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Abstract. In the classification theory of Riemann surfaces the research for
positive or bounded solutions of ∆u = Pu, where P ≥ 0 is a C1−function, has
played an important role in establishing the similarities between the solutions of
this differential equation and the classical harmonic functions. In the discrete
potential theory, the Schrödinger operators are to some extent like the equation
∆u = Pu. In this note, we develop on an infinite graph, a theory of functions
to reflect the properties of the above solutions, without the use of derivatives.
This can be used to study discrete Schrödinger and Helmholtz equations in non-
locally-finite networks.

1. Introduction

In the context of the classification theory of Riemann surfaces, many interesting
researches (Ozawa [6]) have been carried around the partial differential equation
of elliptic type ∆u = Pu on a Riemann surface R where P ≥ 0 is a C1−function.
Myrberg [4],[5] showed that there always exists the Green function of ∆u = Pu
on R (when P is not the zero function); Ozawa [7], [8] studied different classes of
positive solutions of ∆u = Pu on R; Royden [9] studied the bounded solutions of
∆u = Pu on R and compared bounded solutions of ∆u = Pu and ∆u = Qu when
Q ≥ P.
Even though many of their results were derived by using partial derivatives on

R, yet it is possible to prove them by methods in the Brelot axiomatic potential
theory [3] without reference to derivatives of functions. In this note, we illustrate
the procedure in the context of discrete potential theory which includes also a
discrete version of the Helmholtz equation.

2. Preliminaries

Let T be an infinite tree with {p(x, y)} as a set of nearest transition probabilities.
For a real-valued function u on T, define the Laplacian at a vertex x as ∆u(x) =
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∑
y

p(x, y)[u(y)−u(x)]. Along with the Laplacian operator, on occasions we consider

the Schrödinger operators ∆u(x) = q(x)u(x) also where q(x) ≥ 0 on T and q is
not the zero function. These operators are similar to the equation ∆u = Pu on a
Riemann surface.
Now writing ∆qu(x) = ∆u(x)− q(x)u(x), we note that a solution u of ∆qu = 0

in T is of the form u(x) =
∑
y

p(x, y)

1 + q(x)
u(y). Generalising this situation, we can

fix a set {p′(x, y)} of weights on the edges of T such that 0 ≤ p′(x, y) ≤ p(x, y)
for any pair x, y in T ; p′(x, y) > 0 if and only if x and y are joined by an edge;
and p(x, y) > p′(x, y) for at least one pair of vertices x, y; and then consider the
properties of functions u on T which satisfy the condition u(x) =

∑
y

p′(x, y)u(y),

similar to the solutions of the Schrödinger operators.
These preliminary remarks are intended to indicate the direction in which the

following study of functions on an infinite graph will be carried out.

3. Potentials on non-locally-finite networks

Let X be an infinite graph with a countably infinite number of vertices and a
countably infinite number of edges. If x and y are two vertices joined by an edge
[x, y], we write x ∼ y and say that x and y are neighbours. We assume that
X is connected, that is, given any pair of vertices x, y, there exists a finite path
{x = x0, x1, . . . , xn = y} connecting them. With any pair of vertices x and y is
associated a non-negative number c(x, y) such that c(x, y) > 0 if and only if x ∼ y
and c(x) =

∑
y∼x

c(x, y) ≤ 1 for any x ∈ X, with the restriction that c(x0) < 1 for at

least one x0 ∈ X.
Let E be a subset of X. A vertex x ∈ E is said to be an interior vertex of E

if all the neighbours of x are also in E. We denote by E̊ the set of all interior
vertices of E and ∂E = E \ E̊. Note that we do not place the condition that the
number of neighbours of any vertex is finite, but we consider in this paper only
real-valued functions u such that if u is defined on E, then u satisfies the condition∑
y

c(x, y)|u(y)| < ∞ for any x ∈ E̊. Write Au(x) =
∑
y

c(x, y)u(y). A function

u defined on E is said to be {X, c}−superharmonic or simply c−superharmonic
(respectively, c−subharmonic or c−harmonic) on E if u(x) ≥ Au(x) (respectively

u(x) ≤ Au(x) or u(x) = Au(x)) for every x ∈ E̊. If p ≥ 0 is a c−superharmonic
function such that any c−subharmonic function majorized by p is non-positive,
then p is called a c−potential.
Some properties of c−superharmonic functions:
We have not assumed the local finiteness of X (X is locally finite if each

vertex of X has only a finite number of vertices). Hence all the properties of
∆−superharmonic functions given in [1], using the Laplacian operator ∆ defined
in Section 2, may not be valid in the present situation. For example, the limit of a
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sequence of c−superharmonic functions may not be c−superharmonic. The prop-
erties of c−superharmonic functions needed in this paper are listed below. They
can be proved with slight modifications from the case of a locally finite network.

(3.1) If un is an increasing sequence of non-negative c−superharmonic (respectively,
c−harmonic) functions on a subset E of X and if u = sup un is finite at each
vertex, then u is c−superharmonic (respectively, c−harmonic) on E. For,

un(x) ≥
∑
y

c(x, y)un(y), if x ∈ E̊. Write the neighbours of x as y1, y2, . . . and

let amn(x) =
m∑
i=1

c(x, yi)un(yi). Then amn(x) is increasing in m and un(x) ≥

lim
m

amn(x). Note that for each m fixed, amn(x) is an increasing sequence in

n. Consequently,

u(x) = lim
n

un(x) ≥ lim
n

lim
m

amn(x)

= lim
m

lim
n

amn(x)

= lim
m

m∑
i=1

c(x, yi)u(yi)

=
∑
y

c(x, y)u(y).

The analogous property for the limit of non-negative c−harmonic functions
is proved similarly.

(3.2) Let {ui} be a family of c−superharmonic functions on a subset E of X.
Suppose ui ≥ v on E for each i, where v is a function on E such that∑
y

c(x, y)|v(y)| < ∞ for each x ∈ E̊. Let u(x) = inf
i
ui(x). Then u(x) is

c−superharmonic on E.
Since |u(x)| ≤ |ui(x)| + |v(x)| for any x ∈ E, and all ui

∑
y

c(x, y)u(y) is

well-defined for each x on E̊.
If x ∈ E̊, for every i,

ui(x) ≥
∑
y

c(x, y)ui(y)

≥
∑
y

c(x, y)u(y),

and hence u(x) = inf ui(x) ≥
∑
y

c(x, y)u(y).

A sequence fn(x) in X is said to be locally uniformly convergent to f(x) if
for any ϵ > 0 and any x in X, there exists an integer m (depending on ϵ and
x) such that if n ≥ m, then |fn(y) − f(y)| < ϵ for all y ∈ V (x), where V (x)
is the neighbourhood set of x consisting of x and all y ∼ x.
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(3.3) Proposition. Let un(x) be a sequence of harmonic functions on X con-
verging locally uniformly to a finite function u(x). Then u is harmonic on
X.

Proof. For any x, if y ∼ x, then

|u(y)| ≤ |un(y)|+ |un(y)− u(y)|
≤ |un(y)|+ ϵ when n ≥ m.

Hence
∑
y

c(x, y)|u(y)| ≤
∑
y

c(x, y)|un(y)|+ ϵ
∑
y

c(x, y) < ∞.

Now, un(x) being harmonic on X, for any x, un(x) =
∑
y

c(x, y)un(y). Also,∣∣∣∣∣∑
y

c(x, y)un(y)−
∑
y

c(x, y)u(y)

∣∣∣∣∣ ≤
∑
y

c(x, y) |un(y)− u(y)|

≤ ϵ c(x) when n ≥ m.

Consequently u(x) = lim
n

un(x) = lim
n

∑
y

c(x, y)un(y) =
∑
y

c(x, y)u(y). Thus,

it is proved that u is harmonic on X. □

(3.4) Domination Principle Let p be a c−potential with c−harmonic support
E (that is, p(x) is c−harmonic at every vertex x ̸∈ E). Suppose s > 0 is a
c−superharmonic function on X such that s ≥ p on E. Then s ≥ p on X.

For, let q = inf(s, p) and write u = p− q. Then u ≥ 0 on X and u = 0 on
E. Hence u(x) is c−subharmonic at each vertex x ∈ E; and if x0 ̸∈ E, then
p(x) is c−harmonic at x0 and q(x) is c−superharmonic at x0 so that u(x)
is c−subhharmonic at x0. In other words, u(x) is c−subharmonic in X, also
u(x) is majorised by the c−potential p(x). Hence u ≤ 0, so that u = 0 on X.
Now p = q on X implies that s ≥ p on X.

(3.5) Minimum Principle Let u be a c−superharmonic function defined on a
finite set E. If u ≥ 0 on ∂E, then u ≥ 0 on E.
For, suppose u takes negative values on E. Let −m = inf

x∈E
u(x),m > 0 Then

there exists a vertex x0 ∈ E such that u(x0) = −m. Since u ≥ 0 on ∂E, x0

should be in E̊. Let z be a vertex in X \ E. Since X is connected, there is
a path {x0, x1, . . . , xn = z} connecting x0 and z. Let i be the smallest index

such that xi ∈ E̊ and xi+1 ̸∈ E̊. In this case since xi ∈ E̊ and xi+1 ∼ xi we
should have xi+1 ∈ ∂E.

Now −m = u(x0) ≥
∑
y∼x0

c(x0, y)u(y) ≥ c(x0)(−m) which gives c(x0) ≥ 1.

But by assumption on c(x, y), c(x) ≤ 1 for all x. Hence c(x0) = 1, and∑
y∼x0

c(x0, y)[u(y) + m] = 0. Since each term in this sum is non-negative we

conclude u(y) = −m if y ∼ x0. In particular u(x1) = −m. Proceeding simi-
larly we obtain u(x0) = u(x1) = · · · = u(xi) = u(xi+1) = −m; but xi+1 ∈ ∂E
so that u(xi+1) ≥ 0. This contradiction shows that u does not take negative
values on E, that is u ≥ 0 on E.
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Uniqueness: From the above Minimum Principle, it follows that if h is a
c−harmonic function on a finite set E such that h = 0 on ∂E, then h = 0 on
E.

Riesz Decomposition Let s > 0 be a c−superharmonic function on X.
Take the family ℑ of all c−subharmonic functions u such that u ≤ s. Then ℑ
is an upper directed family of c−subharmonic functions. Hence as in (3.2),
h(x) = sup

u∈ℑ
u(x) is c−subharmonic in X. In fact, h(x) is c−harmonic in X.

For, consider for an arbitrary vertex z in X.

v(x) =

{
h(x), if x ̸= z;∑
y∼z

c(z, y)h(y), if x = z.

Then v(z) =
∑
y∼z

c(z, y)h(y) ≥ h(z) so that v ≥ h on X. It is easy to see then

v(x) is c−subharmonic in X and also v ≤ s on X, so that v ∈ ℑ. Hence by the
definition of h, v ≤ h on X. We conclude therefore v = h on X. In particular
h(x) is c−harmonic at x = z. Since z is arbitrary in X, h(x) ≤ s(x) for all x
in X.

Clearly, if h1(x) ≥ 0 is a c−harmonic function such that h1(x) ≤ s(x),
then h1(x) ≤ h(x) so we call h(x) as the greatest c−harmonic minorant of
s(x) and p(x) = s(x)− h(x) as a c−potential. Further the decomposition of
s(x) = p(x) + h(x) as sum of a c−potential and a non-negative c−harmonic
function is unique. We shall agree to say that a c−superharmonic function
p(x) ≥ 0 is a c−potential if and only if for any non-negative c−subharmonic
function u(x) ≤ p(x), we have u(x) = 0 for any x inX. Consequently, if p(x) is
a c−potential and u(x) is any c−subharmonic function such that u(x) ≤ p(x)
then u(x) ≤ 0. For, sup(u, 0) = u+ ≤ p and since u+ is c−subharmonic,
u+ = 0 so that u ≤ 0.

(3.6) Let E be a subset of X. Suppose u is c−superharmonic and v is
c−subharmonic on E such that u ≥ v. Let ℑ be the family of all
c−subharmonic functions vi on E such that vi ≤ u. Then h = sup

vi∈ℑ
vi is a

c−harmonic function on E (named the greatest c−harmonic minorant of u)
such that u ≥ h ≥ v.

Using the above result, we can obtain the following Dirichlet solution as in
[1, Theorem 3.1.7].

(Dirichlet solution) Let F be an arbitrary subset of X, and E ⊂ F̊. Let
f be a real-valued function on F \ E. Suppose there exist two functions u
and v on F such that at each vertex in E, u is c−superharmonic and v is
c−subharmonic; u ≥ f ≥ v on F \ E; and u ≥ v on F. Then there exists
a function h on F such that h = f on F \ E and h is c−harmonic at each
vertex in E.

In particular, if E is a finite set in X and if f is a real-valued function on
∂E, then there exists a unique c−harmonic function h on E such that h = f
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on ∂E. For, since E is a finite set, for some M > 0,−M ≤ f(x) ≤ M on ∂E.
Note that c(x) ≤ 1 implies that M is c−superarmonic. Hence the Dirichlet
solution h with boundary value f exists on E. The uniqueness of h follows
from the Minimum Principle.

(3.7) Proposition. Let E be a finite set inX. Then any c−harmonic function on E
is a linear combination of n c−harmonic functions where n is the cardinality
of the set ∂E.

Proof. For y ∈ ∂E, let Py(x) denote the Dirichlet solution in E with boundary
values δy(x) on ∂E. Let now h be a c−harmonic function on E. Define u(x) =∑
y∈∂E

h(y)Py(x). Then u(x) is c−harmonic on E such that u(y) = h(y) for

every y ∈ ∂E. Hence u = h on E by the Minimum Principle. Consequently,
h is a linear combination of {Py(x)}y∈∂E. □

(3.8) Let f ≥ 0 be a real-valued function on X. Let ℑ be the family of all su-
perharmonic functions u on X such that f ≤ u on X. If the family ℑ is
non-empty, then Rf = inf

u∈ℑ
u is a c−superharmonic function on X such that

Rf is c−harmonic at every vertex x where f is c−subharmonic (in partic-
ular, if f(z) = 0, then Rf is c−harmonic at the vertex z). If ℑ contains a
c−potential on X, then Rf is a c−potential on X.

A consequence: Since 1 is c−superharmonic but not c−harmonic on X (by
our assumptions that c(x) =

∑
y∼x

c(x, y) ≤ 1 for each x ∈ X and that there

exists some x0 in X such that c(x0) < 1), then there are always c−potentials
on X. Take g(x) = δe(x) where e is a vertex in X and δe is the Dirac
function. Then Rg(x) is c−superharmonic (not c−harmonic) at the ver-
tex e and c−harmonic at every vertex x ̸= e. That is, A[Rg(x)] = Rg(x)
if x ̸= e and A[Rg(x)] < Rg(x) if x = e. Choose the constant α such that
α(I −A)Rg(x) = δe(x). Then αRg(x) denoted now by Ge(x) is the c−Green
function on X with point c−harmonic singularity at e, that is Ge(x) is a
c−potential onX, c−harmonic at every vertex x ̸= e and (I−A)Ge(x) = δe(x)
for all x ∈ X.

Proposition 3.1. Let s > 0 be a c−superharmonic function in X. Then s(x) =∑
y∈X

[(1− A)s(y)]Gy(x) + h(x) where h(x) is a non-negative c−harmonic function

in X.

Proof. We have already remarked that s is the unique sum of a c−potential p and
a non-negative c−harmonic function h in X. Hence it remains to show that p(x)
has the series expansion given above.
Let {En} be an increasing sequence of finite sets such that X =

∪
n

En. Let

pn(x) =
∑

y∈En

(1−A)p(y)Gy(x). Then pn is a c−potential on X. Let sn(x) = p(x)−

pn(x) on X. Since (1 − A)Gy(x) = δy(x), we see that for y ∈ En, (1 − A)pn(y) =
(1− A)p(y) so that (1− A)sn(y) = 0 if y ∈ En; if x ̸∈ En, (1− A)pn(x) = 0 while
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(1− A)p(x) ≤ 0 so that (1− A)sn(x) ≤ 0. Consequently, (1− A)sn(x) ≤ 0 for all
x ∈ X. That is sn(x) is c−superharmonic and pn+ sn = p ≥ 0 so that −sn ≤ pn on
X. This implies that −sn ≤ 0 since −sn is c−subharmonic and pn is a c−potential.
Consequently, p = pn + sn ≥ pn for any n. Allow n → ∞ to obtain the inequality
p(x) ≥

∑
y∈X

(1− A)p(y)Gy(x).

Denoting the right side infinite sum as q(x), we remark that q(x) is
c−superharmonic on X since it is the limit of an increasing sequence of
c−potentials. Since p(x) is a c−potential and q(x) ≤ p(x), we conclude that q(x)
also is a c−potential. Let v(x) = p(x)− q(x). Then

(1− A)v(x) = (1− A)p(x)− (1− A)q(x) = 0,

so that v(x) is c−harmonic on X. Thus p(x) = q(x) + v(x). Introduce now the
uniqueness of decomposition of a non-negative c−superhhamronoic function as
the sum of a c−potential and a c−harmonic function to conclude that v = 0.
Hence p(x) =

∑
y∈X

[(1− A)p(y)]Gy(x). Finally, we have the expression s(x) =∑
y∈X

[(1− A)s(y)]Gy(x) for all x ∈ X, since (1 − A)s(y) = (1 − A)p(y) for any

y in X. □

4. Network classification

Since 1 is c−superharmonic on X, by the representation given above, 1 is the
sum of a c−potential p and a non-negative c−harmonic function h on X. It is
possible that h is 0 on X. There are many differences in the study of c−potentials
on X, depending on whether h = 0 or h > 0, that is whether the c−superharmonic
function 1 is a c−potential on X or not. Accordingly we introduce a definition as
follows:

Definition 4.1. X is said to be parahyperbolic if and only if the constant 1 is a
c−potential on X. Otherwise X is said to be bounded hyperbolic.

Note: The term parahyperbolic is chosen to indicate that though X has positive
c−potentials, X manifests many characteristics of a parabolic Riemannian man-
ifold. The term bounded hyperbolic indicates that there are non-zero bounded
c−harmonic functions in X.
For a real-valued function f ≥ 0 on X, we say that lim

x→∞
f(x) = 0 if for any given

ϵ > 0 and any finite set A, f(x) < ϵ for some x ̸∈ A. lim
x→∞

f(x) = α > 0 would

mean that f(x) ≥ α

2
for all x outside a finite set.

Proposition 4.2. X is bounded hyperbolic if and only if for any c−potential p > 0
on X, lim

x→∞
p(x) = 0.

Proof. Suppose lim
x→∞

p(x) = α > 0 for some c−potential p on X. Then p(x) ≥ α

2
outside a finite set A. This implies that p(x) ≥ β on X for some β > 0. Since
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p is a c−potential and β is c−superharmonic on X, then β (and hence 1) is a
c−potential on X. That is, X is parahyperbolic. Hence if X is bounded hyperbolic,
then lim

x→∞
p(x) = 0 for any c−potential > 0 in X.

On the other hand, since 1 is a c−potential in a parahyperbolic network, the
condition that lim

x→∞
p(x) = 0 for any c−potential p > 0 on X would mean that X

is bounded hyperbolic.
□

Remark 4.3. For some vertex e in X, suppose the c−Green function Ge(x) with
pole e satisfies the condition lim

x→∞
Ge(x) > 0. Then X is parahyperbolic and for

any c−superharmonic function s > 0 on X, lim
x→∞

s(x) > 0. For by the Domination

Principle, s(x) ≥ s(e)

Ge(e)
Ge(x) for any x ∈ X. Again, by the Domination Principle,

if lim
x→∞

Ge(x) = 0, then lim
x→∞

p(x) = 0 for any c−potential p with finite c−harmonic

support in X. For, if E is the finite c−harmonic support of p, then p(x) ≤ αGe(x)
on E for some α > 0, consequently p(x) ≤ αGe(x) on X. In particular, if for
some e in X, lim

x→∞
Ge(x) = 0 (respectively, lim

x→∞
Ge(x) > 0 ) then for any vertex a,

lim
x→∞

Ga(x) = 0 (respectively, lim
x→∞

Ga(x) > 0.)

The following Proposition 4.4, Lemma 4.7 and Theorem 4.8 are proved in the
non-locally finite case as was done in the locally finite case [1, Section 4.3].

Proposition 4.4. Let X be a parahyperbolic network. Let E be an arbitrary subset
of X. Suppose s is a lower bounded c−superharmonic function on E such that s ≥ 0
on ∂E. Then s ≥ 0 on E.

Proof. Let u = inf(s, 0) on E, extended by 0 outside E. Then u is a
c−superharmonic function on X; if s ≥ −m on E for some m > 0, then u ≥ −m
on X. Then −u is c−subharmonic and −u ≤ m on X. Since X is parahyperbolic,
m is a c−potential on X and hence −u ≤ 0 on X. This implies that s ≥ 0 on
E. □
Remark 4.5. The above Minimum Principle is valid in a bounded hyperbolic net-
work if E is a finite subset of X, but not necessarily if E is an infinite set. For an
example to show that the Minimum Principle is not valid when E is an infinite set
in a bounded hyperbolic network, consider a fixed vertex e with a finite number of
neighbours and let V (e) be the set of e and all its neighbours. Take E = X \ {e}.
Then V (e) \ {e} is the boundary ∂E of E. Now, since X is bounded hyperbolic,

there exists a c−harmonic function h, 0 < h < 1, on X. Let u = h− R
V (e)
h , where

R
V (e)
h (x) = inf

s∈ℑ
s(x) for x ∈ X, ℑ being the family of all positive c−superharmonic

functions onX such that s(x) ≥ h(x) on V (e). Note that R
V (e)
h ≤ h onX, R

V (e)
h = h

on V (e), R
V (e)
h is c−harmonic at each vertex in X \V (e) and R

V (e)
h is a c−potential

since V (e) is a finite set. Then u is a bounded c−harmonic function on E, such that
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u = 0 on ∂E. If the Minimum Principle is valid on X, u should be 0 on E. Since

u = 0 on V (e), then u is identically 0 on X, which would imply that h = R
V (e)
h on

X. This is not possible, since the left side is a positive c−harmonic function on X
and the right side is a positive c−potential on X.

Remark 4.6. (Uniqueness of the Dirichlet solution in an infinite subset):
From our earlier reference to the Dirichlet solution, it is clear that if E is an

arbitrary set in X and if f is a bounded function on ∂E, then there exists a
bounded c−harmonic function H on E such that H = f on ∂E. It follows from
Proposition 4.4 that this function H is uniquely determined if X is parahyperbolic.
On the other hand, if X is bounded hyperbolic, then this Dirichlet solution may
not be unique if E is an infinite subset. For, as in the example given in Remark
2, take E = X \ {e}. Then ∂E = V (e) \ {e}. If f = 0 on ∂E, then the bounded

Dirichlet solution on E can be H = 0 or H = h−R
V (e)
h .

Lemma 4.7. Let c(x) =
∑
y∼x

c(x, y) for each x in X. If Gy(x) is the c−Green

function with vertex c−harmonic singularity at y, then there exists a non-negative
c−harmonic function h on X such that

∑
z∈X

[1− c(z)]Gz(x) + h(x) = 1 for all x in

X.

Proof. If s is the constant function 1, then for any z ∈ X,

(I − A)s(z) = s(z)−
∑
a∼z

c(z, a)s(a) = 1− c(z).

Now, writing 1 as the unique sum of a c−potential and a non-negative c−harmonic
function h on X, we have for all x in X,

1 = s(x) =
∑
z∈X

[(I − A)s(z)]Gz(x) + h(x), (Proposition 3.1)

=
∑
z∈X

[1− c(z)]Gz(x) + h(x).

□

Theorem 4.8. X is parahyperbolic if and only if
∑
z∈X

[1 − c(z)]Gz(x) = 1 for all

x ∈ X.

Proof. By definition, X is parahyperbolic if and only if 1 is a c−potential on X.
Now from the above lemma, 1 is a c−potential if and only if h = 0, that is if and
only if

∑
z∈X

[1− c(z)]Gz(x) = 1. □

Theorem 4.9. Let {X, c(x, y)} be an infinite network as above. Let {c′(x, y)} be
another system of conductance on X such that 0 ≤ c′(x, y) ≤ c(x, y) for every pair
x, y in X and c′(x, y) > 0 if and only if x ∼ y. If {X, c} is parahyperbolic, then
{X, c′} is also parahyperbolic.
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Proof. First note that if u ≥ 0 is {X, c}−superharmonic at a vertex x, then u is
{X, c′}−superharmonic at x. For

u(x) ≥
∑
y∼x

c(x, y)u(y)

≥
∑
y∼x

c′(x, y)u(y).

Now 1 is a {X, c}−potential by hypothesis. Then 1 is {X, c′}−superharmonic on
X. Let v be any {X, c′}−subharmonic function such that 0 ≤ v ≤ 1 on X. Note
that v is {X, c}−subharmonic also; since 1 is {X, c}−potential, v = 0. This means
that 1 is a {X, c′}−potential. Hence {X, c′} is parahyperbolic. □

Corollary 4.10. If there is a non-zero bounded {X, c′}−harmonic function on X,
then there is at least one bounded positive {X, c}−harmonic function on X.

Proof. By hypothesis, there is a non-zero {X, c′}−harmonic function b on X such
that |b| ≤ 1 on X. Since |b| is {X, c′}−subharmonic function on X, the constant 1
cannot be a {X, c′}−potential. That is, X is {X, c′}− bounded hyperbolic. Then,
by the above theorem, X is {X, c}− bounded hyperbolic. Consequently, there
exists a {X, c}−harmonic function on X, 0 < h < 1. □

5. Networks without positive superharmonic functions

In the introduction, we mentioned about the equation ∆u = Pu in the context of
the classification of Riemann surfaces R. The condition that P is non-negative, non-
zero ensures that the positive constants are P−superharmonic (not P−harmonic)
functions on R. Consequently, potential-theoretic methods can be used here. How-
ever for the existence of positive P−superharmonic functions on R, the condition

that P (x) ≥ ∆ξ(x)

ξ(x)
is sufficient, where ξ > 0 is a C2−function on R. This condition

permits P (x) to possibly take non-positive values also.
In the context of an infinite network X, with conductance t(x, y) ≥ 0 such that

t(x) =
∑
y

t(x, y) < ∞ for all x, this situation is described as follows: Take ∆u(x) =

P (x)u(x) where ∆u(x) =
∑
y∼x

t(x, y)[u(y) − u(x)] = −t(x)u(x) + Au(x), t(x) =∑
y∼x

t(x, y) and Au(x) =
∑
y∼x

t(x, y)u(y); and P (x) ≥ ∆ξ(x)

ξ(x)
with ξ(x) > 0 for each

x ∈ X. In particular, q(x) = t(x) + P (x) ≥
∑
y∼x

t(x, y)
ξ(y)

ξ(x)
> 0. (This condition is

found in Bendito et al.[2] in a different treatment of Schrödinger operators in a finite
graph with symmetric conductance.) Recall that u is said to be q−superharmonic
at x if q(x)u(x) = [t(x) + P (x)]u(x) ≥ Au(x).
However, it is possible that q(x) = t(x) + P (x) > 0 for every x ∈ X, yet there is

no positive q(x)−superharmonic on X. Consider the following
Example: Let X = {. . . , x−2, x−1, x0, x1, x2, . . . } be a linear tree with conductance
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t(xi, xi+1) = t(xi+1, xi) =
1

2
for all i. Let P (x) = −1

2
for all x in X. Then q(x) =

t(x) + P (x) =
1

2
for all x. Suppose s(x) ≥ 0 is a q−superharmonic on X. Then we

should have for all i,
1

2
s(xi) ≥

1

2
s(xi−1) +

1

2
s(xi+1).

This is possible only if s = 0.

Definition 5.1. Let q(x) be a real-valued function defined on a network X. Let
us write Aqu(x) = Au(x) − q(x)u(x) for x in X. A real-valued function u is said

to be Aq−superharmonic on a subset E, if q(x)u(x) ≥ Au(x) for each x ∈ E̊.
Aq−harmonic and Aq−subharmonic functions are defined accordingly.

Proposition 5.2. If q(x0) ≤ 0 for some x0 in X, then 0 is the only non-negative
Aq−superharmonic function on X.

Proof. Suppose s ≥ 0 is Aq−superharmonic on X. Then, As(x0) ≤ q(x0)s(x0) ≤ 0.
This implies that s(y) = 0 for every y ∼ x0. We know that if a non-negative
Aq−superharmonic function s on X takes the value 0 at a vertex in X, then s is
the zero function. For if s(a) = 0 then 0 = q(a)s(a) ≥

∑
y∼a

t(a, y)s(y) ≥ 0 which

implies that s(y) = 0 if y ∼ a. This leads to the conclusion s = 0, since X is
connected. □
Corollary 5.3. Let q(x0) ≤ 0 for some x0 in X. If u is Aq−superharmonic and v
is Aq−subharmonic on X such that u ≥ v, then u = v is Aq−harmonic on X.

Proof. For s = u− v ≥ 0 is Aq−superharmonic on X, so that s = 0. Hence u = v
is Aq−harmonic on X. □
In this section, we assume that 0 is the only non-negative
q−superharmonic function on X and develop a potential theory on X.

Proposition 5.4. Let f be a real-valued function on X such that
∑
y

t(x, y)|f(y)| <

∞ for each x ∈ X. Suppose the family ℑ of Aq−superharmonic functions s ma-
jorizing f is non-empty. Then Rf(x) = inf

s∈ℑ
s(x) is Aq−superharmonic on X and

Aq−harmonic at each vertex a where f is Aq−subharmonic and q(a) < 0.

Proof. First note that ℑ is lower directed. For, if s1, s2 ∈ ℑ then set s = inf(s1, s2).
At a vertex z, suppose s(z) = s1(z). Then

q(z)s(z) = q(z)s1(z) ≥
∑
y∼z

t(z, y)s1(y)

≥
∑
y∼z

t(z, y)s(y).

Hence s ∈ ℑ so that ℑ is lower directed. Consequently, sinceX has only a countable
number of vertices, there exists a decreasing sequence sn in ℑ such that Rf(x) =
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inf
n
sn(x) = lim

n
sn(x), for x ∈ X. Then for any vertex z in X,

q(z)sn(z) ≥
∑
y

t(z, y)sn(y)

≥
∑
y

t(z, y)Rf(y).

Hence, when n → ∞, we have q(z)Rf(z) ≥
∑
y

t(z, y)Rf(y). That is Rf(z) is

Aq−superharmonic at the vertex z.
Let now f(x) be Aq−subharmonic at a vertex a. Then,

q(a)f(a) ≤
∑
y

t(a, y)f(y)

≤
∑
y

t(a, y)Rf(y)

≤ q(a)Rf(a).

Since q(a) < 0, we have then f(a) ≥ Rf(a) and hence f(a) = Rf(a). This shows
that q(a)Rf(a) =

∑
y

t(a, y)Rf(y), that is Rf(x) is Aq−harmonic at the vertex

a. □
Remark 5.5. It is possible that q(x) > 0 for all x, yet there is no positive
q−superharmonic function on X. In that case, we remove the condition q(a) < 0
and prove the above proposition 5.4 by using the Poisson modification (similar to
the one used above while obtaining the Riesz decomposition ).

In the sequel, to prove certain results, our method requires that there are no
closed paths in the network X. Hence we are going to assume that X is an infinite
tree T, as before possibly non-locally finite and {t(x, y)} as conductance. We make
the assumption that every non-terminal vertex in T has at least two non-
terminal vertices as neighbours and that q(y) ̸= 0 if y is a terminal vertex
in T. Apart from the trees without terminal vertices like homogeneous trees and
binary trees, some other examples satisfying the first assumption are: i) a linear
tree [x0, x1, x2, . . . ] where xi ∼ xi+1 for i ≥ 0; ii) a tree consisting of non-terminal
vertices {. . . , x−2, x−1, x0, x1, x2, . . . }, xi ∼ xi+1 together with terminal vertices
{ai} and {bi}, −∞ < i < ∞, where ai and bi have xi as neighbours. With this
assumption on T, we can prove the following lemma as indicated in [1, p.112]:
(Recall that for a subset E in T, V (E) stands for the set consisting of E and the
neighbours of each vertex in E.)

Lemma 5.6. Let E be an arbitrary connected subset of T and F = V (E). Suppose
u is a real-valued function defined on F. Then there exists a function v on T such
that v = u on F and Aqv(x) = 0 for each x ∈ T \ F̊.

Proof. The proof is similar to that of [1, Theorem 5.1.2]. Let z ∈ ∂F. Then z
has only one neighbour x0 in F. Note that z is not a terminal vertex. Since by
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the assumption on T, the non-terminal vertex z should have at least two non-
terminal vertices as neighbours, z should have at least one non-terminal vertex as
a neighbour outside F. Let A = {y1, y2, . . . } be the neighbours of z outside F. Let
A1 denote the set of all terminal vertices in A and A2 = A \ A1. Then A2 ̸= ∅.

Define v(x) = u(x) if x ∈ F ; if y ∈ A1, then take v(y) =
t(y, z)

q(y)
u(z); and if

y ∈ A2 then take v(y) = λ, a constant where the constant λ is chosen so that
Aqv(z) = 0. That is

q(z)v(z) = q(z)u(z) = t(z, x0)u(x0) + u(z)
∑
y∈A1

t(z, y)
t(y, z)

q(y)
+ λ

∑
y∈A2

t(z, y).

This procedure can be used with respect to each one of the vertices on ∂F to get
an extension of u from F to a function v on the set V (F ) such that Aqv(z) = 0 at
every z ∈ ∂F. Thus, v is a function defined on V (F ) such that v = u on F and
Aqv(z) = 0 for each z ∈ ∂F. Then v is similarly extended to V [V (F )]. Since T is
connected, eventually v is defined at any vertex x in T such that Aqv(x) = 0 at

each x ∈ T \ F̊ and v = u on F. □

Theorem 5.7. For any e in T, there exists a q(x)−superharmonic function ge(x)
on T such that (−Aq)ge(x) = q(x)ge(x)− Age(x) = δe(x) for x ∈ T.

Proof. Let the neighbours of e be {z1, . . . , zi, z′1, . . . , z′j} of which {z1, . . . , zi} are
non-terminal vertices and {z′i, . . . , z′j} are terminal vertices. Note that i or j or both

can be infinite. For a terminal vertex z′, let u(z′) =
t(z′, e)

q(z′)
u(e) and u(z1) = · · · =

u(zi) = λ where λ and u(e) are chosen so that u(e)

[
q(e)−

j∑
k=1

t(e, z′k)
t(z′k, e)

q(z′k)

]
>

λ
i∑

k=1

t(e, zk).

Thus u is defined on F = V (e), Aqu(z
′
k) = 0 for k = 1, . . . , j and (−Aq)u(e) > 0.

Now use the above lemma 5.6 to construct v on T such that v = u on F and
Aqv(x) = 0 for each x ∈ T \ F̊. This means that v is defined on T such that

(−Aq)v(e) > 0 and (−Aq)v(x) = 0 if x ̸= e. Define ge(x) =
v(x)

(−Aq)v(e)
for x ∈ T

and remark that (−Aq)ge(x) = δe(x) for all x in T. □

Remark 5.8. The only non-negative Aq−harmonic function in T is 0. However there
are many non-zero Aq−harmonic functions in T. This can be seen as follows: In
the proof of the above Theorem 5.7, choose λ and the non-zero value u(e) so that

u(e)

[
q(e)−

j∑
k=1

t(e, z′k)
t(z′k, e)

q(z′k)

]
= λ

i∑
k=1

t(e, zk),
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which is possible since
i∑

k=1

t(e, zk) > 0. Then we construct the function v on T

such that v = u on F = V (e) and Aqv(x) = 0 if x ∈ T \ F̊. Consequently, v is a
Aq−harmonic function on T.

Another remark, as a consequence of Lemma 5.6, concerns the analytic property
of harmonic functions on T : we have termed a class of functions on a network X as
harmonic functions if these functions have the sheaf property, the property of local
solvability of the Dirichlet problem and the Harnack property. Thus we have con-
sidered Laplace harmonic functions, Schrödinger harmonic functions, c−harmonic
functions etc. on X. We shall say that a class of ℑ of harmonic functions on X has
the analytic property if for any h ∈ ℑ, h = 0 in a neighbourhood V (e) of a vertex
e implies that h = 0 on X.

Proposition 5.9. Let E be a connected subset of T with more than one vertex and
F = V (E). Suppose some e in E has at least two non-terminal vertices in F \E as
its neighbours. Then the Aq−harmonic functions in T do not possess the analytic
property.

Proof. Let a, b ∈ F \ E be two non-terminal vertices that are neighbours of e in
E. Note that a, b ∈ ∂F. Let e ̸= z ∈ E. Since E is connected neither a nor b

is a neighbour of z. Define u on F such that u(a) ̸= 0, u(b) = −t(e, a)

t(e, b)
u(a) and

u(x) = 0 for all other x in F. Note that Aqu(y) = 0 for all y ∈ F̊.
Then, by Lemma 5.6, there exists a function v on T such that v = u on F and

Aqv(x) = 0 for all x ∈ T \ F̊. Consequently, v is Aq−harmonic on T such that v = 0

on F̊ ⊃ E. In particular, v is a non-zero Aq−harmonic function on T and v = 0 on
V (z). Hence the Aq−harmonic functions in this case do not possess the analytic
property. □

6. A discrete version of the Helmholtz equation

As an illustration of what was discussed above in a connected infinite network
X (which may not be locally finite), let us consider now a discrete Helmholtz
equation of the type ∆u(x) + k(x)u(x) = 0 in X, where k(x) ≥ 0 and ∆u(x) =∑
y

t(x, y)[u(y)− u(x)]. Let us write

∆ku(x) = ∆u(x) + k(x)u(x)

=
∑
y

t(x, y)u(y)− [t(x)− k(x)]u(x)

= Au(x)− [t(x)− k(x)]u(x)

and say that a real-valued function u defined on a subset E ofX such that A|u|(x) <
∞ for each x ∈ E̊ is a Helmholtz superharmonic (HH−superharmonic ) function

on E if and only if [t(x)−k(x)]u(x) ≥ Au(x) for each x ∈ E̊. That is ∆ku(x) ≤ 0 if

x ∈ E̊. Define similarly HH−harmonic functions and HH−subharmonic functions
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on E. A HH−superharmonic function s ≥ 0 on E is said to be a HH−potential
if for any HH−subharmonic v on E such that v ≤ s on E, we have v ≤ 0. If there
is a HH−potential p > 0 on X, we say that X is HH−hyperbolic; otherwise X
is called a HH−parabolic network. In the above nomenclature we leave out the
prefix HH if k = 0. Unless mentioned otherwise, k stands for a function k(x) ≥ 0
such that k(x0) > 0 for at least one x0 in X.
In the Euclidean space R or R2, let u(x) be a non-negative C2−function and k(x)

be continuous such that ∆ku(x) = ∆u(x) + k(x)u(x) ≤ 0. Then u(x) is a classical
∆−superharmonic function, so that u(x) is a constant which should necessarily be
0. A discrete version of this result is the following:

Proposition 6.1. Let u ≥ 0 be a HH−superharmonic function on a parabolic
network X. Then u = 0.

Proof. By assumption ∆ku(x) = ∆u(x) + k(x)u(x) ≤ 0 on X. This implies that
∆u(x) ≤ 0 on X. That is u(x) is a superharmonic function on X. Since u ≥ 0 and
X is parabolic, we should have u = c, a constant. Necessarily u = 0. □
Proposition 6.2. Suppose t(x0) ≤ k(x0) for some x0 in X. Then 0 is the only
non-negative HH−superharmonic function on X.

Proof. Let s ≥ 0 be a HH−superharmonic function on X. Then, 0 ≥ [t(x0) −
k(x0)]s(x0) ≥

∑
y

t(x0, y)s(y). This means that s(y) = 0 if y ∼ x0. Then, for such a

vertex y ∼ x0,

0 = [t(y)− k(y)]s(y) ≥
∑
z

t(y, z)s(z).

Hence s(z) = 0 if z ∼ y. This leads to the conclusion s = 0, since X is connected.
□

Proposition 6.3. There exists a positive HH−superharmonic function on X if

and only if there exists some function ξ > 0 on X such that k(x) ≤ −∆ξ(x)

ξ(x)
for x

in X.

Proof. Suppose p > 0 is a HH−superharmonic function on X. Then [t(x) −

k(x)]p(x) ≥ Ap(x) for each x in X. That is −k(x) ≥ ∆p(x)

p(x)
. Conversely,

suppose k(x) ≤ −∆ξ(x)

ξ(x)
for some function ξ > 0. Then ξ(x) is a positive

HH−superharmonic function on X. □
Corollary 6.4. If there exists a positive HH−superharmonic function on X, then
X is hyperbolic.

Proof. For there exists a function ξ > 0 such that −∆ξ(x)

ξ(x)
≥ k(x). Since k(x0) > 0

for some x0, ∆ξ(x) ≤ 0 and ∆ξ(x0) < 0. That is, ξ(x) is superharmonic but not
harmonic on X. Hence X is hyperbolic. □
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Example of a hyperbolic network that is not HH−hyperbolic: Let X be a homo-
geneous tree, each vertex having q+1 neighbours, q ≥ 2, and the conductance being

t(x, y) =
1

q + 1
between any two neighbouring vertices x and y. Let us consider on

X the HH−harmonic functions defined by ∆k where k(x) = 1 for all x ∈ X.
Fix a vertex e and let |x| denote the distance between e and x. Define g(e) =
q

q − 1
and g(x) =

1

qm−1(q − 1)
if |x| = m ≥ 1. Then ∆g(x) = −δe(x) so that X is

hyperbolic, where ∆u(x) =
∑
y∼x

1
q+1

[u(y)− u(x)] .

Take now k = 1 and write ∆ku(x) = ∆u(x) + ku(x) so that ∆ku(x) =
1

q+1

∑
y∼x

u(y). Suppose now that there exists a HH−superharmonic function s > 0

on X, so that ∆ks(x) ≤ 0 for each x in X. But ∆ks(x) ≤ 0 for each x means that
s = 0, a contradiction. Hence X is not HH−hyperbolic.

Remark 6.5. Analogous to the example above, we can consider in the line segment
X = (−π, π) the operators ∆y = y′′ and ∆1y = y′′ + y. Then X is ∆−hyperbolic
but 0 is the only non-negative ∆1−superharmonic function on X.

The following remarks are easy to verify:

i) Any non-negative HH−superharmonic function on E is superharmonic on E.
ii) Any non-negative subharmonic function on E is HH−subharmonic on E.
iii) Any HH−potential on E is a potential on E. In particular, if X is

HH−hyperbolic then X is hyperbolic also.
iv) In a HH−hyperbolic network X, for any vertex e in X, there exists a

unique HH−potential Ge(x) called the HH−Green potential on X, such that
(−∆k)Ge(x) = δe(x).
Construction: Let ℑ be the family of all positive HH−superharmonic func-
tions s on X such that s(x) ≥ δe(x). Let u(x) = inf

s∈ℑ
s(x). Then u(x) is

HH−superharmonic on X, since ℑ is a lower directed family of positive
HH−superharmonic functions. Actually, u is a HH−potential on X, since
there are HH−potentials in the family ℑ. Note that ∆ku(x) = 0 if x ̸= e since

δe(x) = 0 if x ̸= e. Take Ge(x) =
u(x)

(−∆k)u(e)
.

Proposition 6.6. Let X be a HH−hyperbolic network, e ∈ X. Then the Green
potential ge(x) with harmonic support at e exists on X and ge(x) ≤ Ge(x) where
Ge(x) is the HH−Green potential on X with HH−harmonic support at e.

Proof. Since X is HH−hyperbolic, as remarked in iii) above, X is hyperbolic also.
Hence the Green potential ge(x) exists. Now

∆(ge(x)−Ge(x)) = −δe(x)−∆Ge(x)

= ∆kGe(x)−∆Ge(x)

= k(x)Ge(x)

≥ 0.
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Hence, ge(x)−Ge(x) = v(x) is subharmonic on X. Since v(x) ≤ ge(x), we conclude
that v(x) ≤ 0 so that ge(x) ≤ Ge(x). □
Remark 6.7. Actually, by using the Domination Principle, we can show that ge(x) ≤
ge(e)

Ge(e)
Ge(x) ≤ Ge(x).
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[4] L. Myrberg, Über die Integration der Differentialgleichung ∆u = c(P )u auf offenen Rie-
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