows (see Definition 3.1 also):

Definition 1.1. Let π : E → X be a bundle, U a subset of X2 containing the
diagonal set ∆X , and C a covering of X. For an invertible (continuous) slicing
function ω in π over U , we say that ω is C-flat if it satisfies

ωx,y ◦ ωy,z = ωx,z

for any C ∈ C and any x, y, z ∈ X with (x, y), (y, z), (x, z) ∈ U ∩ C2.
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This is a generalized notion of flat in the smooth category. We here establish
Definition 1.1 from a viewpoint of slicing functions. In fact, Proposition 4.5 enables
us to rephrase Definition 1.1 as the following definition, from a viewpoint of parallel
displacements (see Section 4 for notation):

Definition 1.2. Let π : E → X be a bundle, S an admissible sequence space over
X, and C a covering of X. For a parallel displacement P along S in π, we say that
P is C-flat if it satisfies

Px = P(p∞(x),p0(x))

for any C ∈ C and any x ∈ S ∩ C⊔ with (p∞(x), p0(x)) ∈ S(1).

Now, we are in a position to state the main theorem:

Theorem 1.3. Let π : E → X be a principal G-bundle, C a covering of X, and P a
C-flat G-compatible parallel displacement along ⟨UC⟩ in π, where UC :=

∪
C∈C C×C.

Suppose that C is (C-N) or C ⊂ OX , and X is ⟨UC⟩-connected. Then, the following
(i) and (ii) hold for u ∈ E :

(i) If Φu is the strong holonomy group, then it is a discrete group.
(ii) If πu is the strong holonomy bundle, then it is a Φu-bundle.

Note that Theorem 1.3 is no longer true if one removes the supposition “strong”
from the statement (i), see Example 4.14. In the smooth category, the holonomy
group of a flat connection is discrete. We can think of Theorem 1.3 as a general-
ization of this fact.
This paper is organized as follows: In Section 2 we prepare notation and some

topological facts. Section 3 is devoted to recalling the definition of slicing function
and proving Proposition 3.9. In Section 4 we first consider relation between par-
allel displacements and slicing functions, next conclude Proposition 4.5 and lastly
demonstrate Theorem 1.3 (in Subsection 4.2). Finally in Section 5 we assert a
classification theorem in a category of principal bundles with flat parallel displace-
ments (see Theorem 5.2), and furthermore, we give a sufficient condition for the
existence of an initial object in the category (see Theorem 5.3).

Acknowledgment. The author would like to express his sincerely gratitude to the
referee for valuable suggestions and comments.

2. Preliminaries

First, let us prepare notation and some topological facts.

2.1. Let f : X → Y be a map. Take subsets A ⊂ X, B ⊂ Y satisfying f(A) ⊂ B.
Then there exists a unique map k : A → B such that f ◦ iA,X = iB,Y ◦ k, where
iA,X is the inclusion. Denote by B|f |A, f |A and B|f , the maps k, Y |f |A and B|f |X ,
respectively. If there is no confusion, we denote by f |A or f : A → B the map

B|f |A as usual.
For two maps f : X → Y and g : Z → W , we denote the composition (g|Y ∩Z) ◦

(Y ∩Z |f |f−1(Y ∩Z)) simply by g◦f . Remark here that if Y ∩Z = ∅, then g◦f : ∅ → W .
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Now, suppose that X = Z. Let δ : X → X ×X be a diagonal map. We denote by
f×̂g the composition (f × g) ◦ δ : X → Y ×W . Explicitly,

(f×̂g)(x) = (f(x), g(x)) for x ∈ X.

If X and Y are topological spaces and f : X → Y is a continuous map, then B|f |A
is also continuous with respect to the relative topologies. We call f : X → Y an
identification if the topology of Y is {U ∈ P(Y ) | f−1(U) ∈ OX}, that is, the
identification topology with respect to f , where P(Y ) is the power set of Y and
OX is the topology of X. Needless to say, a surjective continuous open map is an
identification.
The following lemmas are frequently used in this paper:

Lemma 2.1. A surjective map f : X → Y is an identification if and only if

f(A)|f |A : A→ f(A) is also an identification for any open (or closed) subset A ⊂ X
such that f−1(f(A)) = A.

Lemma 2.2. A map f : X → Y is an open map if and only if A|f |f−1(A) :
f−1(A)→ A is an open map for any subset A ⊂ Y .

2.2. We mostly follow the terminology of [4] with slight changes in notation. Thus,
we are going to set up notation for bundles. For a continuous map π : E → X, we
call the map π : E → X itself a bundle while usually the triple ξ = (E, π,X) or the
total space E is referred to as a bundle. Let π : E → X and π′ : E ′ → X ′ be two
bundles. For continuous maps h : E → E ′ and f : X → X ′, we call (h, f) : π → π′

a bundle morphism if π′ ◦ h = f ◦ π. If X = X ′, we call (h, idX) : π → π′ an
X-morphism and denote it simply by h. For Y ⊂ X, put

E⌈Y := π−1(Y ), π⌈Y := Y |π|π−1(Y ).

We call π⌈Y : E⌈Y→ Y the restricted bundle of π to Y . For a continuous map
f : Z → X, the induced bundle or pull-back of π is denoted by f ∗π : f ∗E → Z,
where

f ∗E := Z ×X E := {(z, u) ∈ Z × E | f(z) = π(u)}

is a fiber product of Z
f−→ X

π←− E. The canonical bundle map is denoted by (f, f).
For topological spaces X and F , a bundle pr1 : X × F → X is called a product
bundle. If π is X-isomorphic to a product bundle, we say that π is trivial. We say
that π : E → X is locally trivial if π is locally V -isomorphic to a product bundle
pr1 : V × F → V for some open subset V ⊂ X. A V -isomorphism π⌈V→ pr1 is
called a local trivialization.

2.3. Let us recall the notion of G-space. Let G be a topological group. A right G-
space is a topological space E equipped with a continuous right action µ : E×G→
E. We often denote µ(u, a) simply by ua. For u ∈ E and a ∈ G, one can define
maps lu : G→ E, ra : E → E by

lu(b) := ub, ra(v) := va,

respectively. A left G-space is defined in a similar way. Remark that by a G-space
we mean a right G-space, unless otherwise mentioned. Now, let E be a G-space.
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We call E a free G-space if the right action is free. Denote by E/G the orbit space,
and by qEG : E → E/G the natural projection, where the topology of E/G is the
identification topology (that is, the quotient topology) induced by qEG . Note here
that qEG is a surjective open map. A translation function T : E∗ → G is a (not
necessarily continuous) map such that uT (u, v) = v for any (u, v) ∈ E∗, where

E∗ := {(u, ua) ∈ E2 | a ∈ G}.
Suppose that E is a free G-space. Then, we get a translation function T : E∗ → G
by setting

T (u, v) := a

because for any (u, v) ∈ E∗ there exists a unique a ∈ G satisfying v = ua. It
follows that

(1) T (u, u) = 1G for any u ∈ E;
(2) (ua, vb) ∈ E∗ and T (ua, vb) = a−1T (u, v)b for any (u, v) ∈ E∗, (a, b) ∈ G2;
(3) T (u, v)T (v, w) = T (u,w) for any (u, v, w) ∈ E3 with (u, v), (v, w) ∈ E∗.

We call E a principal G-space if T is continuous.

2.4. Let π : E → X be a bundle such that E is a G-space. We call π a G-bundle
if qEG and π are isomorphic by (idE, f), where f is a unique continuous map such
that f ◦ qEG = π ◦ idE. Denote by π/G the map f . The following lemma provides a
rather practical condition for a bundle to be a G-bundle.

Lemma 2.3. Let π be a bundle whose total space is a G-space. Then π is a G-
bundle if and only if the map π/G is well-defined and a homeomorphism.

Let π (resp. π′) be a G (resp. G′)-bundle. For a continuous group homomorphism
ρ : G → G′ and a bundle morphism (h, f) : π → π′, we call a triple (h, f, ρ) :
(π,G) → (π′, G′) a homomorphism if h(ua) = h(u)ρ(a) for (u, a) ∈ E × G. If
G = G′, we call (h, f, idG) a G-morphism and denote it simply by (h, f). We call
h : (π,G)→ (π′, G) an (X,G)-morphism if it is anX-morphism and a G-morphism.
We call a G-bundle π : E → X a principal G-bundle if E is a principal G-space. Let
π : E → X be a principal G-bundle. Lemma 2.2 implies that the restricted bundle
π⌈Y is a principal G-bundle. The induced bundle f ∗π is a principal G-bundle in
the natural way.
Let us recall the notion of associated bundle. Let G and G′ be topological groups,

ρ : G→ G′ a continuous group homomorphism, and E a G-space. It is natural that
the product space E × G′ is a G-space by a right action (u, a)b := (ub, ρ(b)−1a).
We denote by Eρ the orbit space (E × G′)/G. The orbit space Eρ is a G′-space
by a right action [u, b]c := [u, bc]. This action is continuous. We call Eρ a G′-space
associated with E. If E is a free G-space, then Eρ is a free G′-space. If E is a
principal G-space with the translation function T , then Eρ is a principal G′-space
with the translation function given by

T ρ([u, a], [v, b]) := a−1ρ(T (u, v))b for ([u, a], [v, b]) ∈ (Eρ)∗.

Lemma 2.2 assures that T ρ is continuous. Now, let π : E → X be a principal
G-bundle, and πρ : Eρ → X the map such that πρ ◦ qE×G′

G = π ◦ pr1. In this case
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πρ is a principal G′-bundle. We call πρ the principal G′-bundle associated with π.
Define a map θρ : E → Eρ by

θρ(u) := [u, 1G′ ] for u ∈ E.

This (θρ, ρ) : (π,G)→ (πρ, G′) is a homomorphism. Let π′ : E ′ → X be a principal
G′-bundle and (h, ρ) : (π,G) → (π′, G′) an X-morphism. A map hρ : Eρ → E ′ is
given by

hρ([u, a]) := h(u)a for [u, a] ∈ Eρ.

Then hρ : (πρ, G′) → (π′, G′) is an (X,G′)-morphism and h = hρ ◦ θρ. From
Theorem 3.2 in [4, Chapter 4] and the succeeding observation, we have

Lemma 2.4. If π′ is a principal G′-bundle, then hρ is an (X,G′)-isomorphism.

Let E
π−→ X be a G-bundle. We say that π is locally G-trivial or simply locally

trivial if π is locally (V,G)-isomorphic to a product G-bundle pr1 : V ×G→ V for
some open subset V ⊂ X. A (V,G)-isomorphism (π⌈V , G) → (pr1, G) is called a
local trivialization. For a local trivialization α : (π⌈V , G)→ (pr1, G), put Uα := V .
For local trivializations α and β, the transition function gαβ : Uα∩Uβ → G is given
by

gαβ(x) := (pr2 ◦ α ◦ β−1)(x, 1G).

Note that a locally trivial G-bundle is a principal G-bundle. For a local trivial-
ization α, let sα : Uα → E⌈Uα be the local section given by sα(x) := α−1(x, 1G).
Then T ◦ (sα×̂sβ) = gαβ holds. If π is a locally trivial G-bundle, then both π⌈Y
and f ∗π, πρ are locally trivial.

3. Slicing functions

Our aim in this section is to recall the definition of slicing function, to construct
a flat slicing function by fixed local trivializations or transition functions, and to
prove Proposition 3.9 which leads us to introduce the notion of flat for a continuous
slicing function as Definition 1.1.

3.1. Definition of slicing for a continuous map. Let π : E → X be a bundle,
∆X the diagonal set of X, and U ⊂ X2 with ∆X ⊂ U . For each i ∈ {0, 1}, we
define a map p

(1)
i : X2 → X by

p
(1)
i (x1, x0) := xi for (x1, x0) ∈ X2.

Definition 3.1 (cf. [5], [7]). (I) Let ω : (p
(1)
0 |U)∗E → E be a continuous map, and

let ωx,y := ω(x, y, ·) : Ey → E for (x, y) ∈ U . We call ω a slicing function in π over
U if it satisfies the following (1) and (2):

(1) (ω, p
(1)
1 |U) : (p

(1)
0 |U)∗π → π is a bundle morphism;

(2) ωx,x = idEx for any x ∈ X.

(II) Suppose that U is symmetric, that is, (y, x) ∈ U for all (x, y) ∈ U . In this
case, a slicing function ω is said to be invertible if it satisfies

ωy,x = ω−1
x,y for any (x, y) ∈ U.
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(III) In the case where π is a G-bundle, we say that ω is G-compatible if (ω, p
(1)
1 |U)

is a G-morphism. Henceforth, we denote by SF (π, U), SFinv(π, U), and SF (π, U)G
the sets of slicing functions, invertible slicing functions, and G-compatible slicing
functions on π over U , respectively. In addition, we set

SFinv(π, U)G := SFinv(π, U) ∩ SF (π, U)G,

SFC-flat(π, U) := {ω ∈ SFinv(π, U) | ω is C-flat},
SFC-flat(π, U)G := SFC-flat(π, U) ∩ SFinv(π, U)G,

where C is a covering of X (recall Definition 1.1 for the word “C-flat”).

Let us give an example of C-flat slicing function.

Example 3.2. Let S1 be the unit circle in C and π′ : R→ S1 be a bundle (universal
covering space) given by π′(t) := e2πit for t ∈ R. We give an atlas of S1 by using
π′. Put

U+
1 := π′((−1

4
,
1

4
)), U−

1 := π′((
1

4
,
3

4
)), U+

2 := π′((0,
1

2
)), U−

2 := π′((
1

2
, 1)),

φ+
1 := (U+

1
|π′|(− 1

4
, 1
4
))

−1, φ−
1 := (U−

1
|π′|( 1

4
, 3
4
))

−1,

φ+
2 := (U+

2
|π′|(0, 1

2
))

−1, φ−
2 := (U−

2
|π′|( 1

2
,1))

−1.

Then {φ±
j | j ∈ {1, 2}} is an atlas of S1. For j ∈ {1, 2}, maps θ±j : U±

j × U±
j →

(−1

2
,
1

2
) are given by θ±j (x, y) := φ±

j (x) − φ±
j (y). Put U :=

∪
j∈{1,2}(U

+
j × U+

j ) ∪

(U−
j × U−

j ) and let θ : U → (−1

2
,
1

2
) be a map defined by θ(x, y) := θ±j (x, y) if

(x, y) ∈ U±
j × U±

j . Note that θ is well-defined and smooth. Let T 2 := S1 × S1 be

the torus and pr1 : T
2 → S1 the product bundle. For α ∈ R, put

ωα(x, y, (y, a)) := (x, ae2πiαθ(x,y))

for (x, y, (y, a)) ∈ (p
(1)
0 |U)∗T 2 and C := {U±

j | j ∈ {1, 2}}. Then we can see that
ωα ∈ SFC-flat(pr1, U)S1 .

In [5] we confirmed that slicing functions induced Asada’s connections. The
following example implies that flat slicing functions induce Asada’s connections
which have a property of flatness:

Example 3.3 (cf. [1, 2, 3], [5]). Let π be a G-bundle, and let C1(π, U)G denote
the set of continuous maps s : E2⌈U→ G such that

(1) s(u, u) = 1G for u ∈ E,
(2) s(ua, vb) = a−1s(u, v)b for (u, v) ∈ E2⌈U and a, b ∈ G.

Considering elements of the inductive limit lim−→U
C1(π, U)G over all neighborhoods

U of ∆X in X2 as connections in π, Asada [1, 2, 3] has constructed a connection
theory in a category of topological fiber bundles. We denote by C1

inv(π, U)G the set
of s ∈ C1(π, U)G such that

s(u, v) = s(v, u)−1 for (u, v) ∈ E2⌈U .
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Suppose that π is a principal G-bundle. Then, ω ∈ SF (π, U)G corresponds bijec-
tively to sω ∈ C1(π, U)G with

sω(u, v) := T (u, ω(π(u), π(v), v)).

Note here that SFinv(π, U)G corresponds to C1
inv(π, U)G. For a covering C of X, we

denote by C1
C-flat(π, U)G the set of s ∈ C1

inv(π, U)G such that

s(u, v)s(v, w) = s(u,w)

for any C ∈ C and any u, v, w ∈ E with (u, v), (v, w), (w, u) ∈ E2⌈U∩C2 . Then,
SFC-flat(π, U)G corresponds to C1

C-flat(π, U)G.

In the previous paper [5] we gave several examples of slicing functions. Let us
pick up an example from them.

Example 3.4 (cf. [7]). Let X be a polyhedron of a countable connected simplicial
complex K in the weak topology. Put UK :=

∪
τ∈K |τ | × |τ |, X⊔ :=

∪
n≥0X

n+1

(topological sum), and

SK := {(xn, . . . , x0) ∈ X⊔ | (xi, xi−1) ∈ UK for all i ∈ {1, . . . , n} when n ≥ 1}.
An equivalence relation in SK is generated by the relations

(xn, . . . , xi, . . . , x0) ∼ (xn, . . . , x̂i, . . . , x0)

whenever either xi = xi−1 or xi+1 = xi−1, where the symbol x̂ denotes deletion.
We denote by [xn, . . . , x0] the equivalence class of (xn, . . . , x0). Fix a vertex v0 of
K. Put

S̃K := SK/ ∼,
ẼK := {[xn, . . . , x1, x0] ∈ S̃K | x0 = v0},
G̃K := {[xn, . . . , x1, v0] ∈ ẼK | xn = v0},

where a topology of S̃K is the quotient topology, and we consider ẼK and G̃K as
subspaces, respectively. A unary operation ·− on S̃K is defined by

[xn, . . . , x1, x0]
− := [x0, x1, . . . , xn]

for [xn, . . . , x1, x0] ∈ S̃K . A partial binary operation on S̃K is defined by

[xn, . . . , x0][ym, . . . , y0] := [xn, . . . , x0, ym, . . . , y0]

for ([xn, . . . , x0], [ym, . . . , y0]) ∈ S̃K×S̃K such that x0 = ym. Remark here that G̃K

is a topological group with respect to these operations. A bundle π̃K : ẼK → X is
defined by

π̃K([xn, . . . , x1, v0]) := xn.

We can see that π̃K is a locally trivial principal G̃K-bundle and a universal bundle,

that is, ẼK is ∞-connected. For (x, ym, [ym, . . . , y1, v0]) ∈ (p
(1)
0 |UK

)∗ẼK , put

ω̃K(x, ym, [ym, . . . , y1, v0]) := [x, ym][ym, . . . , y1, v0].

Then ω̃K ∈ SFinv(π̃K , UK)G̃K
.
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3.2. Flat slicing functions, local trivializations and transition functions.
We want to show that one can construct a flat slicing function by fixed local
trivializations or transition functions.
Let π : E → X be a locally trivial G-bundle and A an atlas (a system of local

trivializations). Fix any ω ∈ SF (π, U)G. Then, we get a family (gαβ)(α,β)∈A2 of
continuous maps gαβ : (Uα × Uβ) ∩ U → G by setting

gαβ(x, y) := (pr2 ◦ α ◦ ωx,y ◦ β−1)(y, 1G)

for (x, y) ∈ (Uα × Uβ) ∩ U (see [7]). This family satisfies the following condition:

(A) gαβ(x, y) = gαα′(x)gα′β′(x, y)gβ′β(y) for any α, β, α′, β′ ∈ A and (x, y) ∈
(Uα × Uβ) ∩ (Uα′ × Uβ′) ∩ U .

Conversely, if a family (gαβ)(α,β)∈A2 of continuous maps gαβ : (Uα × Uβ) ∩ U → G
satisfies the condition (A), then a G-compatible slicing function ω is defined by

ω(x, y, u) := α−1(x, gαβ(x, y)(pr2 ◦ β)(u))

for (x, y, u) ∈ (p
(1)
0 |U)∗E with (x, y) ∈ (Uα × Uβ) ∩ U . Here, we can assert that G-

compatible slicing functions ω over U correspond bijectively to families (gαβ)(α,β)∈A2

satisfying the condition (A). Moreover, C-flat G-compatible slicing functions ω over
U correspond bijectively to families (gαβ)(α,β)∈A2 satisfying, in addition to (A), the
condition:

(B) gαβ(x, y)gβγ(y, z) = gαγ(x, z) for x, y, z ∈ X such that (x, y) ∈ (Uα × Uβ) ∩
U ∩ C2, (y, z) ∈ (Uβ × Uγ) ∩ U ∩ C2, (z, x) ∈ (Uγ × Uα) ∩ U ∩ C2.

Mishchenko and Teleman [9] have constructed an almost flat quasi-connection by
almost flat transition functions on a continuous vector bundle over simplicial space.
In our context, assuming that G is a discrete group, we can construct a flat slicing
function by fixed local trivializations or transition functions.

Proposition 3.5 (cf. [9]). Let X be a polyhedron of a simplicial complex K in the
weak topology, π : E → X a locally trivial G-bundle, and {VK(x) | x ∈ X} the set
of all open star neighborhoods. For each x ∈ X, since VK(x) is contractible, there
exists a local trivialization φx : E⌈VK(x)→ VK(x)×G. Then, if G is a discrete group,
there exists a CK-flat G-slicing function ωK in π over UK. Moreover, ωK is unique
for A. Here A := {φx | x ∈ X}, CK := {|τ | | τ ∈ K}, and UK :=

∪
τ∈K |τ | × |τ |.

Proof. For any z, w ∈ X, since VK(z) ∩ VK(w) is connected and G is a discrete
group, the transition function gzw : VK(z)∩ VK(w)→ G is constant. Thus, we can
uniquely continuously extend gzw on stK(z) ∩ stK(w), where stK(z) =

∪
{|τ | | z ∈

|τ |, τ ∈ K} is the star neighborhood of z. Denote by g′zw the extension of gzw.
For z, w ∈ X, a map gzw : (VK(z) × VK(w)) ∩ UK → G is defined as follows. Let
(x, y) ∈ (VK(z) × VK(w)) ∩ UK . Since (x, y) ∈ UK , there exists τ ∈ K such that
x, y ∈ |τ |. Since (x, y) ∈ VK(z) × VK(w), there exist σ, σ′ ∈ K such that z ∈ |σ|
and x ∈ Intσ, and w ∈ |σ′| and y ∈ Intσ′. Then, we have x ∈ Intσ ∩ |τ |. Since any
two simplexes do not intersect with each other at the interior of the other, we get
σ < τ . Similarly, we have σ′ < τ . Thus, we get x, y, z, w ∈ |τ |. Let v ∈ |τ | be an
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arbitrary point. Then, put

gzw(x, y) := g′zv(x)g
′
vw(y).

Note that x ∈ stK(z) ∩ stK(v) and y ∈ stK(v) ∩ stK(w). This definition does not
depend on the choice of v ∈ |τ |. Indeed, for another point v′ ∈ |τ |, we have

g′zv′(x)g
′
v′w(y) = g′zv(x)g

′
vv′(x)g

′
v′v(y)g

′
vw(y)

= g′zv(x)g
′
vv′(x)g

′
v′v(x)g

′
vw(y) = g′zv(x)g

′
vw(y).

To show that the condition (A) holds, let z, z′, w, w′ ∈ X and (x, y) ∈ (VK(z) ×
VK(w)) ∩ (VK(z

′) × VK(w
′)) ∩ UK . From the same argument above, there exists

τ ∈ K such that x, y, z, z′, w, w′ ∈ |τ |. Let v ∈ |τ |. Then,
gzw(x, y) = g′zv(x)g

′
vw(y) = g′zz′(x)g

′
z′v(x)g

′
vw′(y)g′w′w(y)

= g′zz′(x)gz′w′(x, y)g′w′w(y) = gzz′(x)gz′w′(x, y)gw′w(y).

To show that the condition (B) holds, let |τ | ∈ CK , z, w, x ∈ X, and (y2, y1, y0) ∈
(VK(z)× VK(w)× VK(x)) ∩ |τ |3. Then, we have

gzw(y2, y1)gwx(y1, y0) = g′zv(y2)g
′
vw(y1)g

′
wv(y1)g

′
vx(y0)

= g′zv(y2)g
′
vx(y0) = gzx(y2, y0).

Therefore, a CK-flat G-compatible slicing function ωA can be defined from the
family (gzw)(z,w)∈X2 . Next, we will show that (gzw)(z,w)∈X2 is unique for A. To this
end, let (g̃zw)(z,w)∈X2 be another family satisfying the conditions (A) and (B). Let
z ∈ X and (x, y) ∈ VK(z)

2 ∩ UK . Then, there exists τ ∈ K such that x, y ∈ |τ |.
Since G is a discrete group and VK(z) ∩ |τ | is connected, g̃zz(x, y) = g̃zz(x, x) = 1.
Therefore, we get

g̃zw(x, y) = gzv(x)g̃vv(x, y)gvw(y)

= gzv(x)gvw(y) = g′zv(x)g
′
vw(y) = gzw(x, y).

This completes the proof. □
If a covering C of the base space of a locally trivial principal bundle with discrete

structure group satisfies appropriate condition, there exists a C-flat slicing function.

Proposition 3.6 (cf. [5]). Let π : E → X be a locally trivial G-bundle and A
a bundle atlas (a system of local trivializations). Suppose that for any (α, β) ∈
A2, Uα ∩ Uβ is connected. Then, if G is a discrete group, there exists a CA-flat
G-compatible slicing function ωA in π over UA. Moreover, ωA is unique for A.
Here UA :=

∪
α∈A Uα × Uα and CA := {Uα | α ∈ A}.

Proof. For (x, y, u) ∈ (p
(1)
0 |UA

)∗E with (x, y) ∈ Uα × Uα, put

ωA(x, y, u) := α−1(x, (pr2 ◦ α)(u)).
This definition does not depend on the choice of α. Indeed, for any β ∈ A and

(x, y, u) ∈ (p
(1)
0 |UA

)∗E, we have

β−1(x, (pr2 ◦ β)(u)) = α−1(x, (pr2 ◦ α ◦ β−1)(x, (pr2 ◦ β ◦ α−1)(y, (pr2 ◦ α)(u))))
= α−1(x, gαβ(x)gβα(y)(pr2 ◦ α)(u)))) = α−1(x, (pr2 ◦ α)(u)).
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We can see that ωA ∈ SFinv(π, UA)G. By the definition, we have

(ωA)x,y ◦ (ωA)y,z = (ωA)x,z

for any α ∈ A and x, y, z ∈ Uα. Namely, ωA is CA-flat. We show that CA-flat
slicing function is unique for A. To this end, let ω′ ∈ SFinv(π, UA)G and (x, y, u) ∈
(p

(1)
0 |UA

)∗E with (x, y) ∈ Uα×Uα. Since G is a discrete group and Uα is connected,
gαα(x, y) = gαα(x, x) = 1G. Thus, we have

ω′(x, y, u) = α−1(x, gαα(x, y)(pr2 ◦ α)(u))
= α−1(x, (pr2 ◦ α)(u)) = ωA(x, y, u).

This completes the proof. □
3.3. Smooth category. We want to explain that a (continuous) slicing function
is a generalization of the connection in the smooth category.
Let π : E → X be a smooth principal G-bundle, where G is a Lie group. A

connection (invariant horizontal subbundle) H in π is a smooth subbundle of TE
such that

(1) TuE = Kerπ∗u ⊕Hu for u ∈ E,
(2) ra∗u(Hu) = Hua for (u, a) ∈ E ×G,

where π∗ is the differential of π (e.g. [6]) and ra : E → E is given by ra(v) := va (see
Section 2). Let H be a connection and c : [0, 1]→ X a piecewise smooth curve. For
each u ∈ Ec(0), there exists a unique curve c̃ : I → E such that c̃(0) = u, π ◦ c̃ = c,
and dc̃/dt(t) ∈ Hc̃(t) for t ∈ I, that is, c̃ is the horizontal lift of c starting from u.
From now on, let us assume that X is a Riemannian manifold. A subset V in X is
said to be strongly convex if for any (x, y) ∈ V × V there exists a unique geodesic
γ(t) in V joining y to x such that the length of γ is equal to the distance d(x, y),
where γ(t) = expytv and γ(1) = x. Now, fix an open covering V ofX which consists

of strongly convex sets. Put UV :=
∪

V ∈V V × V . Let (x, y, u) ∈ (p
(1)
0 |UV )

∗E and
γ the geodesic in some V joining y to x. Let γ̃ be the horizontal lift of γ starting
from u. Put

(3.3.1) ωH(x, y, u) := γ̃(1).

Then ωH ∈ SFinv(π, UV)G and it is smooth. This implies that one can obtain
many invertible G-compatible slicing functions from a smooth connection H in
π : E → X, where X is a Riemannian manifold.
The following comes from (3.3.1):

Proposition 3.7. Let π : E → X be a smooth principal G-bundle over a Rie-
mannian manifold X, where G is a Lie group, and H a connection in π. Let
ωH ∈ SFinv(π, UV) be the smooth slicing function constructed as in (3.3.1), where
V is an open covering of X consisting of strongly convex sets. Suppose that H is
flat. Then ωH is V-flat.

Let π : E → X be a smooth principal G-bundle, where G is a Lie group. A
connection 1-form θ is a 1-form with values in the Lie algebra G of G satisfying the
following conditions:
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(1) θu(A
∗
u) = A for A ∈ G,

(2) θua ◦ ra∗u = Ada−1∗1G ◦ θu for (u, a) ∈ E ×G,

where A∗ is the fundamental vector field corresponding to A, and for b ∈ G, Adb
is the inner automorphism of G given by Adb(c) := bcb−1 for c ∈ G. Note that the
invariant horizontal subbundles correspond bijectively to connection 1-forms (e.g.
[6]). Let s ∈ C1(π, U)G and suppose that it is smooth. Then a connection 1-form
θs is given by for u ∈ E and W ∈ TuE,

θsu(W ) := −s(·, u)∗u(W ).

If s is invertible, then θsu(W ) = s(u, ·)∗u(W ). The vertical projection vθ
s
and the

horizontal projection hθs are given by

vθ
s

u (W ) = −lu∗1G(s(·, u)∗u(W )), hθs

u (W ) = W − vθ
s

u (W )

for u ∈ E and W ∈ TuE, respectively.
The following proposition assures that smooth flat slicing functions (smooth flat

Asada’s connections) induce flat connections in the smooth category:

Proposition 3.8. Let C be an open covering of X. If s is C-flat, then θs is flat,
that is,

dθs +
1

2
[θs, θs] = 0.

Proof. Let Θs := dθs + (1/2)[θs, θs]. Note that Θs(W,Y ) = −θs([hθs(W ), hθs(Y )])
for all W,Y ∈ Γ(TE). Let u ∈ E and f ∈ C∞(G). Then, we have

− θsu([h
θs(W ), hθs(Y )]u)(f)

= s(·, u)∗u([hθs(W ), hθs(Y )]u)(f) = [hθs(W ), hθs(Y )]u(f ◦ s(·, u))
= hθs(W )u(h

θs(Y )(f ◦ s(·, u)))− hθs(Y )u(h
θs(W )(f ◦ s(·, u))).

Let w ∈ E and C ∈ C with (u,w) ∈ E2|U∩C2 . Then, for v ∈ E with (v, u), (v, w) ∈
E2|U∩C2 , we have s(ws(w, v), u) = s(v, w)s(w, u) = s(v, u). Thus, we get s(·, u) ◦
lw ◦ s(w, ·) = s(·, u) and s(·, u)∗w ◦ vθ

s

w = s(·, u)∗w. Then, we have

vθ
s

(Y )w(f ◦ s(·, u)) = s(·, u)∗w(vθ
s

w (Yw))(f) = s(·, u)∗w(Yw)(f) = Yw(f ◦ s(·, u)).

Thus, we get hθs(Y )(f ◦ s(·, u)) = (Y − vθ
s
(Y ))(f ◦ s(·, u)) = 0. Similarly, we have

hθs(W )(f ◦ s(·, u)) = 0. Therefore, Θs(W,Y ) = 0. □

In Proposition 3.1 [5], for a smooth slicing function ω ∈ SF (π, U)G we defined
an invariant horizontal subbundle Hω as follows:

Hω
u = {ω(·, π(u), u)∗π(u)(v) | v ∈ Tπ(u)X}

for u ∈ E, and we have shown that HωH
= H for a given connection H (see (3.3.1)

for ωH). The following proposition implies that ωHω
= ω if ω is flat:

Proposition 3.9. Let X be a Riemannian manifold and V an open covering of X
consisting of strongly convex sets. If ω is V-flat, then ωHω

= ω.
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Proof. Let V ∈ V , (x, y) ∈ V 2, u ∈ E, and γ : [0, 1] → V be the geodesic joining
y to x. Put γ̃(t) := ω(γ(t), y, u) for t ∈ [0, 1]. For z ∈ V , since ω is V-flat, we have

ω(z, y, u) = (ω(z,γ(t)) ◦ ω(γ(t),y))(u) = ω(z, γ(t), γ̃(t)).

Thus, ω(·, y, u) = ω(·, γ(t), γ̃(t)). Then, we get

dγ̃

dt
(t) = ω(·, y, u)∗γ(t)(

dγ

dt
(t)) = ω(·, γ(t), γ̃(t))∗γ(t)(

dγ

dt
(t)) ∈ Hω

γ̃(t).

Thus, γ̃ : [0, 1]→ V is the horizontal lift of γ. Therefore, we get

ωHω

(x, y, u) = γ̃(1) = ω(γ(1), y, u) = ω(x, y, u).

□
Proposition 3.1 [5], together with the above Propositions 3.8 and 3.9, allows us

to conclude

Proposition 3.10. Let X be a Riemannian manifold. Then, the map

{H | H is a flat connection in π} → lim−→
V

SFV-flat(π, UV)G

given by assigning [ωH ] to H is bijective, where the codomain is the inductive limit
over all open coverings V of X consisting of strongly convex sets.

4. Parallel displacements and holonomy groups

The main purpose in this section is to state Proposition 4.5 and demonstrate
Theorem 1.3 (See Subsection 4.2).

4.1. Parallel displacements. First, let us recall the definitions of admissible
sequence space and parallel displacement. Let X be a topological space and X⊔ :=∪

n≥0 X
n+1 the topological sum. Two maps p0, p∞ : X⊔ → X are defined by

p0(xn, . . . , x0) := x0, p∞(xn, . . . , x0) := xn

for (xn, . . . , x0) ∈ X⊔. A binary operation • on X⊔ is defined by

•(x,y) := x • y := (xn, . . . , x1, ym, . . . , y0)

for (x,y) = ((xn, . . . , x0), (ym, . . . , y0)) ∈ X⊔ × X⊔. Let X⊔ ×X X⊔ be a fiber

product of X⊔ p0−→ X
p∞←−− X⊔. Hereafter, we denote by the same symbol • the re-

striction of the binary operation • to X⊔×XX⊔, which is a partial binary operation
on X⊔. A unary operation ·− on X⊔ is defined by

x− := (x0, x1, . . . , xn) for x = (xn, . . . , x1, x0).

For x ∈ X⊔, we say that the length of x is n if x ∈ Xn+1. For any subset S ⊂ X⊔

and n ≥ 0, put

S(n) := S ∩Xn+1.

Note that for S ⊂ X⊔, we have S =
∪

n≥0S(n). We can see that (X⊔, •) is

associative and generated byX∪X2, and maps p0, p∞, •, and ·− are all continuous.
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Definition 4.1 (cf. [5]). (I) We call a subspace S ⊂ X⊔ an admissible sequence
space over X if it satisfies the following conditions:

(a) •(S2 ∩ (X⊔ ×X X⊔)) ⊂ S;
(b) X ∪∆X ⊂ S;
(c) {x− | x ∈ S} ⊂ S.

(II) Let S be an admissible sequence space over X. We say that X is S-connected
if (p∞×̂p0)(S) = X2, that is, for any (x, y) ∈ X2, there exists x ∈ S satisfying
p0(x) = y and p∞(x) = x. Henceforth we use the following notation:

AS(X) : the set of admissible sequence spaces over X,
SA := (p∞|S×̂p0|S)−1(A) for a subset A ⊂ X2,
Sx,y := S{(x,y)} for (x, y) ∈ X2, Sx := Sx,x,
⟨U⟩ := {(xn, . . . , x0) ∈ X⊔ | (xi, xi−1) ∈ U for any i ∈ {1, . . . , n} if n ≥ 1}
for a symmetric subspace U ⊂ X2 with ∆X ⊂ U ,

SX2(∆X) :=

{
U ⊂ X2 For any x ∈ X, there exists V ∈ OX(x)

such that V × {x} ⊂ U

}
, where

OX(x) is the set of all open neighborhoods of x.

Note that for x ∈ X, SX×{x} = (p0|S)−1({x}) and S{x}×X = (p∞|S)−1({x}),
and that the above condition (a) implies ⟨S(1)⟩ ⊂ S.

Definition 4.2 (cf. [5]). (I) Let π : E → X be a bundle, S ∈ AS(X) and
P : (p0|S)∗E → E a continuous map. Put

Px := P (x, ·) : Ep0(x) → E for x ∈ S.

We call P a parallel displacement along S in π if it satisfies the following:

(1) (P, p∞|S) : (p0|S)∗π → π is a bundle morphism;
(2) P(x,x) = idEx for any (x, x) ∈ S(1);
(3) Px•y = Px ◦ Py for any (x,y) ∈ S2 ∩ (X⊔ ×X X⊔);
(4) Px− = P−1

x for any x ∈ S.

(II) Let G be a topological group. Suppose that π is a G-bundle. Then, P is
said to be G-compatible if (P, p∞|S) is a G-morphism. Hereafter, we denote by
PD(π,S) and PD(π,S)G the set of all parallel displacements and G-compatible
parallel displacements along S in π, respectively. In addition,

PDC-flat(π,S) := {P ∈ PD(π,S) | P : C-flat},
PDC-flat(π,S)G := PDC-flat(π,S) ∩ PD(π,S)G,

where C is a covering of X (refer to Definition 1.2 for the word “C-flat”).

A parallel displacement is induced by a given invertible slicing function in a
natural manner as follows.

Proposition 4.3 (cf. [5], [7, p. 283]). Let ω ∈ SFinv(π, U) and S = ⟨U⟩. Put
P ω((xn, . . . , x0), u) := (ωxn,xn−1 ◦ · · · ◦ ωx1,x0)(u)

for ((xn, . . . , x0), u) ∈ (p0|S)∗E. Then P ω ∈ PD(π,S). If ω is G-compatible, so is
P ω.
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Example 4.4 (cf. [5], [7]). Let π̃K be the universal bundle which we reviewed in
Example 3.4. A map P̃K : (p0|SK

)∗ẼK → ẼK is defined by

P̃K((xn, . . . , x1, ym), [ym, . . . , y1, v0]) := [xn, . . . , x1, ym][ym, . . . , y1, v0]

for ((xn, . . . , x1, ym), [ym, . . . , y1, v0]) ∈ (p0|SK
)∗ẼK . Then P̃K ∈ PD(π̃K ,SK)G̃K

.
Since

P̃K((xn, . . . , x1, ym), [ym, . . . , y1, v0]) = [xn, . . . , x1, ym][ym, . . . , y1, v0]

= [xn, xn−1] · · · [x1, ym][ym, . . . , y1, v0]

= ((ω̃K)xn,xn−1 ◦ · · · ◦ (ω̃K)x1,ym)([ym, . . . , y1, v0])

= P ω̃K ((xn, . . . , x1, ym), [ym, . . . , y1, v0])

for ((xn, . . . , x1, ym), [ym, . . . , y1, v0]) ∈ (p0|SK
)∗ẼK , we have P̃K = P ω̃K .

Now, we are in a position to state

Proposition 4.5. A bijection from SFC-flat(π, UC) onto PDC-flat(π, ⟨UC⟩) is given
by ω 7→ P ω, where UC :=

∪
C∈C C × C.

All P ⌈Y , f ∗P , and P ρ inherit the flatness from a flat parallel displacement P :

Proposition 4.6 (cf. [5]). The following items (i) and (ii) hold:

(i) Suppose that P ∈ PDC-flat(π,S). Then, P ⌈Y∈ PDC⌈Y -flat(π⌈Y ,S⌈Y ) for all
Y ⊂ X, and f ∗P ∈ PDf∗(C)-flat(f

∗π, f ∗S) for any continuous map f : X ′ →
X. Here C⌈Y := {C ∩ Y | C ∈ C} and f ∗(C) := {f−1(C) | C ∈ C}.

(ii) If P ∈ PDC-flat(π,S)G, then P ρ ∈ PDC-flat(π
ρ,S)G, where ρ : G→ G′ is a

continuous group homomorphism.

Flat parallel displacements have the following fundamental property:

Proposition 4.7. Let P ∈ PDC-flat(π, ⟨UC⟩) and (xn, . . . , x0) ∈ ⟨UC⟩. If there
exist C ∈ C and i ∈ {1, . . . , n} such that xi+1, xi, xi−1 ∈ C, then P(xn,...,xi,...,x0) =
P(xn,...,x̂i,...,x0) holds. Here the symbol x̂i denotes deletion.

Proof. We have

P(xn,...,xi,...,x0) = P(xn,...,xi+1) ◦ P(xi+1,xi,xi−1) ◦ P(xi−1,...,x0)

= P(xn,...,xi+1) ◦ P(xi+1,xi−1) ◦ P(xi−1,...,x0)

= P(xn,...,x̂i,...,x0).

□

We end this subsection with giving an example of flat parallel displacement:

Example 4.8. Let pr1 : T 2 = S1 × S1 → S1 be the product bundle and
ωα ∈ SFC-flat(pr1, U)S1 as in Example 3.2. For ((xn, . . . , x0), (x0, a)) ∈ (p0|⟨U⟩)

∗T 2,

we have P ωα((xn, . . . , x0), (x0, a)) = (xn, ae
2πiα

∑n
k=1 θ(xk,xk−1)). For example, for
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(xn, . . . , x0) ∈ ⟨U⟩ ∩ (U+
1 )

⊔, since

n∑
k=1

θ(xk, xk−1) = θ+1 (xn, xn−1) + · · ·+ θ+1 (x1, x0)

= (φ+
1 (xn)− φ+

1 (xn−1)) + · · ·+ (φ+
1 (x1)− φ+

1 (x0))

= φ+
1 (xn)− φ+

1 (x0) = θ(xn, x0),

we get

P ωα((xn, . . . , x0), (x0, a)) = (xn, ae
2πiαθ(xn,x0)).

Thus, P ωα ∈ PDC-flat(pr1, ⟨U⟩)S1 .

4.2. Holonomy groups and Proof of Theorem 1.3.

Definition 4.9. (I) Let C be a covering of X, x ∈ X, and A ⊂ X such that x ∈ A.
We say that (A, x) is C-compatible if it satisfies the following conditions:

(C1) A× {x} ⊂ UC;
(C2) x ∈ C ∩ C ′, for any C,C ′ ∈ C with A ∩ C ∩ C ′ ̸= ∅.

(II) We say that C is (C-N) if for any x ∈ X, there exists an open neighborhood V
of x in X such that (V, x) is C-compatible.

The following example gives us a (C-N) covering:

Example 4.10. Let X be a polyhedron of a simplicial complex K in the weak
topology and put UK :=

∪
τ∈K |τ | × |τ |. For x ∈ X, let VK(x) be the open star

neighborhood of x inX. Then, (VK(x), x) satisfies VK(x)×{x} ⊂ UK . For τ, σ ∈ K,
suppose that VK(x) ∩ |τ | ∩ |σ| ̸= ∅. If y ∈ VK(x) ∩ |τ | ∩ |σ|, there exists ρ ∈ K
such that y ∈ Intρ and x ∈ |ρ|. Since any two simplexes do not intersect with each
other at the interior of the other, y ∈ Intρ ∩ |τ | ∩ |σ| implies ρ < τ and ρ < σ.
Thus, x ∈ |τ | ∩ |σ| holds. Therefore, (VK(x), x) is CK := {|τ | | τ ∈ K}-compatible
and CK is (C-N).

We review the definitions of strong holonomy group and strong holonomy bundle.

Definition 4.11 (cf. [5]). (I) Let π : E → X be a principal G-bundle, P ∈
PD(π,S)G, and u ∈ E. We call the subgroup Φu = P u(Sπ(u)) of G the strong
holonomy group of P with reference point u if it is endowed with the identification
topology induced by P u : Sπ(u) → Φu.
(II) We call the subbundle πu : Eu → X the strong holonomy bundle through u if

the topology of Eu is the identification topology induced by P (·, u) : SX×{π(u)} →
Eu.

We will prove the main Theorem 1.3 after preparing the following lemmas:

Lemma 4.12 (cf. [5, (ii) in Proposition 4.2]). Let S ∈ AS(X). If X is S-connected
and S(1) ∈ SX2(∆X), then p∞|SX×{x} : SX×{x} → X is an identification for every
x ∈ X.
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Lemma 4.13. Let X be a topological space and C a covering of X. Let X ′ be a set
and q : ⟨UC⟩ → X ′ a map such that for any (xn, . . . , x0) ∈ ⟨UC⟩ and i ∈ {1, . . . , n},
if there exists C ∈ C such that xi+1, xi, xi−1 ∈ C, then q(xn, . . . , xi, . . . , x0) =
q(xn, . . . , x̂i, . . . , x0), where ·̂ means a deletion. Then, the following items hold:

(i) Let (xn, . . . , x0) ∈ ⟨UC⟩ and (An, . . . , A0) ∈ P(X)n+1 such that (Ai, xi) is
C-compatible for any i ∈ {0, . . . , n}. Then q(y) = q(yn, xn−1, . . . , x1, x0) for
any y = (yn, yn−1, . . . , y1, x0) ∈ (An×· · ·×A0)∩⟨UC⟩, and if yn = xn, then
q(y) = q(x).

(ii) Suppose that C is (C-N) or C ⊂ OX . Then for any x = (xn, . . . , x0) ∈
⟨UC⟩, there exists an open neighborhood W of x in ⟨UC⟩ such that W ⊂
⟨UC⟩(n), q(y)=q(yn, xn−1, . . . , x1, x0) for any y=(yn, yn−1, . . . , y1, x0) ∈ W ,
and if yn = xn, then q(y) = q(x).

Proof. First, we will show (i). Let y = (yn, yn−1, . . . , y1, x0) ∈ (An×· · ·×A0)∩⟨UC⟩.
Since (y1, x0) ∈ UC, there exists C ∈ C such that y1, x0 ∈ C. On the other hand,
since (y1, x1) ∈ A1 × {x1} ⊂ UC, there exists C ′ ∈ C such that y1, x1 ∈ C ′. Then,
since y1 ∈ A1 ∩ C ∩ C ′, (C2) implies x1 ∈ C ∩ C ′. Thus, y1, x1, x0 ∈ C holds.
Therefore, q(y) = q(yn, . . . , y1, x1, x0). Since (y2, y1) ∈ UC, there exists C ′′ ∈ C
such that y2, y1 ∈ C ′′. Then, since y1 ∈ A1 ∩ C ′ ∩ C ′′, (C2) implies x1 ∈ C ′ ∩ C ′′.
Thus, y2, y1, x1 ∈ C ′′ holds. Therefore, q(yn, . . . , y2, y1, x1, x0) = q(yn, . . . , y2, x1, x0)
holds. Repeating the same argument, we get q(y) = q(yn, xn−1, . . . , x1, x0). As a
result, if yn = xn, q(y) = q(x) holds.
Next, we will show (ii). Suppose that C is (C-N). Let x = (xn, . . . , x0) ∈ ⟨UC⟩.

For i ∈ {0, . . . , n}, fix an open neighborhood Vi of xi in X such that (Vi, xi) is
C-compatible. Put

W := (Vn × · · · × V0) ∩ ⟨UC⟩.
Then, W is an open neighborhood of x in ⟨UC⟩ and the conclusion is followed
from (i). Now, suppose that C ⊂ OX . Let x = (xn, . . . , x0) ∈ ⟨UC⟩. For any
i ∈ {1, . . . , n}, there exists Ui ∈ C such that xi, xi−1 ∈ Ui. Put

W ′ := (Un × (Un ∩ Un−1)× · · · × (U2 ∩ U1)× U1) ∩ ⟨UC⟩.

Let y = (yn, yn−1, . . . , y1, x0) ∈ W ′. Then, since y1, x1, x0 ∈ U1 and y2, y1, x1 ∈ U2,
we have

q(y) = q(yn, . . . , y1, x1, x0) = q(yn, . . . , y2, x1, x0).

Repeating this operation, we get q(y) = q(yn, xn−1, . . . , x1, x0) and q(y) = q(x) if
yn = xn. □

From now on, let us demonstrate Theorem 1.3.

Proof of Theorem 1.3. First, we will show (i). Note that the topology of Φu is the
identification topology induced by P u from ⟨UC⟩π(u). We will show that (P u)−1({a})
is an open set in ⟨UC⟩π(u). Let x ∈ (P u)−1({a}), where p0(x) = p∞(x) = π(u). Since
C is (C-N) or C ⊂ OX , from Proposition 4.7 and (ii) of Lemma 4.13, there exists an
open neighborhood W of x in ⟨UC⟩π(u) such that for any y ∈ W , P u(y) = P u(x) =
a. Thus, we have W ⊂ (P u)−1({a}).
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Next, we will show (ii). Let µ : E × G → E be the continuous right action. At
first, we show that Eu is a Φu-space, that is, Eu|µ|Eu×Φu : Eu×Φu → Eu is contin-
uous. Since Φu is a discrete group, it is sufficient to show that (Eu|µ|Eu×Φu)(·, a) :
Eu → Eu is continuous for any a = P u(x) ∈ Φu. Indeed, since

(Eu |µ|Eu×Φu)(·, a) ◦ P (·, u) = P (·, u) ◦ •(·,x)
and P (·, u) is an identification, (Eu |µ|Eu×Φu)(·, a) is continuous. Next, we show
that πu is a Φu-bundle. Let su : X → Eu/Φu be the map so that the equality
su ◦ p∞|⟨UC⟩X×{π(u)} = qE

u

Φu ◦ P (·, u) holds. Then, we have su = (πu/Φ
u
)−1. Note

that if C ⊂ OX , then UC ∈ SX2(∆X). Thus, whenever C is (C-N) or C ⊂ OX ,
from Lemma 4.12, p∞|⟨UC⟩X×{π(u)} : ⟨UC⟩X×{π(u)} → X is an identification. Then su

is continuous. Thus, πu/Φ
u
is a homeomorphism. From Lemma 2.3, we have the

conclusion. □
The following example implies that Theorem 1.3 is no longer true if one removes

the supposition “strong” from the statement (i):

Example 4.14. Let pr1 : T 2 = S1 × S1 → S1 be the product bundle and
P ωα ∈ PDC-flat(pr1, ⟨U⟩)S1 as in Example 4.8. Fix an arbitrary (x0, a) ∈ T 2 and

put xk := xk−1e
2π
5
i for k ∈ {1, . . . , 10}, where x10 = x5 = x0. Then, we have

(P ωα)(x0,a)(x10, . . . , x0) = e2πiα
∑10

k=1 θ(xk,xk−1) = e2πiα·2 and

Φ(x0,a) = {e2πiαk | k ∈ Z}.

If α is a rational number, then Φ(x0,a) is a finite set while if α is an irrational
number, it is dense in S1 and is not discrete with respect to the relative topology.

4.3. Local holonomy groups of parallel displacements. In Subsection 4.2,
we have completed the proof of the main Theorem 1.3. Here Theorem 1.3 is
concerned with the strong holonomy groups of flat parallel displacements. In this
subsection, we would like to assert Proposition 4.16 which is concerned with the
local holonomy groups of flat parallel displacements.
We introduced in [5] the notion of local holonomy group of a parallel displacement

and studied its fundamental properties. We will review the definition of local
holonomy groups. For a symmetric subspace U ⊂ X2 with ∆X ⊂ U and x ∈ X,
put

⟨U⟩1x := {(x, xn−1, . . . , x1, x) ∈ ⟨U⟩x | (xk, x) ∈ U for all k ∈ {1, . . . , n− 1}}.
Then ⟨U⟩1x is a submonoid of ⟨U⟩x.

Definition 4.15 (cf. [5]). Let π : E → X be a principal G-bundle and P ∈
PD(π,S)G. For u ∈ E, we call a subgroup

Φu,1 := Φu,1(P ) := P u(⟨S(1)⟩1π(u))

of Φu the local holonomy group of P with reference point u.

In the smooth category, local holonomy groups are trivial if there exists a flat
connection. As an analogue of this fact, we see that the local holonomy groups
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of parallel displacements are trivial if there exist a certain covering C of X and a
C-flat parallel displacement.

Proposition 4.16. Let C be a covering of X, P ∈ PDC-flat(π, ⟨UC⟩)G, and u ∈ E.
Suppose that C satisfies the following condition:

C ∩ C ′ ∩ C ′′ ̸= ∅
for any C,C ′, C ′′ ∈ C with C ∩ C ′ ̸= ∅, C ′ ∩ C ′′ ̸= ∅ and C ′′ ∩ C ̸= ∅. Then, the
local holonomy group Φu,1 is trivial.

Proof. Let x = (π(u), xn−1, . . . , x1, π(u)) be an element of ⟨UC⟩1π(u). Since

(x1, π(u)), (x2, x1), (x2, π(u)) ∈ UC, there exists (C,C ′, C ′′) ∈ C3 such that
x1, π(u) ∈ C, x2, x1 ∈ C ′, and x2, π(u) ∈ C ′′. Thus, x1 ∈ C ∩C ′, x2 ∈ C ′ ∩C ′′, and
π(u) ∈ C ′′ ∩C. Then, from the assumption, C ∩C ′ ∩C ′′ ̸= ∅. Let y ∈ C ∩C ′ ∩C ′′.
Then, from Proposition 4.7, we have

Px = P(π(u),xn−1,...,x2,x1,y,π(u))

= P(π(u),xn−1,...,x2,y,π(u)) = P(π(u),xn−1,...,x2,π(u)).

Repeating this operation, we get Px = Pπ(u). Therefore, P
u(x) = 1Φu,1 . □

5. A classification theorem

The main purpose in this section is to assert a classification theorem in a category
of principal bundles with flat parallel displacements (see Theorem 5.2), and to give
a sufficient condition for the existence of an initial object in the category (see
Theorem 5.3).
Throughout in this section, we assume that X is a topological space, v0 ∈ X, and
C is a covering of X. At first, we introduce the following category CC-flat(X, v0,S).
Objects in CC-flat(X, v0,S) are such quadruples (π,G, P, u), where π : E → X is
a principal G-bundle, P ∈ PDC-flat(π,S)G is a C-flat parallel displacement, and
u ∈ Ev0 . Morphisms in CC-flat(X, v0,S) are such homomorphisms (h, idX , ρ) :
(π,G, P, u)→ (π′, G′, P ′, u′) preserving P and P ′, that is,

h(P (x, v)) = P ′(x, h(v))

for (x, v) ∈ (p0|S)∗E, and satisfying h(u) = u′. We denote by (h, ρ) the mor-
phism (h, idX , ρ), and by CC-flat(X, v0,S)0 (resp. CC-flat(X, v0,S)1) the collection
of objects (resp. morphisms) in CC-flat(X, v0,S).

Remark 5.1. Note that CC-flat(X, v0,S) is an isomorphism-closed full subcategory
of the category C(X, v0,S) of principal bundles with parallel displacements intro-
duced in [5, Section 8].

Let G be the category of topological groups. We denote by G0 (resp. G1) the

collection of objects (resp. morphisms). Let Ĝ ∈ G0. An equivalence relation on

{ρ ∈ G1 | domρ = Ĝ} is defined as follows. Two morphisms ρ, ρ′ ∈ G1 with

domρ = domρ′ = Ĝ are equivalent if there exists a topological group isomorphism
τ : codρ→ codρ′ such that ρ′ = τ ◦ ρ. We denote by [ρ] the equivalence class of ρ.
Once it is shown that an initial object exists, we obtain the following theorem:
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Theorem 5.2 (Classification Theorem (flat version)). Suppose that there exists an

initial object (π̂, Ĝ, P̂ , û) in CC-flat(X, v0,S) with π̂ : Ê → X. Two maps

{ρ ∈ G1 | domρ = Ĝ} Λ′
−→ CC-flat(X, v0,S)

Θ′
−→ {ρ ∈ G1 | domρ = Ĝ}

are defined as follows. For ρ ∈ G1 with domρ = Ĝ, put

Λ′(ρ) := (π̂ρ, codρ, P̂ ρ, [û, 1codρ]).

For an object (π,G, P, u) in CC-flat(X, v0,S) with the unique morphism (h, ρ) :

(π̂, Ĝ, P̂ , û) → (π,G, P, u) in CC-flat(X, v0,S), put Θ′(π,G, P, u) := ρ. Then
Θ′ ◦ Λ′ = id, and both Λ′(Θ′(π,G, P, u)) and (π,G, P, u) are isomorphic for each

(π,G, P, u) ∈ CC-flat(X, v0,S)0. Moreover, for ρ, ρ′ ∈ G1 with domρ = domρ′ = Ĝ,
ρ and ρ′ are equivalent if and only if Λ′(ρ) and Λ′(ρ′) are isomorphic. Thus, the
induced map

{[ρ] | ρ ∈ G1, domρ = Ĝ} Λ′
−→ {[(π,G, P, u)] | (π,G, P, u) ∈ CC-flat(X, v0,S)0}

is bijective, where [(π,G, P, u)] is the isomorphic class of (π,G, P, u).

Proof. The proof of this theorem is similar to that of Theorem 8.1 (Classifica-

tion theorem) in [5]. For (ρ : Ĝ → G) ∈ G1, let (θρ, ρ) : (π̂, Ĝ, P̂ , û) →
(π̂ρ, G, P̂ ρ, [û, 1G]) be the morphism in CC-flat(X, v0,S) given by θρ(v) := [v, 1G]

for v ∈ Ê (see Section 2). Since (π̂, Ĝ, P̂ , û) is an initial object, (θρ, ρ) is

the unique morphism from (π̂, Ĝ, P̂ , û) to (π̂ρ, G, P̂ ρ, [û, 1G]). Thus Θ′(Λ′(ρ)) =

Θ′(π̂ρ, G, P̂ ρ, [û, 1G]) = ρ.

Let (π,G, P, u) ∈ CC-flat(X, v0,S)0 and (h, ρ) : (π̂, Ĝ, P̂ , û) → (π,G, P, u) be
the unique morphism in CC-flat(X, v0,S). Let (hρ, idG) : (π̂

ρ, G) → (π,G) be the
(X,G)-morphism given by hρ([v, a]) := h(v)a for [v, a] ∈ Ẽρ (see Section 2). From

Lemma 2.4, (hρ, idG) : (π̂
ρ, G, P̂ ρ, [û, 1G]) → (π,G, P, u) is an isomorphism. Thus

Λ(Θ(π,G, P, u)) and (π,G, P, u) are isomorphic.

Suppose that [ρ : Ĝ → G] = [ρ′ : Ĝ → G′] and let τ : G → G′ be a topological

group isomorphism such that ρ′ = τ ◦ ρ. A map k : Êρ → Êρ′ is defined by

k([v, a]) := [v, τ(a)] for [v, a] ∈ Êρ. We can see that (k, τ) : (π̂ρ, G, P̂ ρ, [û, 1G]) →
(π̂ρ′ , G, P̂ ρ′ , [û, 1G′ ]) is an isomorphism.

Conversely, let (k, τ) : (π̂ρ, G, P̂ ρ, [û, 1G]) → (π̂ρ′ , G, P̂ ρ′ , [û, 1G′ ]) be an iso-

morphism. Then (k ◦ θρ, τ ◦ ρ) : (π̂, Ĝ, P̂ , û) → (π̂ρ′ , G, P̂ ρ′ , [û, 1G′ ]) is a mor-

phism. Since (π̂, Ĝ, P̂ , û) is an initial object, the uniqueness of morphism implies
(k ◦ θρ, τ ◦ ρ) = (θρ

′
, ρ′). Thus [ρ] = [ρ′]. □

In the smooth category, flat principal G-bundles over a fixed base space are clas-
sified by group homomorphisms from the fundamental group of the base space to G
(e.g. [8, 10]). We can think of Theorem 5.2 as one of the topological counterparts
of the classification theorem for flat bundles in the smooth category.
Next, we construct an initial object in CC-flat(X, v0, ⟨UC⟩). We assume the fol-

lowing conditions:
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(D1) C = (Cn)n∈N is a countable (C-N) compact covering, and ⟨UC⟩ is a closed
set in X⊔, where UC =

∪
n∈NCn × Cn,

(D2) X is a Hausdorff space which has the weak topology with respect to C, and
⟨UC⟩-connected.

An equivalence relation in ⟨UC⟩ is generated by the relations

(xn, . . . , xi, . . . , x0) ∼′ (xn, . . . , x̂i, . . . , x0)

whenever either xi = xi−1, xi+1 = xi−1, or there exists n ∈ N such that
xi+1, xi, xi−1 ∈ Cn, where the symbol x̂ denotes deletion. The natural projection is
denoted by q′. Put [xn, . . . , x0]

′ := q′(xn, . . . , x0) and

⟨̂UC⟩C := ⟨UC⟩/ ∼′,

ÊC := {[xn, . . . , x1, x0]
′ ∈ ⟨̂UC⟩C | x0 = v0},

ĜC := {[xn, . . . , x1, v0]
′ ∈ ÊC | xn = v0},

where a topology of ⟨̂UC⟩C is the quotient topology and consider ÊC and ĜC as

subspaces. We can see that two maps q′′ = q′|⟨UC⟩X×{v0}
: ⟨UC⟩X×{v0} → ÊC and

q′′′ = q′|⟨UC⟩v0 : ⟨UC⟩v0 → ĜC are identifications. A map π̂C : ÊC → X is defined by
π̂C([x]

′) := p∞(x). Since π̂C ◦ q′′ = p∞|⟨UC⟩X×{v0}
and q′′ is an identification, π̂C is a

continuous map, that is, π̂C is a bundle. Since X is ⟨UC⟩-connected, π̂C is surjective.

A binary operation ν : ĜC × ĜC → ĜC and a unary operation ·−1 : ĜC → ĜC are
defined so that ν ◦ (q′′′ × q′′′) = q′′′ ◦ • and ·−1 ◦ q′′′ = q′′′ ◦ ·− hold respectively. A

right action µ : ÊC × ĜC → ÊC is defined so that µ ◦ (q′′ × q′′′) = q′′ ◦ • holds. For
the sake of simplicity, we denote the restrictions

ÊC×X ÊC
|(q′′ × q′′)|⟨UC⟩X×{v0}×X⟨UC⟩X×{v0}

and

⟨UC⟩×X ÊC
|(id⟨UC⟩ × q′′)|⟨UC⟩×X⟨UC⟩X×{v0}

by (q′′×q′′)⌈ÊC×X ÊC
and (id⟨UC⟩×q′′)⌈⟨UC⟩×X ÊC

respectively. A map T̂C : ÊC×X ÊC →
ĜC is defined so that

T̂C ◦ (q′′ × q′′)⌈ÊC×X ÊC
= q′′′ ◦ • ◦ (·− × id⟨UC⟩X×{v0}

)

holds. A map P̂C : ⟨UC⟩ ×X ÊC → ÊC is defined so that

P̂C ◦ (id⟨UC⟩ × q′′)⌈⟨UC⟩×X ÊC
= q′′ ◦ •

holds.
Under the conditions (D1) and (D2), we have the following theorem:

Theorem 5.3. Suppose the following conditions hold:

(D1) C = (Cn)n∈N is a countable (C-N) compact covering, and ⟨UC⟩ is a closed
set in X⊔, where UC =

∪
n∈N Cn × Cn,

(D2) X is a Hausdorff space which has the weak topology with respect to C, and
⟨UC⟩-connected.
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Then, the quadruple (π̂C, ĜC, P̂C, [v0]
′) is an initial object in CC-flat(X, v0, ⟨UC⟩). In

particular, π̂C is locally trivial.

We prepare the following lemmas for proving the above theorem.

Lemma 5.4 (cf. [5, (ii) in Theorem 4.4]). Let G be a topological group, π : E → X
a principal G-bundle, and P ∈ PD(π,S)G. Suppose that X is S-connected and
S(1) ∈ SX2(∆X). Then π is a locally trivial G-bundle.

We denote by C a category of principal G-bundles with parallel displace-
ments introduced in [5], and by C0 its objects. In [5, Definition 7.1], we call a
quadruple (πu,Φu, P ⌈Eu , u) the strong holonomy reduction of (π,G, P, u) ∈ C0 if
(πu,Φu, P ⌈Eu , u) ∈ C0 when Φu (resp. Eu) is the strong holonomy group (resp. the
strong holonomy bundle).

Lemma 5.5 (cf. [5, Theorem 7.1]). Let (π,G, P, u) (resp. (π′, G′, P ′, u′))∈ C0,
where π : E → X (resp. π′ : E ′ → X) is a principal G (resp. G′)-bundle,
P ∈ PD(π,S)G (resp. P ′ ∈ PD(π′,S′)G′) is a parallel displacement, and u ∈ E
(resp. u′ ∈ E ′). Suppose that X is S-connected and (πu,Φu, P ⌈Eu , u) is the strong
holonomy reduction of (π,G, P, u). Let f : X → X ′ be a continuous map preserving
S and S′, and satisfying f(π(u)) = π′(u′). If f⊔(KerP u) ⊂ KerP ′u′

, then there
exists a unique morphism (hu′u, f, ρu

′u) : (πu,Φu, P ⌈Eu , u) → (π′, G′, P ′, u′) in C.
In particular, hu′u(Eu) ⊂ E ′u′

and ρu
′u(Φu) ⊂ Φu′

.

Lemma 5.6 (cf. [5, Lemma 7.7]). Let X and X ′ be Hausdorff spaces. Suppose that
X (resp. X ′) has a weak topology with respect to a compact covering (Xn)n∈N (resp.
(X ′

m)m∈N). Then, for any Hausdorff spaces Y, Y ′ and identifications f : X →
Y, f ′ : X ′ → Y , the product f × f ′ : X ×X ′ → Y × Y ′ is an identification.

Lemma 5.7 (cf. [5, Lemma 7.8]). Let X be a Hausdorff space and S ∈ AS(X).
Suppose that X has the weak topology with respect to a countable compact covering,
and S is a closed set in X⊔. Then for any x ∈ X, S, SX×{x}, and Sx have the
weak topology with respect to countable compact coverings respectively.

Lemma 5.8. ÊC is a Hausdorff space.

Proof. Let [x]′, [y]′ ∈ ÊC with x = (xn, . . . , v0) and y = (ym, . . . , v0) such that
[x]′ ̸= [y]′. First, suppose that xn ̸= ym. Since X is a Hausdorff space, there exist
open neighborhoods Uxn and Uym of xn and ym respectively such that Uxn∩Uym = ∅.
Then, π̂−1

C (Uxn) and π̂−1
C (Uym) are open neighborhoods of [x]′ and [y]′ respectively,

and π̂−1
C (Uxn)∩ π̂−1

C (Uym) = ∅. Next, suppose that xn = ym. Since C is (C-N), there
exists Vxn ∈ OX(xn) such that (Vxn , xn) is C-compatible. Put

U[x]′ := q′′((Vxn × {xn}) • {x}).

Then, [x]′ ∈ U[x]′ . We will show that U[x]′ is an open set in ÊC. Let z =
(zr, . . . , v0) ∈ q′′−1(U[x]′). Then, we have zr ∈ Vxn and z ∼′ (zr, xn) • x. From
Lemma 4.13 (ii), there exists an open neighborhood W of z in ⟨UC⟩X×{v0} such that
W ⊂ (⟨UC⟩X×{v0})(r) and for any w = (wr, . . . , v0) ∈ W , w ∼′ (wr, zr−1, . . . , z1, v0).
Put W ′ := (Vxn × Xr) ∩ W . Then, W ′ is an open neighborhood of z in
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⟨UC⟩X×{v0}. Let w = (wr, . . . , v0) ∈ W ′. Then, we have wr ∈ Vxn and
w ∼′ (wr, zr−1, . . . , z1, v0). Since (wr, zr−1) ∈ UC, there exists k ∈ N such that
wr, zr−1 ∈ Ck. Since (wr, xn) ∈ Vxn × {xn} ⊂ UC, there exists l ∈ N such
that wr, xn ∈ Cl. Then, wr ∈ Vxn ∩ Ck ∩ Cl and (C2) imply xn ∈ Ck ∩ Cl.
Thus, we get wr, xn, zr−1 ∈ Ck and (wr, zr−1, . . . , z1, v0) ∼′ (wr, xn, zr−1, . . . , z1, v0).
By the same argument, there exists k′ ∈ N such that xn, zr, zr−1 ∈ Ck′ and
(wr, xn, zr−1, . . . , z1, v0) ∼′ (wr, xn, zr, zr−1, . . . , z1, v0). Then, we have equivalence
relations

w ∼′ (wr, xn, zr, zr−1, . . . , z1, v0) = (wr, xn, zr) • z
∼′ (wr, xn, zr) • (zr, xn) • x ∼′ (wr, xn) • x.

Therefore, w ∈ q′′−1(U[x]′) and q′′−1(U[x]′) is an open set in ⟨UC⟩X×{v0}. Similarly,
put U[y]′ := q′′(Vym × {y}). Then U[y]′ is an open neighborhood of [y]′. Note that
now ym = xn. Suppose that U[x]′ ∩ U[y]′ ̸= ∅ and let [z]′ ∈ U[x]′ ∩ U[y]′ with z =
(zr, . . . , v0) ∈ ⟨UC⟩X×{v0}. Then, we have (zr, xn, . . . , v0) ∼′ z ∼′ (zr, ym, . . . , v0).
Thus, we get equivalence relations

x ∼′ (xn, zr, xn, . . . , v0) = (xn, zr) • (zr, xn, . . . , v0)

∼′ (ym, zr) • (zr, ym, . . . , v0) = y.

This contradicts [x]′ ̸= [y]′. Therefore, we have U[x]′ ∩ U[y]′ = ∅. This completes
the proof of Lemma 5.8. □

Proof of Theorem 5.3. First, we will show that (π̂C, ĜC, P̂C, [v0]
′) is an object in

CC-flat(X, v0, ⟨UC⟩). Note that X is a Hausdorff space and has the weak topology
with respect to the compact covering C = (Cn)n∈N and ⟨UC⟩ is a closed set in X⊔.
From Lemma 5.7, ⟨UC⟩X×{v0} and ⟨UC⟩v0 have the weak topology with respect to

countable compact coverings respectively. From Lemma 5.8, ÊC is a Hausdorff

space, and consequently, so is ĜC. Thus, from Lemma 5.6, id⟨UC⟩× q′′, q′′′, q′′× q′′′,
and q′′′ × q′′′ are all identifications. Using Lemma 2.1, we can see that (q′′ ×
q′′)⌈ÊC×X ÊC

and (id⟨UC⟩× q′′)⌈⟨UC⟩×X ÊC
are identifications. Therefore, ν, ·−1, µ, T̂C,

and P̂C are all continuous. We can see that π̂C/
ĜC is a homeomorphism. Thus, π̂C

is a principal ĜC-bundle. By the definition, P̂C is a C-flat ĜC-compatible parallel
displacement. Moreover, from Lemma 5.4, π̂C is locally trivial.

Next, we will show that the quadruple (π̂C, ĜC, P̂C, [v0]
′) is an initial object in

CC-flat(X, v0, ⟨UC⟩). Note that (ÊC)
[v0]′ = ÊC and Φ[v0]′(P̂C) = ĜC, and the topology

of ÊC (resp. ĜC) is the identification topology induced from P̂C(·, [v0]′) = q′′ (resp.

(P̂C)
[v0]′ = q′′′). Thus, (π̂C, ĜC, P̂C, [v0]

′) is the strong holonomy reduction of itself,
that is,

((π̂C)
[v0]′ ,Φ[v0]′ , (P̂C)⌈(ÊC)[v0]

′ , [v0]
′) = (π̂C, ĜC, P̂C, [v0]

′) ∈ CC-flat(X, v0, ⟨UC⟩)0.

Let (π,G, P, u) ∈ CC-flat(X, v0, ⟨UC⟩)0. Once we have Ker(P̂C)
[v0]′ ⊂ KerP u, from

Lemma 5.5, there exists a unique morphism (hu[v0]′ , ρu[v0]
′
) : (π̂C, ĜC, P̂C, [v0]

′) →
(π,G, P, u), and we obtain the conclusion. Thus, we will show Ker(P̂C)

[v0]′ ⊂
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KerP u. Let (v0, xn−1, . . . , x1, v0) ∈ Ker(P̂C)
[v0]′ . Then, [v0, xn−1, . . . , x1, v0]

′ = [v0]
′,

that is, (v0, xn−1, . . . , x1, v0) ∼′ v0. By the definition of ∼′, there exists m ∈ N∪{0}
and a sequence (v0, xn−1, . . . , x1, v0) = x0,x1, . . . ,xm = v0 such that for any
j ∈ {1, . . . ,m} at least one of the following conditions hold:

(1) there exist k ∈ N and i ∈ {1, . . . , k} such that xj−1 = (yk, . . . , yi, . . . , y0),
xj = (yk, . . . , ŷi, . . . , y0) and yi = yi−1, yi+1 = yi−1, or there exists C ∈ C
such that yi+1, yi, yi−1 ∈ C.

(2) there exist k ∈ N and i ∈ {1, . . . , k} such that xj−1 = (yk, . . . , ŷi, . . . , y0),
xj = (yk, . . . , yi, . . . , y0) and yi = yi−1, yi+1 = yi−1, or there exists C ∈ C
such that yi+1, yi, yi−1 ∈ C.

In case (1), whether yi = yi−1, yi+1 = yi−1, or there exists C ∈ C such that
yi+1, yi, yi−1 ∈ C, we have

Pxj−1
= P(yk,...,y0) = P(yk,yk−1) ◦ · · · ◦ P(yi+1,yi) ◦ P(yi,yi−1) ◦ · · · ◦ P(y1,y0)

= P(yk,yk−1) ◦ · · · ◦ P(yi+1,yi−1) ◦ · · · ◦ P(y1,y0) = P(yk,...,ŷi,...,y1,y0) = Pxj
.

In case (2), similar to the case (1), we get Pxj−1
= Pxj

. Then, we have

Px0 = Px1 = · · · = Pv0 .

Therefore, (v0, xn−1, . . . , x1, v0) ∈ KerP u. This completes the proof of Theorem
5.3. □
From this theorem and Proposition 3.5, we have the following corollary:

Corollary 5.9. Let X be a polyhedron of countable connected simplicial complex
Kin the weak topology. Any locally trivial G-bundle π over X is, if the topology of
G is discrete, associated with π̂CK , where CK := {|τ | | τ ∈ K}.

Proof. From Proposition 3.5, there exists ωK ∈ SFCK -flat(π, UK). Then, for any u ∈
E, (π,G, P ωK , u) ∈ CCK -flat(X, v0, ⟨UK⟩)0. Thus, there exists a unique morphism

(hu[v0]′ , ρu[v0]
′
) : (π̂CK , ĜCK , P̂CK , [v0]

′) → (π,G, P ωK , u), and π is associated with
π̂CK by ρu[v0]

′
. □

We will show that if the base space is a polyhedron of a countable connected
simplicial complex K in the weak topology, then π̂K := π̂CK is a universal covering
space.

Put ⟨̂UK⟩K := ⟨̂UCK ⟩CK , ÊK := ÊCK , and ĜK := ĜCK . A map q′ : S̃K → ⟨̂UK⟩K
is given by q′([xn, . . . , x0]) := [xn, . . . , x0]

′ for [xn, . . . , x0] ∈ S̃K . Put hK := ÊK
|q′|ẼK

and ρK := ĜK
|h|G̃K

.

Proposition 5.10. Let X be a polyhedron of a countable connected simplicial com-
plex K in the weak topology. Then, π̂K is a universal covering space associated with
Milnor’s universal bundle π̃K (see Example 3.4).

Proof. Since q is an identification and q′ is continuous, q′ is continuous. Since
q is continuous and q′ is an identification, q′ is an identification. Since q′ is an
identification and ẼK is a closed set in S̃K such that (q′)−1(q′(ẼK)) = ẼK , from
Lemma 2.1, hK is also an identification, and by a similar argument, so is ρK .
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We can see that a unary operation ·− on ⟨̂UK⟩K is the one induced by one on

S̃K . Similarly, a partial binary operation on ⟨̂UK⟩K is the one induced by one

on S̃K . Namely, these two operations are compatible with q′. Thus, ρK is a

group homomorphism and (hK , ρK) : (π̃K , G̃K) → (π̂K , ĜK) is a homomorphism.
Therefore, π̂K is associated with π̃K .
Next, we will show that π̂K is a universal covering space. By an elementary

argument of homotopy theory, we can see that ĜK is isomorphic to π1(X, v0) as a

topological group (see Lemma 5.13). Since ẼK is connected and hK : ẼK → ÊK

is a surjective continuous map, so is ÊK . Since X is locally pathwise connected

and π̂K is a homeomorphism locally, ÊK is locally pathwise connected. Thus,
π̂K is a covering space. Note that for any covering space π : E → X, if it is
a principal π1(X, x)-bundle, the total space E is simply connected (see Lemma

5.14). Therefore, ÊK is simply connected and we have the conclusion. □
In the smooth category, the restricted holonomy group is the subgroup of the

holonomy group consisting of parallel displacements arising from all loops which
are homotopic to zero. As an analogue of this definition, we can think of KerρK as
the restricted holonomy group of P̃K .

Proposition 5.11. The kernel KerρK is an open set in G̃K = Φ[v0], and the induced

map ρK : G̃K/KerρK → ĜK
∼= π1(X, v0) is a homeomorphism.

Proof. The equation q−1(KerρK) = q′−1({[v0]′}) implies that KerρK is an open set

in G̃K . Since ĜK is a discrete group, ρK is an open map, and consequently, induced
map ρK is a homeomorphism. □
Remark 5.12. Since (π̂CK , ĜCK , P̂CK , [v0]

′) is also an object in the category
C(X, v0, ⟨UK⟩) of principal bundles with parallel displacements introduced in [5,
Section 8], and (π̃K , G̃K , P̃K , [v0]) is an initial object in C(X, v0, ⟨UK⟩), there

exists a unique morphism from (π̃K , G̃K , P̃K , [v0]) to (π̂CK , ĜCK , P̂CK , [v0]
′). For

(x, [y]) ∈ (p0|UK
)∗ẼK , we have

hK(P̃K(x, [y])) = hK([x], [y]) = hK([x • y])

= [x • y]′ = [x]′[y]′ = P̂K(x, hK([y])).

Then, hK preserves P̃K and P̂K . Thus, (hK , ρK) : (π̃K , G̃K , P̃K , [v0]) →
(π̂CK , ĜCK , P̂CK , [v0]

′) is the unique morphism. Moreover, for any (π,G, P, u) ∈
CCK -flat(X, v0, ⟨UK⟩)0, the unique morphism (hu[v0], ρu[v0]) : (π̃K , G̃K , P̃K , [v0]) →
(π,G, P, u) is written as a composition of two morphisms as (hu[v0], ρu[v0]) =
(hu[v0]′ , ρu[v0]

′
) ◦ (hK , ρK).

Appendix

We provide two Lemmas 5.13 and 5.14. Proofs are rather elementary, yet we
supply them for the sake of completeness.

Lemma 5.13. ĜK is isomorphic to π(X, v0)
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Proof. Put

Π(X) :=
∪

(x,y)∈X×X

M(x, y),

where M(x, y) is the set of all homotopic classes of curves joining y to x. Then,
Π(X) is a fundamental groupoid. A map ⟨UK⟩ → Π(X) is defined as follows. Let
(xn, . . . , x0) ∈ ⟨UK⟩ and c(xn,...,x0) : I(n) → X be a map given by c(xn,...,x0)(

i
n
) = xi for

i ∈ {0, 1, . . . , n}, where I(n) is a division of I = [0, 1] into n equal intervals. Then,

assign to (xn, . . . , x0) a homotopy class
[
c(xn,...,x0)

]
of induced map c(xn,...,x0) : I →

X of c(xn,...,x0). We can see that if (xn, xn−1, . . . , x1, x0) ∼′ (xn, ym−1, . . . , y1, x0),

c(xn,xn−1,...,x1,x0) and c(xn,ym−1,...,y1,x0) are homotopic. Therefore, a map η : ⟨̂UK⟩K →
Π(X) is well defined. For [x]′, [y]′ ∈ ⟨̂UK⟩K , we can see η([x]′[y]′) = η([x]′)η([y]′)
whenever [x]′[y]′ is defined. Thus, η is a pseudo group homomorphism. We will

show that η : ⟨̂UK⟩K → Π(X) is bijective.
First, we will show that η is surjective. Let [γ] ∈ Π(X) with a continuous map

γ : I → X. From simplicial approximation theorem, there exists a division I(n) of I
and a simplicial map φ : I(n) → K such that for each i ∈ {0, . . . , n}, γ(VI(n)

( i
n
)) ⊂

VK(φ(
i
n
)). Put

x := (γ(0), φ(0), φ( 1
n
), . . . , φ(n−1

n
), φ(1), γ(1)) ∈ ⟨UK⟩.

Then, we have η([x]′) = [cx] = [γ].
Next, we will show that η is injective. Let x = (x0, xn−1, . . . , x1, x0) ∈ ⟨UK⟩

with [cx] = [ex0 ]. Then, there exists a homotopy F : I × I → X such that
F (t, 0) = cx(t) for any t ∈ I and F (({0, 1}×I)∪(I×{1})) = {x0}. From simplicial
approximation theorem, there exists a division (I×I)(nk,m) of I×I and a simplicial
map G : (I × I)(nk,m) → K such that for each (i, j) ∈ {0, . . . , nk} × {0, . . . ,m},
F (V(I×I)(nk,m)

( i
nk
, j
m
)) ⊂ VK(G( i

nk
, j
m
)). Put

x(−1) := (x0, cx(1), cx(
nk−1
nk

), . . . , cx(
2
nk
), cx(

1
nk
), cx(0), x0).

Then, we get x ∼′ x(−1). Put

x(0) := (x0, G(1, 0), G(nk−1
nk

, 0), . . . , G( 2
nk
, 0), G( 1

nk
, 0), G(0, 0), x0).

Since cx(
i
nk
) = F ( i

nk
, 0) ∈ VK(G( i

nk
, 0)) for i ∈ {0, . . . , nk} and x(0) ∈ ⟨UK⟩, from

Lemma 4.13, we have x(−1) ∼′ x(0). Put

x(1) := (x0, G(1, 0), G(nk−1
nk

, 0), . . . , G( 2
nk
, 0), G( 1

nk
, 0), G(0, 1

m
), x0).

Since G is a simplicial map, there exists τ ∈ K such that G(0, 0), G(0, 1
m
), x0 ∈ |τ |.

Then, we get

x(0) = (x0, . . . , G( 1
nk
, 0), G(0, 0), x0) ∼′ (x0, . . . , G( 1

nk
, 0), G(0, 0), G(0, 1

m
), x0).

Similarly, since there exists τ ′ ∈ K such that G( 1
nk
, 0), G(0, 0), G(0, 1

m
) ∈ |τ ′|, we

have

(x0, . . . , G( 1
nk
, 0), G(0, 0), G(0, 1

m
), x0) ∼′ x(1),
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that is, x(0) ∼′ x(1). Put

x(2) := (x0, G(1, 0), G(nk−1
nk

, 0), . . . , G( 2
nk
, 0), G( 1

nk
, 1
m
), G(0, 1

m
), x0).

Then, by similar argument, we get x(1) ∼′ x(2). Repeating the same operation
(nk + 1)m times, we have

x((nk+1)m) := (x0, G(1, 1), G(nk−1
nk

, 1), . . . , G( 2
nk
, 1), G( 1

nk
, 1), G(0, 1), x0)

and x((nk+1)m) ∼′ (x0, . . . , x0︸ ︷︷ ︸
nk+3

). Thus, we get x ∼′ (x0) and η : ⟨̂UK⟩K → Π(X) is

bijective. Therefore, it follows that restrictions η|ÊK
: ÊK →

∪
x∈X M(x, v0) and

η|ĜK
: ĜK → π1(X, v0) are bijective. Especially, if π1(X, v0) is a discrete group,

η|ĜK
is a topological group isomorphism. □

Lemma 5.14. Let π : E → X be a covering space. If it is a principal
π1(X, x0)−bundle (x0 ∈ X), then E is simply connected.

Proof. Since π1(X, x0) acts π1(X, x0) freely on the left, for any [γ] ∈ π1(X, x0),
the isotropy subgroup π1(X, x0)[γ] is equal to {1}. On the other hand, by general
argument, isotropy subgroup π1(X, x0)[γ] of this action is equal to π∗(π1(E, x̃0)),
where x̃0 ∈ Ex0 . Since π∗ is injection, we have π1(E, x̃0) = {1}. □
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