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Abstract. We define the notion of ∞-harmonic functions on a network as a
discrete version of that on a euclidean domain, and show some properties of such
functions. We discuss the Dirichlet problems for discrete ∞-harmonic functions.
We also show that limits of discrete p-harmonic functions as p → ∞ are in fact
discrete ∞-harmonic.

1. Introduction

An ∞-harmonic function in a euclidean domain D ⊂ Rd (d ≥ 2) is defined to be
a viscosity solution of the equation

(1) ∆∞u :=
1

2
∇u · ∇|∇u|2 = 0

in D (see [1, 2, 3]). For 1 < p < ∞, a p-harmonic function in D is a continuous
weak solution to the p-Laplace equation

(2) ∆pu := div(|∇u|p−2∇u) = 0

in D. If un is pn-harmonic in D with pn → ∞ and un → u, then u is ∞-harmonic
in D (see [1]). This fact shows that (1) is the limiting equation of (2) as p → ∞,
and explains the terminology ∞-harmonic.
The purpose of this paper is to define the notion of ∞-harmonic functions on

a network as a discrete version of that on a euclidean domain and obtain some
properties related to such functions. A discrete analogue of the p-Laplacian ∆p

can be readily defined on a network (see, e.g., [6, 7, 5]). However, there seems
to be no appropriate discrete version of the ∞-Laplacian. One may define ∞-
harmonic functions on a network as limits of p-harmonic functions as p→ ∞; but
this definition is somewhat indirect and not so appropriate to handle with to obtain
local properties.
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An ∞-harmonic function in a euclidean domain D also arises in the Lipschitz ex-
tension problem; u ∈ W 1,∞(D) is called an absolutely minimal Lipschitz extension
in D if

∥∇u∥L∞(V ) ≤ ∥∇v∥L∞(V )

for any domain V ⊂ D and any v with u − v ∈ W 1,∞
0 (V ). It is known that an

absolutely minimal Lipschitz extension is ∞-harmonic (see [2]).
This suggests our definition of a discrete ∞-harmonicity on a network. We

define the ∞-harmonicity of a function on vertices by means of its ∞-mean value
around a vertex as in [4]. By using discrete derivative of a function, we obtain a
useful criterion as Theorem 3.1 for ∞-harmonicity. Most of properties of classical
discrete harmonic functions hold. We discuss the Dirichlet problem for∞-harmonic
functions on a network. We shall introduce in Section 4 an ideal boundary of a
network. Roughly speaking, this ideal boundary is the set of infinite paths. Given
a function on the ideal boundary, we shall show in Theorem 5.7 the existence of ∞-
harmonic functions satisfying the boundary condition. As in the classical theory, a
set of ∞-superharmonic functions and a set of ∞-subharmonic functions give the
upper solution and the lower solution of our Dirichlet problem. It is shown that
these solutions take the given boundary value if the boundary value is a bounded
Lipschitz function. We show in Theorem 5.9 that the solutions to the Dirichlet
problem give optimal solutions to an ∞-variational problem. We show a boundary
maximum principle for the sum of two ∞-subharmonic functions in Lemma 5.11.
With the aid of this result, we show in Theorem 5.12 that the solution to the
Dirichlet problem is unique. Finally we show in Section 6 that the limit of p-
harmonic functions as p→ ∞ is ∞-harmonic.

2. Preliminaries

Let (V,E) be a locally finite and connected infinite graph without self-loops,
where V is the set of vertices and E is the set of edges. This means that V is a
countable set and that an element of E is an ordered pair (x, y) of vertices x, y ∈ V .
We assume that (y, x) ∈ E if (x, y) ∈ E. Let

∂x = {y ∈ V ; (x, y) ∈ E}, Nx = ∂x ∪ {x},
D = D ∪ {x ∈ V ; (x, y) ∈ E for some y ∈ D}.

From our assumptions

(1) (x, x) ̸∈ E for x ∈ V ;
(2) ∂x is a finite set for each x ∈ V ;
(3) for each x, y ∈ V , there is a sequence {xi}li=0 of distinct vertices such that

x = x0, y = xl and (xj−1, xj) ∈ E for j = 1, 2, . . . , l.

A sequence in (3) is called a path from x to y.
A resistance r is a positive function on E. We assume that r(y, x) = r(x, y) for

each edge (x, y) ∈ E. A network is a triplet (V,E, r), where (V,E) is a graph and
r is a resistance.
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Let L(D) be the set of real valued functions in a subset D ⊂ V . For u ∈ L(D)
and (x, y) ∈ E with x, y ∈ D we define the discrete derivative ∇u at (x, y) as

∇u(x, y) = u(y)− u(x)

r(x, y)
.

We define the ∞-Dirichlet seminorm D∞[u] of u ∈ L(V ) by

D∞[u] = sup
(x,y)∈E

|∇u(x, y)|.

Let D(∞) be the set of functions in V with finite ∞-Dirichlet seminorms.

3. Local ∞-variational problem

For x ∈ V and a function u ∈ L(Nx) let

Mu(x) = max
y∈∂x

|∇u(x, y)|, µ∞
x,u(t) = max

y∈∂x

|u(y)− t|
r(x, y)

for t ∈ R. Note that Mu(x) = µ∞
x,u(u(x)). Since µ

∞
x,u is a convex function such that

limt→±∞ µ∞
x,u(t) = ∞ and that it is not constant on any open interval, it follows

that there exists a unique ∞-mean value H∞
x u such that µ∞

x,u(t) ≥ µ∞
x,u(H

∞
x u) for

any t ∈ R.
Let x ∈ V and u ∈ L(Nx). If u satisfies u(x) ≤ H∞

x u (u(x) ≥ H∞
x u, u(x) = H∞

x u,
resp.), then u is said to be ∞-subharmonic (∞-superharmonic, ∞-harmonic, resp.)
at x. Let D ⊂ V and u ∈ L(D). If u is ∞-subharmonic (∞-superharmonic,
∞-harmonic, resp.) at each x ∈ D, then u is said to be ∞-subharmonic (∞-
superharmonic, ∞-harmonic, resp.) in D. Note that u is ∞-superharmonic if and
only if −u is ∞-subharmonic.
We repeatedly use the next theorem, which characterizes∞-superharmonic func-

tions and ∞-subharmonic functions.

Theorem 3.1. Let x ∈ V and u a function on Nx.

(1) u is ∞-superharmonic at x if and only if there is a vertex y ∈ ∂x such that
∇u(x, y) = −Mu(x).

(2) u is ∞-subharmonic at x if and only if there is a vertex y ∈ ∂x such that
∇u(x, y) =Mu(x).

Proof. Let t0 = H∞
x u. Note that there is y ∈ ∂x such that either ∇u(x, y) =Mu(x)

or ∇u(x, y) = −Mu(x).
Case 1: u(x) < t0. Using Mu(x) = µ∞

x,u(u(x)) ≥ µ∞
x,u(t0) we have

∇u(x, z) = u(z)− u(x)

r(x, z)
>
u(z)− t0
r(x, z)

≥ −µ∞
x,u(t0) ≥ −Mu(x).

for z ∈ ∂x. This means that ∇u(x, z) ̸= −Mu(x) for z ∈ ∂x, and that there is
y1 ∈ ∂x such that ∇u(x, y1) =Mu(x).
Case 2: u(x) > t0. It follows from an argument similar to Case 1 that ∇u(x, z) ̸=

Mu(x) for each z ∈ ∂x and that there is y2 ∈ ∂x such that ∇u(x, y2) = −Mu(x).
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Case 3: u(x) = t0. We show that there is y1 ∈ ∂x such that ∇u(x, y1) =Mu(x).
On the contrary we assume that ∇u(x, z) < Mu(x) for each z ∈ ∂x. Then

u(z)− t0
r(x, z)

=
u(z)− u(x)

r(x, z)
< Mu(x).

There is ε > 0 such that r(x, z)−1(u(z)− t0 + ε) < Mu(x) for any z ∈ ∂x. Since

Mu(x) >
u(z)− (t0 − ε)

r(x, z)
=
u(z)− u(x)

r(x, z)
+

ε

r(x, z)

≥ −Mu(x) +
ε

r(x, z)
> −Mu(x),

it follows that µ∞
x,u(t0 − ε) < Mu(x) = µ∞

x,u(u(x)) = µ∞
x,u(t0), which contradicts the

definition of t0. This means that there is y1 ∈ ∂x such that ∇u(x, y1) = Mu(x).
Similarly there is y2 ∈ ∂x such that ∇u(x, y2) = −Mu(x).
Now suppose that u is ∞-superharmonic at x. Then either Case 2 or Case 3

holds. There is y2 ∈ ∂x such that ∇u(x, y2) = −Mu(x). Conversely, we assume
that ∇u(x, y2) = −Mu(x) for some y2 ∈ ∂x. Then Case 1 cannot hold, so that
u(x) ≥ t0. This means that u is ∞-superharmonic at x. Therefore (1) holds. We
can similarly prove (2). □
Next proposition implies the Harnack inequality.

Proposition 3.2. Let x ∈ V and let u be a function on Nx. Let cx =
maxy,z∈∂x r(x, y)/r(x, z).

(1) If u is ∞-superharmonic at x and u ≥ 0 on Nx, then u(y) ≤ (1 + cx)u(x)
for y ∈ ∂x.

(2) If u is ∞-subharmonic at x and u ≤ 0 on Nx, then u(y) ≥ (1+ cx)u(x) for
y ∈ ∂x.

Proof. We shall prove (1) only. Theorem 3.1 shows that there is z ∈ ∂x such that
∇u(x, z) = −Mu(x). Since ∇u(x, y) ≤ Mu(x) for y ∈ ∂x and u(z) ≥ 0, it follows
that

u(y)− u(x)

r(x, y)
= ∇u(x, y) ≤ −∇u(x, z) = u(x)− u(z)

r(x, z)
≤ u(x)

r(x, z)
.

This implies that u(y) ≤ (1 + r(x, y)/r(x, z))u(x), and the assertion. □
Lemma 3.3. Let x ∈ V . Let u and v be functions on ∂x with u ≤ v. Then
H∞
x u ≤ H∞

x v.

Proof. On the contrary we assume that H∞
x u > H∞

x v. Then u(y)− H∞
x u < v(y)−

H∞
x v for each y ∈ ∂x. Let ṽ be the function with ṽ(x) = H∞

x v and ṽ = v on ∂x.
Let ũ be the function with ũ(x) = H∞

x u and ũ = u on ∂x. Since ũ is ∞-harmonic
at x, Theorem 3.1 implies that there is y1 ∈ ∂x such that

Mũ(x) = ∇ũ(x, y1) =
ũ(y1)− ũ(x)

r(x, y1)
=
u(y1)− H∞

x u

r(x, y1)
<
v(y1)− H∞

x v

r(x, y1)

=
ṽ(y1)− ṽ(x)

r(x, y1)
= ∇ṽ(x, y1) ≤Mṽ(x).
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Similarly, using y2 ∈ ∂x with ∇ṽ(x, y2) = −Mṽ(x), we obtainMṽ(x) < Mũ(x), and
a contradiction. □

Lemma 3.4. Let D ⊂ V . Let u be a function in D and x ∈ D. Let

ũ(y) =

{
H∞
x u if y = x;

u(y) if y ̸= x.

(1) If u is an ∞-superharmonic function in D, then ũ is an ∞-superharmonic
function in D such that ũ is ∞-harmonic at x and that ũ ≤ u.

(2) If u is an ∞-subharmonic function in D, then ũ is an ∞-subharmonic
function in D such that ũ is ∞-harmonic at x and that ũ ≥ u.

Proof. We shall prove (1) only. It is obvious that ũ is ∞-harmonic at x. Since
ũ(x) = H∞

x u ≤ u(x) and ũ(z) = u(z) for z ̸= x, it follows that ũ ≤ u. Lemma
3.3 shows that ũ(z) = u(z) ≥ H∞

z u ≥ H∞
z ũ for z ̸= x. This means that ũ is

∞-superharmonic at z. □

Lemma 3.5. Let D ⊂ V and {uλ}λ∈Λ a family of functions in D.

(1) Suppose that uλ is ∞-superharmonic in D for each λ ∈ Λ and that u :=
infλ∈Λ uλ is finite for each vertex in D. Then u is ∞-superharmonic in D.

(2) Suppose that uλ is ∞-subharmonic in D for each λ ∈ Λ and that u :=
supλ∈Λ uλ is finite for each vertex in D. Then u is ∞-subharmonic in D.

Proof. We shall prove (1) only. Let x ∈ D. Lemma 3.3 shows that H∞
x u ≤ H∞

x uλ ≤
uλ(x) for λ ∈ Λ. Hence H∞

x u ≤ u(x). This means that u is ∞-superharmonic at
x. □

Lemma 3.6. Let {uλ}λ∈Λ be a family of functions in V .

(1) Suppose that u := infλ∈Λ uλ is finite for each vertex in V . Then D∞[u] ≤
supλ∈ΛD∞[uλ].

(2) Suppose that u := supλ∈Λ uλ is finite for each vertex in V . Then D∞[u] ≤
supλ∈ΛD∞[uλ].

We remark that supλ∈ΛD∞[uλ] ≤ ∞.

Proof. We shall prove (1) only. Let (x, y) ∈ E. We may assume u(y) ≥ u(x). For
ε > 0 there is λ ∈ Λ such that uλ(x) ≤ u(x)+ε. Since uλ(y) ≥ u(y), it follows that

0 ≤ ∇u(x, y) = u(y)− u(x)

r(x, y)
≤ uλ(y)− uλ(x) + ε

r(x, y)

= ∇uλ(x, y) +
ε

r(x, y)
≤ sup

λ∈Λ
D∞[uλ] +

ε

r(x, y)
.

Letting ε → 0 we have that |∇u(x, y)| ≤ supλ∈ΛD∞[uλ], so that D∞[u] ≤
supλ∈ΛD∞[uλ]. □
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4. The ideal boundary of a network

For x, y ∈ V let R(x, y) be the geodesic distance between x and y, i.e.,

R(x, y) = inf{
∑
i

r(zi−1, zi); {zi}i is a path from x to y} if x ̸= y,

R(x, x) = 0.

Then R is a metric in V . An infinite path is an infinite sequence {xi}∞i=0 of distinct
vertices such that (xi−1, xi) ∈ E for i = 1, 2, . . . . Let P be the set of all infinite
paths and let

P 0 = {{zi}i ∈ P ;
∞∑
i=1

r(zi−1, zi) <∞}.

For x ∈ V and for two infinite paths x = {xi}i,y = {yj}j ∈ P 0 we let

R(x,y) = R(y, x) = lim
n→∞

R(x, yn), R(x,y) = lim
m→∞
n→∞

R(xm, yn).

It is obvious that the right-hand side of each exists and that R satisfies the triangle
inequality in V ∪ P 0. However it is not a metric in general; it happens that
R(x,y) = 0 for distinct x,y ∈ P 0. We identify x,y ∈ P 0 whenever R(x,y) = 0.
We let [x] be the equivalence class containing x ∈ P 0 and let Ξ be the set of
equivalence classes:

[x] = {y ∈ P 0;R(x,y) = 0}, Ξ = {[x];x ∈ P 0}.
For x, y ∈ V and ξ, η ∈ Ξ we let

ρ(x, y) = R(x, y), ρ(x, η) = ρ(η, x) = R(x,y), ρ(ξ, η) = R(x,y),

where x ∈ ξ and y ∈ η. It is easy to see that ρ is well-defined. Also we have that,
for {xm}m ∈ ξ and {yn}n ∈ η,

ρ(x, η) = ρ(η, x) = lim
n→∞

ρ(x, yn), ρ(ξ, η) = lim
m→∞
n→∞

ρ(xm, yn),

and that ρ is a metric in V ∪ Ξ. We call Ξ the ideal boundary of the network
(V,E, r).

Lemma 4.1. Let u ∈ D(∞) and ξ ∈ Ξ. Then there exists a finite limit
limn→∞ u(xn) for {xj}j ∈ ξ, which is independent of the choice of the represen-
tative.

Proof. Let {xj}j ∈ ξ. It is easy to see that |u(xm)− u(xn)| ≤ D∞[u]ρ(xm, xn), and
that {u(xn)}n is a Cauchy sequence. There is a finite limit limn→∞ u(xn).

Let x(i) = {x(i)n }n ∈ ξ for i = 1, 2. Then |u(x(1)m ) − u(x
(2)
n )| ≤ D∞[u]ρ(x

(1)
m , x

(2)
n ),

and the right-hand side tends to 0 as m,n → ∞. Therefore limm→∞ u(x
(1)
m ) =

limn→∞ u(x
(2)
n ). □

We simply write u(ξ) = limn→∞ u(xn) for u ∈ D(∞) and {xj}j ∈ ξ ∈ Ξ.

Proposition 4.2. Let u ∈ D(∞). Then |u(ξ)− u(η)| ≤ D∞[u]ρ(ξ, η) for ξ, η ∈ Ξ.
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Proof. Let {xn}n ∈ ξ and {ym}m ∈ η. Then |u(xn)− u(ym)| ≤ D∞[u]ρ(xn, ym). It
follows that |u(ξ)− u(η)| ≤ D∞[u]ρ(ξ, η). □
Next theorem implies the maximal principle.

Theorem 4.3. Let u be a function in V and x0 ∈ V with Mu(x0) > 0.

(1) If u is ∞-superharmonic, then there is an infinite path x = {xi}∞i=0 ∈ P
such that

u(xn) ≤ u(x0)−Mu(x0)
n∑
i=1

r(xi−1, xi) for each n.

Moreover, if u is bounded from below, then x ∈ P 0.
(2) If u is ∞-subharmonic, then there is an infinite path x = {xi}∞i=0 ∈ P such

that

u(xn) ≥ u(x0) +Mu(x0)
n∑
i=1

r(xi−1, xi) for each n.

Moreover, if u is bounded from above, then x ∈ P 0.

Proof. We shall prove (2) only. Theorem 3.1 shows that there is x1 ∈ ∂x0 such
that ∇u(x0, x1) =Mu(x0). Note that u(x1) = u(x0) +∇u(x0, x1)r(x0, x1) > u(x0).
Again Theorem 3.1 shows that there is x2 ∈ ∂x1 such that

∇u(x1, x2) =Mu(x1) ≥ ∇u(x0, x1) =Mu(x0).

Note that u(x2) = u(x1) +∇u(x1, x2)r(x1, x2) > u(x1), and that x2 ̸= x0, x1. Re-
peating this argument we obtain an infinite path x = {xi}i such that∇u(xi−1, xi) ≥
Mu(x0) and u(xi) > u(xi−1) for each i. Therefore

u(xn)− u(x0) =
n∑
i=1

∇u(xi−1, xi)r(xi−1, xi) ≥Mu(x0)
n∑
i=1

r(xi−1, xi)

for each n.
If u is bounded from above, then

∑∞
i=1 r(xi−1, xi) <∞, so that x ∈ P 0. □

Lemma 4.4. Let u ∈ D(∞) and x0 ∈ V with Mu(x0) > 0.

(1) If u is bounded from below and ∞-superharmonic, then there is ξ ∈ Ξ such
that

u(ξ) ≤ u(x0)−Mu(x0)ρ(x0, ξ).

(2) If u is bounded from above and ∞-subharmonic, then there is ξ ∈ Ξ such
that

u(ξ) ≥ u(x0) +Mu(x0)ρ(x0, ξ).

Proof. We shall prove (2) only. Theorem 4.3 shows that there is {xn}n ∈ P 0 such
that

u(xn) ≥ u(x0) +Mu(x0)
n∑
i=1

r(xi−1, xi) ≥ u(x0) +Mu(x0)ρ(x0, xn).
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Letting ξ = [{xn}n] ∈ Ξ and tending n→ ∞ we have the assertion. □
Corollary 4.5. Let u ∈ D(∞).

(1) If u is bounded from below and ∞-superharmonic, then infV ∪Ξ u = infΞ u.
(2) If u is bounded from above and ∞-subharmonic, then supV ∪Ξ u = supΞ u.

Proof. We shall prove (1) only. If u is constant, then the assertion trivially holds.
We assume that u is not constant. It suffices to show that infV u ≥ infΞ u. Let
z0 ∈ V . We need to show that u(z0) ≥ infΞ u. Let A = {x ∈ V ;u(x) = u(z0)}.
Since u is not constant, it follows that there is x0 ∈ A with Mu(x0) > 0. Lemma
4.4 implies that there is ξ ∈ Ξ such that u(ξ) ≤ u(x0)−Mu(x0)ρ(x0, ξ). Therefore
infΞ u ≤ u(ξ) ≤ u(x0) = u(z0). □
Lemma 4.6. Let ζ ∈ Ξ and let u(x) = ρ(ζ, x). Then u is ∞-superharmonic and
Mu ≡ 1 in V . Especially D∞[u] = 1.

Proof. Let x ∈ V and y ∈ ∂x. Since |u(x)− u(y)| = |ρ(ζ, x)− ρ(ζ, y)| ≤ ρ(x, y) ≤
r(x, y), it follows that |∇u(x, y)| ≤ 1, and that Mu(x) ≤ 1.
Let {zn}n ∈ ζ. Take a path {xi}li=0 from x to zn. Then

l∑
i=1

r(xi−1, xi) = r(x, x1) +
l∑

i=2

r(xi−1, xi) ≥ r(x, x1) + ρ(x1, zn)

≥ min
y∈∂x

(r(x, y) + ρ(y, zn)).

It follows that ρ(x, zn) ≥ miny∈∂x(r(x, y) + ρ(y, zn)). Letting n → ∞ we have
ρ(x, ζ) ≥ miny∈∂x(r(x, y) + ρ(y, ζ)). This means that u(x) ≥ u(y) + r(x, y) for
some y ∈ ∂x, or ∇u(x, y) ≤ −1. Therefore ∇u(x, y) = −1, and Mu(x) = 1.
Theorem 3.1 shows that u is ∞-superharmonic at x. □

5. The Dirichlet problem

A network is said to be ∞-hyperbolic if P 0 ̸= ∅; otherwise a network is said to
be ∞-parabolic.
First we shall show a Liouville type theorem for an ∞-parabolic network, namely

Theorem 5.2, which immediately follows from the next proposition.

Proposition 5.1. Suppose that (V,E, r) is an ∞-parabolic network.

(1) Let u be an ∞-superharmonic function such that lim infn→∞ u(xn) > −∞
for each {xn}n ∈ P . Then u must be constant.

(2) Let u be an ∞-subharmonic function such that lim supn→∞ u(xn) < ∞ for
each {xn}n ∈ P . Then u must be constant.

Proof. We shall prove (2) only. If u is not constant, then there is x0 ∈ V such that
Mu(x0) > 0. Theorem 4.3 implies that there is x = {xn}n ∈ P such that

u(xn) ≥ u(x0) +Mu(x0)
n∑
i=1

r(xi−1, xi).

Since lim supn→∞ u(xn) < ∞, it follows that
∑∞

i=1 r(xi−1, xi) < ∞, and therefore
x ∈ P 0, which is impossible because P 0 = ∅. □
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Theorem 5.2. Suppose that (V,E, r) is an ∞-parabolic network. Let u be an
∞-harmonic function which is either bounded from above or bounded from below.
Then u must be constant.

There may be an unbounded ∞-harmonic function on an ∞-parabolic network.

Example 5.3. Let V = {xn}∞n=−∞, E = {(xn−1, xn)}∞n=−∞ and r ≡ 1. Then
(V,E, r) is an ∞-parabolic network. Let u(xn) = n. Then u is an ∞-harmonic
function in V . □

From here to the end of this section we always assume that (V,E, r) is an ∞-
hyperbolic network. We formulate the Dirichlet problem for ∞-harmonic functions
as follows:

For a bounded function f on Ξ,

find a bounded ∞-harmonic function h ∈ D(∞) such that h ≡ f on Ξ.

We define the upper class Uf , the lower class Lf , the upper solution Hf and the
lower solution Hf by

Uf =
{
u ∈ D(∞);

u is a bounded from below and ∞-superharmonic function
such that u ≥ f on Ξ

}
,

Lf =
{
v ∈ D(∞);

v is a bounded from above and ∞-subharmonic function
such that v ≤ f on Ξ

}
,

Hf (x) = inf{u(x);u ∈ Uf}, Hf (x) = sup{v(x); v ∈ Lf} for x ∈ V .

If Uf = ∅, then we let Hf ≡ ∞. If Lf = ∅, then we let Hf ≡ −∞.

Proposition 5.4. Let f be a constant function on Ξ. Then a solution to the
Dirichlet problem for f must be constant.

Proof. Suppose that there is a nonconstant solution h to the Dirichlet problem.
Let x0 ∈ V with Mh(x0) > 0. Lemma 4.4 shows that there are ξ, η ∈ Ξ such that

f(ξ) = h(ξ) ≤ h(x0)−Mh(x0)ρ(x0, ξ),

f(η) = h(η) ≥ h(x0) +Mh(x0)ρ(x0, η).

Then

0 = f(η)− f(ξ) ≥Mh(x0)(ρ(x0, η) + ρ(x0, ξ)) > 0,

which is a contradiction. □

Proposition 4.2 shows that the boundary function must be a Lipschitz function
on Ξ whenever a solution to the Dirichlet problem exists. By Proposition 5.4 we
may assume that the boundary function is not constant. Therefore we restrict a
boundary function to a nonconstant Lipschitz function on Ξ. This also means that
Ξ contains at least two points.
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For a nonconstant Lipschitz function f on Ξ we let Lf be the Lipschitz constant:

Lf = sup
ξ,η∈Ξ
ξ ̸=η

|f(ξ)− f(η)|
ρ(ξ, η)

.

We define

Lf,ξ = sup
η∈Ξ\{ξ}

|f(ξ)− f(η)|
ρ(ξ, η)

,

φf,ξ(x) = f(ξ) + Lf,ξρ(ξ, x), ψf,ξ(x) = f(ξ)− Lf,ξρ(ξ, x),

φf (x) = inf
ξ∈Ξ

φf,ξ(x), ψf (x) = sup
ξ∈Ξ

ψf,ξ(x)

for ξ ∈ Ξ and x ∈ V .

Lemma 5.5. Let f be a nonconstant bounded Lipschitz function on Ξ. Then
φf,ξ, φf ∈ Uf and ψf,ξ, ψf ∈ Lf for ξ ∈ Ξ. Moreover

Mφf,ξ
≡Mψf,ξ

≡ Lf,ξ in V ,

D∞[φf,ξ] = D∞[ψf,ξ] = Lf,ξ,

φf,ξ(ξ) = ψf,ξ(ξ) = f(ξ),

D∞[φf ] = D∞[ψf ] = Lf ,

φf ≡ ψf ≡ f on Ξ.

Proof. Lemma 4.6 shows that φf,ξ is ∞-superharmonic, that Mφf,ξ
≡ Lf,ξ, and

that D∞[φf,ξ] = Lf,ξ. It is easy to see that φf,ξ(ξ) = f(ξ). Clearly φf,ξ ≥ f(ξ)
in V , which means that φf,ξ is bounded from below. Let η ∈ Ξ. Then φf,ξ(η) =
f(ξ) + Lf,ξρ(ξ, η). Since f(η) − f(ξ) ≤ Lf,ξρ(ξ, η), it follows that φf,ξ(η) ≥ f(η).
Therefore φf,ξ ∈ Uf .
Since φf,ξ ≥ f(ξ) ≥ infΞ f in V , it follows that φf ≥ infΞ f in V and that φf is

finite at each vertex in V . Lemmas 3.5 and 3.6 show that φf is ∞-superharmonic
and that D∞[φf ] ≤ supξ∈ΞD∞[φf,ξ] = supξ∈Ξ Lf,ξ = Lf . For ξ ∈ Ξ and {yn}n ∈
η ∈ Ξ

φf,ξ(yn) ≥ φf,ξ(η)−D∞[φf,ξ]ρ(yn, η) = φf,ξ(η)− Lf,ξρ(yn, η)

≥ f(η)− Lfρ(yn, η).

Taking the infimum with respect to ξ and tending n→ ∞ we obtain φf (η) ≥ f(η).
Since φf (η) ≤ φf,η(η) = f(η), it follows that φf ≡ f on Ξ and that φf ∈ Uf . The
fact |f(ξ)− f(η)| = |φf (ξ)− φf (η)| ≤ D∞[φf ]ρ(ξ, η) gives that D∞[φf ] ≥ Lf , and
that D∞[φf ] = Lf .
We can similarly prove the assertion for ψf,ξ and ψf . □

Lemma 5.6. Let f be a nonconstant bounded Lipschitz function on Ξ with Lipschitz
constant Lf . Let

Ũf = {u ∈ Uf ;u ≤ φf in V }, L̃f = {v ∈ Lf ; v ≥ ψf in V }.

Then D∞[u] ≤ Lf for u ∈ Ũf ∪ L̃f .
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Proof. Let u ∈ Ũf and x0 ∈ V . We shall show that Mu(x0) ≤ Lf . We may
assume Mu(x0) > 0. Lemma 4.4 shows that there is ξ ∈ Ξ such that u(ξ) ≤
u(x0)−Mu(x0)ρ(x0, ξ), or

Mu(x0) ≤
u(x0)− u(ξ)

ρ(x0, ξ)
.

Lemma 5.5 shows that f(ξ) ≤ u(ξ) ≤ φf (ξ) = f(ξ), so that u(ξ) = f(ξ). Also

u(x0) ≤ φf (x0) ≤ φf,ξ(x0) = f(ξ) + Lf,ξρ(ξ, x0) ≤ f(ξ) + Lfρ(ξ, x0).

Combining these we have Mu(x0) ≤ Lf . This means D∞[u] ≤ Lf .

We can similarly prove D∞[u] ≤ Lf for u ∈ L̃f . □

Theorem 5.7. Let f be a nonconstant bounded Lipschitz function on Ξ with Lips-
chitz constant Lf . Then both Hf and Hf are bounded ∞-harmonic functions with

D∞[Hf ] ≤ Lf , D∞[Hf ] ≤ Lf , Hf ≡ Hf ≡ f on Ξ.

In particular, both Hf and Hf are solutions to the Dirichlet problem for f .

Proof. First we shall show that infΞ f ≤ Hf ≤ supΞ f in V . Since the constant
function supΞ f is in Uf , it follows that Hf ≤ supΞ f in V . Let u ∈ Uf . Corollary
4.5 shows that infV ∪Ξ u = infΞ u ≥ infΞ f , so that u ≥ infΞ f in V . Therefore
Hf ≥ infΞ f in V .
Lemma 3.5 shows that Hf is ∞-superharmonic in V . Let x ∈ V . Let u(x) =

H∞
x Hf and u = Hf in V \ {x}. Then Lemma 3.4 shows that u ≤ Hf , that u ∈ Uf ,

and that u is ∞-harmonic at x. Therefore Hf ≡ u, and that Hf is ∞-harmonic at
x.
It is easy to see that Hf (x) = inf{u(x);u ∈ Ũf} for x ∈ V , where Ũf is defined as

in Lemma 5.6. Lemmas 3.6 and 5.6 show thatD∞[Hf ] ≤ sup{D∞[u];u ∈ Ũf} ≤ Lf .
Next we claim that Hf (ξ) = f(ξ) for ξ ∈ Ξ. Lemma 5.5 shows that Hf (ξ) ≤

φf (ξ) = f(ξ). For the converse, let {xn}n ∈ ξ. Then

Hf (ξ) ≥ Hf (xn)−D∞[Hf ]ρ(xn, ξ) ≥ Hf (xn)− Lfρ(xn, ξ).

For n ∈ N and ε > 0 there is u ∈ Ũf such that Hf (xn) ≥ u(xn) − ε. Lemma 5.6
implies that

u(xn) ≥ u(ξ)−D∞[u]ρ(xn, ξ) ≥ f(ξ)− Lfρ(xn, ξ).

Combining these we obtain Hf (ξ) ≥ f(ξ)− 2Lfρ(xn, ξ)− ε. Tending n → ∞ and
ε→ 0 we have Hf (ξ) ≥ f(ξ). Therefore Hf (ξ) = f(ξ).
Similarly we can prove the assertion for Hf . □

Proposition 5.8. Let f be a nonconstant bounded Lipschitz function on Ξ. Let h
be a solution to the Dirichlet problem for f . Then

ψf ≤ Hf ≤ h ≤ Hf ≤ φf in V .
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Proof. We note that the set of solutions to the Dirichlet problem coincides with
Uf ∩ Lf , especially h ∈ Uf ∩ Lf . It follows that Hf = infu∈Uf

u ≤ infu∈Uf∩Lf
u ≤ h

in V .
We shall prove Hf ≤ φf,ξ in V for ξ ∈ Ξ. On the contrary we assume that

A := {y ∈ V ;Hf (y) > φf,ξ(y)} ≠ ∅ for a fixed ξ ∈ Ξ. Let y0 ∈ A. Lemma 5.5 and
Theorem 4.3 show that there is {yn}n ∈ η ∈ Ξ such that

φf,ξ(yn) ≤ φf,ξ(y0)− Lf,ξ

n∑
i=1

r(yi−1, yi).

Also

Hf (y0) = Hf (yn) +
n∑
i=1

∇Hf (yi, yi−1)r(yi−1, yi)

≤ Hf (yn) +
n∑
i=1

MHf
(yi−1)r(yi−1, yi).

Combining these and the fact that y0 ∈ A we have

(3) φf,ξ(yn) + Lf,ξ

n∑
i=1

r(yi−1, yi) < Hf (yn) +
n∑
i=1

MHf
(yi−1)r(yi−1, yi).

Since f(η) ≤ φf,ξ(η) and Hf (η) = f(η), it follows that Lf,ξ
∑∞

i=1 r(yi−1, yi) ≤∑∞
i=1MHf

(yi−1)r(yi−1, yi). There is n ≥ 0 with Lf,ξ ≤ MHf
(yn). We take the

smallest such n. If n ≥ 1, then, since Lf,ξ > MHf
(yi−1) for i = 1, 2, . . . , n, the

inequality (3) implies that

φf,ξ(yn) + Lf,ξ

n∑
i=1

r(yi−1, yi) < Hf (yn) +
n∑
i=1

Lf,ξr(yi−1, yi),

so that yn ∈ A. This also holds if n = 0.
Let z0 = yn. Then MHf

(z0) ≥ Lf,ξ and z0 ∈ A. Lemma 4.4 shows that there is
ζ ∈ Ξ such that

f(ζ) = Hf (ζ) ≥ Hf (z0) +MHf
(z0)ρ(z0, ζ) ≥ Hf (z0) + Lf,ξρ(z0, ζ).

Lemma 5.5 shows that

f(ζ) ≤ φf,ξ(ζ) ≤ φf,ξ(z0) +D∞[φf,ξ]ρ(z0, ζ) = φf,ξ(z0) + Lf,ξρ(z0, ζ).

These imply that φf,ξ(z0) ≥ Hf (z0), which contradicts z0 ∈ A. This means that
Hf ≤ φf,ξ in V for ξ ∈ Ξ, and that Hf ≤ φf in V .
The other inequalities can be proved similarly. □

Theorem 5.9. Let f be a nonconstant bounded Lipschitz function on Ξ with Lip-
schitz constant Lf . Then a solution to the Dirichlet problem for f is a solution to
the variational problem:

Minimize D∞[u] subject to u ∈ D(∞) and u ≡ f on Ξ.
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More precisely, if u ∈ D(∞) satisfies u ≡ f on Ξ, then D∞[u] ≥ Lf , and the equality
holds when u is bounded and ∞-harmonic.

We remark that the equality above can hold even when u is not ∞-harmonic.
See Example 5.10.

Proof. Let u ∈ D(∞) with u ≡ f on Ξ. Let ξ, η ∈ Ξ. Then |f(ξ) − f(η)| =
|u(ξ)− u(η)| ≤ D∞[u]ρ(ξ, η). This means D∞[u] ≥ Lf .
Let h be a solution to the Dirichlet problem for f . Proposition 5.8 and Lemma

5.6 show that h ∈ Ũf and that D∞[h] ≤ Lf . □
A solution to the variational problem in Theorem 5.9 is not necessarily unique.

Example 5.10. We note that Lemma 5.5 shows that φf is a solution to the vari-
ational problem in Theorem 5.9. Let

V = {o} ∪ {xn, yn, zn}∞n=1,

E = {(xn−1, xn), (yn−1, yn), (zn−1, zn)}∞n=1,

r(xn−1, xn) = r(yn−1, yn) = r(zn−1, zn) = 2−n,

where x0 = y0 = z0 = o. Let ξ = [{xn}n], η = [{yn}n], ζ = [{zn}n]. Let f(ξ) = −1,
f(η) = 1, f(ζ) = 0. Then Lf,ξ = Lf,η = 1 and Lf,ζ = 1/2. We have

Hf (x) =


0 if x = o;

2−n − 1 if x = xn;

1− 2−n if x = yn;

0 if x = zn,

φf (x) =


0 if x = o;

2−n − 1 if x = xn;

1− 2−n if x = yn;

2−n−1 if x = zn

for n ≥ 1. Note that φf is not ∞-harmonic at z1. □
Here we show a uniqueness result for a solution to the Dirichlet problem. Let

δ(x) = inf
η∈Ξ

ρ(x, η),

Q = {{xn}n ∈ P ; lim inf
n→∞

δ(xn) > 0 and lim sup
n→∞

δ(xn) <∞}.

Lemma 5.11. Let v1 and v2 be bounded from above and ∞-subharmonic functions
with v1, v2 ∈ D(∞). Suppose that lim supn→∞(v1(xn) + v2(xn)) ≤ 0 for all {xn}n ∈
P 0 ∪Q. Then v1 + v2 ≤ 0 in V .

Proof. Let u = v1 + v2. It suffices to show that A := {x ∈ V ;u(x) > α} = ∅ for all
α > 0. On the contrary we assume A ̸= ∅ for some α > 0. Let Mi(x) =Mvi(x) for
i = 1, 2 and M(x) = max{M1(x),M2(x)}.
If M(x) = 0 for each x ∈ A, then u is constant on A, so that A = V . For

{xn}n ∈ P 0, it follows that α < lim supn→∞ u(xn) ≤ 0, which contradicts α > 0.
We may assume that M(x0) > 0 for some x0 ∈ A.
We shall show that there exists x1 ∈ ∂x0 such that either

(1a) u(x1) > u(x0) and M(x1) ≥M(x0); or
(1b) u(x1) = u(x0), v1(x1) > v1(x0) and M(x1) ≥M(x0).
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First we consider the caseM1(x0) > M2(x0). By Theorem 3.1, there exists x1 ∈ ∂x0
such that

∇v1(x0, x1) =M1(x0) > M2(x0) ≥ −∇v2(x0, x1),
and hence ∇u(x0, x1) > 0, i.e., u(x1) > u(x0). Since M(x1) ≥ M1(x1) ≥
∇v1(x0, x1) = M1(x0) = M(x0), it follows that x1 satisfies (1a). In case
M1(x0) < M2(x0), similarly there is x1 ∈ ∂x0 with ∇v2(x0, x1) = M2(x0), which
satisfies (1a). Next we consider the case M1(x0) =M2(x0). By Theorem 3.1, there
exists x1 ∈ ∂x0 such that

∇v1(x0, x1) =M1(x0) =M2(x0) ≥ −∇v2(x0, x1),
and hence ∇u(x0, x1) ≥ 0, i.e., u(x1) ≥ u(x0). If u(x1) > u(x0), then an argument
similar to the first case shows that x1 satisfies (1a). If u(x1) = u(x0), then, since
∇v1(x0, x1) = M(x0) > 0, it follows that v1(x1) > v1(x0). The fact M(x1) ≥
∇v1(x0, x1) =M(x0) implies that x1 satisfies (1b).
Since x1 ∈ A and M(x1) > 0, there is x2 ∈ ∂x1 such that either

(2a) u(x2) > u(x1) and M(x2) ≥M(x1); or
(2b) u(x2) = u(x1), v1(x2) > v1(x1) and M(x2) ≥M(x1).

Repeating this argument we obtain a sequence {xn}n such that xn ∈ ∂xn−1 and
that either

(na) u(xn) > u(xn−1) and M(xn) ≥M(xn−1); or
(nb) u(xn) = u(xn−1), v1(xn) > v1(xn−1) and M(xn) ≥M(xn−1).

Suppose that xk = xl for some k < l. If (ia) holds for some i with k < i ≤ l, then

u(xl) ≥ · · · ≥ u(xi) > u(xi−1) ≥ · · · ≥ u(xk) = u(xl),

a contradiction; if (ib) holds for all i with k < i ≤ l, then v1(xl) > · · · > v1(xk) =
v1(xl), a contradiction. Therefore x := {xn}n is an infinite path.
If M1(xn) ≥ M2(xn), then, since M1(xn) = M(xn) ≥ M(x0) > 0, Lemma 4.4

shows that there is ηn ∈ Ξ such that v1(ηn) ≥ v1(xn)+M1(xn)ρ(xn, ηn) ≥ v1(xn)+
M(x0)ρ(xn, ηn). Let s = sup v1∨ sup v2. Since v1(xn) = u(xn)−v2(xn) ≥ u(x0)−s,
it follows that

s ≥ u(x0)− s+M(x0)ρ(xn, ηn),

and that

δ(xn) ≤ ρ(xn, ηn) ≤
2s− u(x0)

M(x0)
.

The same inequality also holds when M1(xn) < M2(xn). Therefore

lim sup
n→∞

δ(xn) ≤
2s− u(x0)

M(x0)
<∞.

Let ζ ∈ Ξ. Then u(xn)− u(ζ) ≤ D∞[u]ρ(xn, ζ). Since u(ζ) ≤ 0 and u(xn) > α,
it follows that D∞[u]ρ(xn, ζ) ≥ α, so that

lim inf
n→∞

δ(xn) ≥
α

D∞[u]
> 0.
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Therefore x ∈ Q. The assumption shows that

α < lim sup
n→∞

u(xn) ≤ 0,

which contradicts α > 0. □
Theorem 5.12. Suppose that Q = ∅. Let f be a nonconstant bounded Lipschitz
function on Ξ. Then there exists a unique solution to the Dirichlet problem for f .

Proof. Let u ∈ Uf and v ∈ Lf . We apply Lemma 5.11 to v and −u and obtain
v− u ≤ 0 in V . This implies Hf ≥ Hf . Proposition 5.8 shows that a solution h to

the Dirichlet problem satisfies h ≡ Hf ≡ Hf . □
Now we address the question:

Can we replace P 0 ∪Q in the condition of Lemma 5.11 by P 0?

Let w be a nonnegative function on E with w(x, y) = w(y, x) and R ⊂ P . Let

t[w,R] = inf{
∑
j

r(xj−1, xj)w(xj−1, xj); {xj}j ∈ R},

M∞(R) = inf{sup
E
w; t[w,R] ≥ 1}.

We see that M∞ is an outer measure on P and we call it the ∞-modulus. It is
easy to see that M∞(P \ P 0) = 0 and Q ⊂ P \ P 0, so the above question seems
to be affirmative. However the author has no idea to answer the question.

6. An ∞-harmonic functions as a limit of p-harmonic functions

Let 1 < p <∞ and let

φp(t) = |t|p−1 sgn t =


tp−1 if t > 0;

0 if t = 0;

−(−t)p−1 if t < 0.

For x ∈ V and u ∈ L(∂x) we define

νpx,u(t) =
∑
y∈∂x

φp

(u(y)− t

r(x, y)

)
.

Since νpx,u is strictly decreasing and limt→±∞ νpx,u(t) = ∓∞, there is a unique value

Hp
xu such that νpx,u(H

p
xu) = 0. Let D ⊂ V and u ∈ L(D). If u satisfies u(x) ≤ Hp

xu
(u(x) ≥ Hp

xu, u(x) = Hp
xu, resp.) for each x ∈ D, then u is said to be p-subharmonic

(p-superharmonic, p-harmonic, resp.) in D.
Now we shall show that a limit of p-harmonic functions as p → ∞ is an ∞-

harmonic function.

Lemma 6.1. Let x ∈ V and u ∈ L(∂x). Then

lim
p→∞

Hp
xu = H∞

x u.



16 H. KURATA

Proof. Let tp = Hp
xu and t∞ = H∞

x u. If u is constant on ∂x, then tp = t∞ = u and
the assertion holds. We assume that u is not constant on ∂x. Let ũ be the function
such that ũ(x) = t∞ and ũ = u on ∂x. Then Mũ(x) > 0. Let

J+ = {y ∈ ∂x;u(y) > t∞}, J− = {y ∈ ∂x;u(y) < t∞}.

Theorem 3.1 shows that there is y1 ∈ ∂x such that

u(y1)− t∞
r(x, y1)

=
ũ(y1)− ũ(x)

r(x, y1)
= ∇ũ(x, y1) =Mũ(x) > 0.

This means y1 ∈ J+, especially J+ ̸= ∅. Since
u(y)− t∞
r(x, y)

=
ũ(y)− ũ(x)

r(x, y)
= ∇ũ(x, y) ≤Mũ(x)

for y ∈ ∂x, it follows that

max
y∈J+

u(y)− t∞
r(x, y)

=Mũ(x) = µ∞
x,ũ(ũ(x)) = µ∞

x,u(t∞).

Similarly J− ̸= ∅ and

max
y∈J−

t∞ − u(y)

r(x, y)
= µ∞

x,u(t∞).

Let ε > 0 with ε < |u(y)− t∞| for every y ∈ J+ ∪ J−. Let J0 = {y ∈ ∂x;u(y) =
t∞}, which may be an empty set. We consider

νpx,u(t∞ + ε) =
∑
y∈J+

(u(y)− t∞ − ε

r(x, y)

)p−1

−
∑

y∈J−∪J0

(t∞ + ε− u(y)

r(x, y)

)p−1

.

Let

αp =
∑
y∈J+

(u(y)− t∞ − ε

r(x, y)

)p−1

, βp =
∑

y∈J−∪J0

(t∞ + ε− u(y)

r(x, y)

)p−1

.

Let q be a number with (p− 1)(q − 1) = 1. Then

lim
p→∞

αq−1
p = max

y∈J+

u(y)− t∞ − ε

r(x, y)
< µ∞

x,u(t∞),

lim
p→∞

βq−1
p = max

y∈J−∪J0

t∞ + ε− u(y)

r(x, y)
> µ∞

x,u(t∞).

Therefore νpx,u(t∞ + ε) < 0 for sufficiently large p. Similarly νpx,u(t∞ − ε) > 0.
Since νpx,u is strictly decreasing, it follows that t∞ − ε < tp < t∞ + ε, and hence
tp → t∞. □

Theorem 6.2. Let D ⊂ V . Let {pn}n be a sequence such that 1 < pn < ∞
and limn→∞ pn = ∞. Let {un}n be a sequence of functions in D such that un
is pn-harmonic in D and converges pointwise to a function u in D. Then u is
∞-harmonic in D.
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Proof. Let x ∈ D and ε > 0. By Lemma 6.1 there is n such that |Hpn
x u−H∞

x u| < ε.
We may assume that |u(y) − un(y)| < ε for all y ∈ Nx. Then |Hp

xu − Hp
xun| < ε.

Since Hpn
x un = un(x), it follows that

|u(x)− H∞
x u| ≤ |u(x)− un(x)|+ |Hpn

x un − Hpn
x u|+ |Hpn

x u− H∞
x u|

≤ ε+ ε+ ε,

which means that u is ∞-harmonic at x. □
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