Mem. Gra. Sci. Eng. Shimane Univ. Series B: Mathematics **47** (2014), pp. 1–17

THE DIRICHLET PROBLEM FOR ∞ -HARMONIC FUNCTIONS ON A NETWORK

HISAYASU KURATA

Communicated by Toshihiro Nakanishi

(Received: March 28, 2013)

ABSTRACT. We define the notion of ∞ -harmonic functions on a network as a discrete version of that on a euclidean domain, and show some properties of such functions. We discuss the Dirichlet problems for discrete ∞ -harmonic functions. We also show that limits of discrete *p*-harmonic functions as $p \to \infty$ are in fact discrete ∞ -harmonic.

1. INTRODUCTION

An ∞ -harmonic function in a euclidean domain $D \subset \mathbb{R}^d$ $(d \ge 2)$ is defined to be a viscosity solution of the equation

(1)
$$\Delta_{\infty} u := \frac{1}{2} \nabla u \cdot \nabla |\nabla u|^2 = 0$$

in D (see [1, 2, 3]). For 1 , a p-harmonic function in D is a continuous weak solution to the p-Laplace equation

(2)
$$\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u) = 0$$

in D. If u_n is p_n -harmonic in D with $p_n \to \infty$ and $u_n \to u$, then u is ∞ -harmonic in D (see [1]). This fact shows that (1) is the limiting equation of (2) as $p \to \infty$, and explains the terminology ∞ -harmonic.

The purpose of this paper is to define the notion of ∞ -harmonic functions on a network as a discrete version of that on a euclidean domain and obtain some properties related to such functions. A discrete analogue of the *p*-Laplacian Δ_p can be readily defined on a network (see, e.g., [6, 7, 5]). However, there seems to be no appropriate discrete version of the ∞ -Laplacian. One may define ∞ harmonic functions on a network as limits of *p*-harmonic functions as $p \to \infty$; but this definition is somewhat indirect and not so appropriate to handle with to obtain local properties.

²⁰⁰⁰ Mathematics Subject Classification. Primary 31C20; Secondary 31C45.

Key words and phrases. nonlinear harmonic function, Dirichlet problem, discrete potential theory.

An ∞ -harmonic function in a euclidean domain D also arises in the Lipschitz extension problem; $u \in W^{1,\infty}(D)$ is called an absolutely minimal Lipschitz extension in D if

$$\|\nabla u\|_{L^{\infty}(V)} \le \|\nabla v\|_{L^{\infty}(V)}$$

for any domain $V \subset D$ and any v with $u - v \in W_0^{1,\infty}(V)$. It is known that an absolutely minimal Lipschitz extension is ∞ -harmonic (see [2]).

This suggests our definition of a discrete ∞ -harmonicity on a network. We define the ∞ -harmonicity of a function on vertices by means of its ∞ -mean value around a vertex as in [4]. By using discrete derivative of a function, we obtain a useful criterion as Theorem 3.1 for ∞ -harmonicity. Most of properties of classical discrete harmonic functions hold. We discuss the Dirichlet problem for ∞ -harmonic functions on a network. We shall introduce in Section 4 an ideal boundary of a network. Roughly speaking, this ideal boundary is the set of infinite paths. Given a function on the ideal boundary, we shall show in Theorem 5.7 the existence of ∞ harmonic functions satisfying the boundary condition. As in the classical theory, a set of ∞ -superharmonic functions and a set of ∞ -subharmonic functions give the upper solution and the lower solution of our Dirichlet problem. It is shown that these solutions take the given boundary value if the boundary value is a bounded Lipschitz function. We show in Theorem 5.9 that the solutions to the Dirichlet problem give optimal solutions to an ∞ -variational problem. We show a boundary maximum principle for the sum of two ∞ -subharmonic functions in Lemma 5.11. With the aid of this result, we show in Theorem 5.12 that the solution to the Dirichlet problem is unique. Finally we show in Section 6 that the limit of pharmonic functions as $p \to \infty$ is ∞ -harmonic.

2. Preliminaries

Let (V, E) be a locally finite and connected infinite graph without self-loops, where V is the set of vertices and E is the set of edges. This means that V is a countable set and that an element of E is an ordered pair (x, y) of vertices $x, y \in V$. We assume that $(y, x) \in E$ if $(x, y) \in E$. Let

$$\partial x = \{ y \in V; (x, y) \in E \}, \qquad Nx = \partial x \cup \{ x \},$$
$$\overline{D} = D \cup \{ x \in V; (x, y) \in E \text{ for some } y \in D \}.$$

From our assumptions

- (1) $(x, x) \notin E$ for $x \in V$;
- (2) ∂x is a finite set for each $x \in V$;
- (3) for each $x, y \in V$, there is a sequence $\{x_i\}_{i=0}^l$ of distinct vertices such that $x = x_0, y = x_l$ and $(x_{j-1}, x_j) \in E$ for j = 1, 2, ..., l.

A sequence in (3) is called a *path* from x to y.

A resistance r is a positive function on E. We assume that r(y, x) = r(x, y) for each edge $(x, y) \in E$. A network is a triplet (V, E, r), where (V, E) is a graph and r is a resistance. Let L(D) be the set of real valued functions in a subset $D \subset V$. For $u \in L(D)$ and $(x, y) \in E$ with $x, y \in D$ we define the *discrete derivative* ∇u at (x, y) as

$$\nabla u(x,y) = \frac{u(y) - u(x)}{r(x,y)}.$$

We define the ∞ -Dirichlet seminorm $D_{\infty}[u]$ of $u \in L(V)$ by

$$D_{\infty}[u] = \sup_{(x,y)\in E} |\nabla u(x,y)|.$$

Let $\mathbf{D}^{(\infty)}$ be the set of functions in V with finite ∞ -Dirichlet seminorms.

3. Local ∞ -variational problem

For $x \in V$ and a function $u \in L(Nx)$ let

$$M_u(x) = \max_{y \in \partial x} |\nabla u(x, y)|, \qquad \mu_{x,u}^{\infty}(t) = \max_{y \in \partial x} \frac{|u(y) - t|}{r(x, y)}$$

for $t \in \mathbb{R}$. Note that $M_u(x) = \mu_{x,u}^{\infty}(u(x))$. Since $\mu_{x,u}^{\infty}$ is a convex function such that $\lim_{t \to \pm \infty} \mu_{x,u}^{\infty}(t) = \infty$ and that it is not constant on any open interval, it follows that there exists a unique ∞ -mean value $\mathrm{H}_x^{\infty} u$ such that $\mu_{x,u}^{\infty}(t) \geq \mu_{x,u}^{\infty}(\mathrm{H}_x^{\infty} u)$ for any $t \in \mathbb{R}$.

Let $x \in V$ and $u \in L(Nx)$. If u satisfies $u(x) \leq H_x^{\infty}u$ ($u(x) \geq H_x^{\infty}u$, $u(x) = H_x^{\infty}u$, resp.), then u is said to be ∞ -subharmonic (∞ -superharmonic, ∞ -harmonic, resp.) at x. Let $D \subset V$ and $u \in L(\overline{D})$. If u is ∞ -subharmonic (∞ -superharmonic, ∞ -harmonic, resp.) at each $x \in D$, then u is said to be ∞ -subharmonic (∞ -superharmonic, ∞ -harmonic, resp.) in D. Note that u is ∞ -superharmonic if and only if -u is ∞ -subharmonic.

We repeatedly use the next theorem, which characterizes ∞ -superharmonic functions and ∞ -subharmonic functions.

Theorem 3.1. Let $x \in V$ and u a function on Nx.

- (1) u is ∞ -superharmonic at x if and only if there is a vertex $y \in \partial x$ such that $\nabla u(x,y) = -M_u(x)$.
- (2) u is ∞ -subharmonic at x if and only if there is a vertex $y \in \partial x$ such that $\nabla u(x,y) = M_u(x)$.

Proof. Let $t_0 = H_x^{\infty} u$. Note that there is $y \in \partial x$ such that either $\nabla u(x, y) = M_u(x)$ or $\nabla u(x, y) = -M_u(x)$.

Case 1: $u(x) < t_0$. Using $M_u(x) = \mu_{x,u}^{\infty}(u(x)) \ge \mu_{x,u}^{\infty}(t_0)$ we have

$$\nabla u(x,z) = \frac{u(z) - u(x)}{r(x,z)} > \frac{u(z) - t_0}{r(x,z)} \ge -\mu_{x,u}^{\infty}(t_0) \ge -M_u(x).$$

for $z \in \partial x$. This means that $\nabla u(x, z) \neq -M_u(x)$ for $z \in \partial x$, and that there is $y_1 \in \partial x$ such that $\nabla u(x, y_1) = M_u(x)$.

Case 2: $u(x) > t_0$. It follows from an argument similar to Case 1 that $\nabla u(x, z) \neq M_u(x)$ for each $z \in \partial x$ and that there is $y_2 \in \partial x$ such that $\nabla u(x, y_2) = -M_u(x)$.

Case 3: $u(x) = t_0$. We show that there is $y_1 \in \partial x$ such that $\nabla u(x, y_1) = M_u(x)$. On the contrary we assume that $\nabla u(x, z) < M_u(x)$ for each $z \in \partial x$. Then

$$\frac{u(z) - t_0}{r(x, z)} = \frac{u(z) - u(x)}{r(x, z)} < M_u(x).$$

There is $\varepsilon > 0$ such that $r(x, z)^{-1}(u(z) - t_0 + \varepsilon) < M_u(x)$ for any $z \in \partial x$. Since

$$M_u(x) > \frac{u(z) - (t_0 - \varepsilon)}{r(x, z)} = \frac{u(z) - u(x)}{r(x, z)} + \frac{\varepsilon}{r(x, z)}$$
$$\geq -M_u(x) + \frac{\varepsilon}{r(x, z)} > -M_u(x),$$

it follows that $\mu_{x,u}^{\infty}(t_0 - \varepsilon) < M_u(x) = \mu_{x,u}^{\infty}(u(x)) = \mu_{x,u}^{\infty}(t_0)$, which contradicts the definition of t_0 . This means that there is $y_1 \in \partial x$ such that $\nabla u(x, y_1) = M_u(x)$. Similarly there is $y_2 \in \partial x$ such that $\nabla u(x, y_2) = -M_u(x)$.

Now suppose that u is ∞ -superharmonic at x. Then either Case 2 or Case 3 holds. There is $y_2 \in \partial x$ such that $\nabla u(x, y_2) = -M_u(x)$. Conversely, we assume that $\nabla u(x, y_2) = -M_u(x)$ for some $y_2 \in \partial x$. Then Case 1 cannot hold, so that $u(x) \geq t_0$. This means that u is ∞ -superharmonic at x. Therefore (1) holds. We can similarly prove (2).

Next proposition implies the Harnack inequality.

Proposition 3.2. Let $x \in V$ and let u be a function on Nx. Let $c_x = \max_{y,z \in \partial x} r(x,y)/r(x,z)$.

- (1) If u is ∞ -superharmonic at x and $u \ge 0$ on Nx, then $u(y) \le (1 + c_x)u(x)$ for $y \in \partial x$.
- (2) If u is ∞ -subharmonic at x and $u \leq 0$ on Nx, then $u(y) \geq (1+c_x)u(x)$ for $y \in \partial x$.

Proof. We shall prove (1) only. Theorem 3.1 shows that there is $z \in \partial x$ such that $\nabla u(x, z) = -M_u(x)$. Since $\nabla u(x, y) \leq M_u(x)$ for $y \in \partial x$ and $u(z) \geq 0$, it follows that

$$\frac{u(y) - u(x)}{r(x,y)} = \nabla u(x,y) \le -\nabla u(x,z) = \frac{u(x) - u(z)}{r(x,z)} \le \frac{u(x)}{r(x,z)}.$$

This implies that $u(y) \leq (1 + r(x, y)/r(x, z))u(x)$, and the assertion.

Lemma 3.3. Let $x \in V$. Let u and v be functions on ∂x with $u \leq v$. Then $\operatorname{H}_x^{\infty} u \leq \operatorname{H}_x^{\infty} v$.

Proof. On the contrary we assume that $H_x^{\infty} u > H_x^{\infty} v$. Then $u(y) - H_x^{\infty} u < v(y) - H_x^{\infty} v$ for each $y \in \partial x$. Let \tilde{v} be the function with $\tilde{v}(x) = H_x^{\infty} v$ and $\tilde{v} = v$ on ∂x . Let \tilde{u} be the function with $\tilde{u}(x) = H_x^{\infty} u$ and $\tilde{u} = u$ on ∂x . Since \tilde{u} is ∞ -harmonic at x, Theorem 3.1 implies that there is $y_1 \in \partial x$ such that

$$M_{\tilde{u}}(x) = \nabla \tilde{u}(x, y_1) = \frac{\tilde{u}(y_1) - \tilde{u}(x)}{r(x, y_1)} = \frac{u(y_1) - H_x^{\infty} u}{r(x, y_1)} < \frac{v(y_1) - H_x^{\infty} v}{r(x, y_1)}$$
$$= \frac{\tilde{v}(y_1) - \tilde{v}(x)}{r(x, y_1)} = \nabla \tilde{v}(x, y_1) \le M_{\tilde{v}}(x).$$

Similarly, using $y_2 \in \partial x$ with $\nabla \tilde{v}(x, y_2) = -M_{\tilde{v}}(x)$, we obtain $M_{\tilde{v}}(x) < M_{\tilde{u}}(x)$, and a contradiction.

Lemma 3.4. Let $D \subset V$. Let u be a function in \overline{D} and $x \in D$. Let

$$\tilde{u}(y) = \begin{cases} \mathrm{H}_x^{\infty} u & \text{if } y = x; \\ u(y) & \text{if } y \neq x. \end{cases}$$

- (1) If u is an ∞ -superharmonic function in D, then \tilde{u} is an ∞ -superharmonic function in D such that \tilde{u} is ∞ -harmonic at x and that $\tilde{u} \leq u$.
- (2) If u is an ∞ -subharmonic function in D, then \tilde{u} is an ∞ -subharmonic function in D such that \tilde{u} is ∞ -harmonic at x and that $\tilde{u} \ge u$.

Proof. We shall prove (1) only. It is obvious that \tilde{u} is ∞ -harmonic at x. Since $\tilde{u}(x) = \operatorname{H}_x^{\infty} u \leq u(x)$ and $\tilde{u}(z) = u(z)$ for $z \neq x$, it follows that $\tilde{u} \leq u$. Lemma 3.3 shows that $\tilde{u}(z) = u(z) \geq \operatorname{H}_z^{\infty} u \geq \operatorname{H}_z^{\infty} \tilde{u}$ for $z \neq x$. This means that \tilde{u} is ∞ -superharmonic at z.

Lemma 3.5. Let $D \subset V$ and $\{u_{\lambda}\}_{\lambda \in \Lambda}$ a family of functions in \overline{D} .

- (1) Suppose that u_{λ} is ∞ -superharmonic in D for each $\lambda \in \Lambda$ and that $u := \inf_{\lambda \in \Lambda} u_{\lambda}$ is finite for each vertex in \overline{D} . Then u is ∞ -superharmonic in D.
- (2) Suppose that u_{λ} is ∞ -subharmonic in D for each $\lambda \in \Lambda$ and that $u := \sup_{\lambda \in \Lambda} u_{\lambda}$ is finite for each vertex in \overline{D} . Then u is ∞ -subharmonic in D.

Proof. We shall prove (1) only. Let $x \in D$. Lemma 3.3 shows that $\operatorname{H}_x^{\infty} u \leq \operatorname{H}_x^{\infty} u_{\lambda} \leq u_{\lambda}(x)$ for $\lambda \in \Lambda$. Hence $\operatorname{H}_x^{\infty} u \leq u(x)$. This means that u is ∞ -superharmonic at x.

Lemma 3.6. Let $\{u_{\lambda}\}_{\lambda \in \Lambda}$ be a family of functions in V.

- (1) Suppose that $u := \inf_{\lambda \in \Lambda} u_{\lambda}$ is finite for each vertex in V. Then $D_{\infty}[u] \leq \sup_{\lambda \in \Lambda} D_{\infty}[u_{\lambda}]$.
- (2) Suppose that $u := \sup_{\lambda \in \Lambda} u_{\lambda}$ is finite for each vertex in V. Then $D_{\infty}[u] \leq \sup_{\lambda \in \Lambda} D_{\infty}[u_{\lambda}].$

We remark that $\sup_{\lambda \in \Lambda} D_{\infty}[u_{\lambda}] \leq \infty$.

Proof. We shall prove (1) only. Let $(x, y) \in E$. We may assume $u(y) \ge u(x)$. For $\varepsilon > 0$ there is $\lambda \in \Lambda$ such that $u_{\lambda}(x) \le u(x) + \varepsilon$. Since $u_{\lambda}(y) \ge u(y)$, it follows that

$$0 \le \nabla u(x,y) = \frac{u(y) - u(x)}{r(x,y)} \le \frac{u_{\lambda}(y) - u_{\lambda}(x) + \varepsilon}{r(x,y)}$$
$$= \nabla u_{\lambda}(x,y) + \frac{\varepsilon}{r(x,y)} \le \sup_{\lambda \in \Lambda} D_{\infty}[u_{\lambda}] + \frac{\varepsilon}{r(x,y)}.$$

Letting $\varepsilon \to 0$ we have that $|\nabla u(x,y)| \leq \sup_{\lambda \in \Lambda} D_{\infty}[u_{\lambda}]$, so that $D_{\infty}[u] \leq \sup_{\lambda \in \Lambda} D_{\infty}[u_{\lambda}]$.

4. The ideal boundary of a network

For $x, y \in V$ let R(x, y) be the geodesic distance between x and y, i.e.,

$$R(x,y) = \inf\{\sum_{i} r(z_{i-1}, z_i); \{z_i\}_i \text{ is a path from } x \text{ to } y\} \quad \text{if } x \neq y,$$
$$R(x,x) = 0.$$

Then R is a metric in V. An *infinite path* is an infinite sequence $\{x_i\}_{i=0}^{\infty}$ of distinct vertices such that $(x_{i-1}, x_i) \in E$ for $i = 1, 2, \ldots$ Let **P** be the set of all infinite paths and let

$$P_0 = \{\{z_i\}_i \in P; \sum_{i=1}^{\infty} r(z_{i-1}, z_i) < \infty\}.$$

For $x \in V$ and for two infinite paths $\boldsymbol{x} = \{x_i\}_i, \boldsymbol{y} = \{y_j\}_j \in \boldsymbol{P}_0$ we let

$$R(x, \boldsymbol{y}) = R(\boldsymbol{y}, x) = \lim_{n \to \infty} R(x, y_n), \qquad R(\boldsymbol{x}, \boldsymbol{y}) = \lim_{\substack{m \to \infty \\ n \to \infty}} R(x_m, y_n).$$

It is obvious that the right-hand side of each exists and that R satisfies the triangle inequality in $V \cup \mathbf{P}_0$. However it is not a metric in general; it happens that $R(\mathbf{x}, \mathbf{y}) = 0$ for distinct $\mathbf{x}, \mathbf{y} \in \mathbf{P}_0$. We identify $\mathbf{x}, \mathbf{y} \in \mathbf{P}_0$ whenever $R(\mathbf{x}, \mathbf{y}) = 0$. We let $[\mathbf{x}]$ be the equivalence class containing $\mathbf{x} \in \mathbf{P}_0$ and let Ξ be the set of equivalence classes:

$$[x] = \{ y \in P_0; R(x, y) = 0 \}, \qquad \Xi = \{ [x]; x \in P_0 \}.$$

For $x, y \in V$ and $\xi, \eta \in \Xi$ we let

$$\rho(x,y)=R(x,y),\qquad \rho(x,\eta)=\rho(\eta,x)=R(x,\boldsymbol{y}),\qquad \rho(\xi,\eta)=R(\boldsymbol{x},\boldsymbol{y}),$$

where $\boldsymbol{x} \in \xi$ and $\boldsymbol{y} \in \eta$. It is easy to see that ρ is well-defined. Also we have that, for $\{x_m\}_m \in \xi$ and $\{y_n\}_n \in \eta$,

$$\rho(x,\eta) = \rho(\eta,x) = \lim_{n \to \infty} \rho(x,y_n), \qquad \rho(\xi,\eta) = \lim_{\substack{m \to \infty \\ n \to \infty}} \rho(x_m,y_n),$$

and that ρ is a metric in $V \cup \Xi$. We call Ξ the *ideal boundary* of the network (V, E, r).

Lemma 4.1. Let $u \in \mathbf{D}^{(\infty)}$ and $\xi \in \Xi$. Then there exists a finite limit $\lim_{n\to\infty} u(x_n)$ for $\{x_j\}_j \in \xi$, which is independent of the choice of the representative.

Proof. Let $\{x_j\}_j \in \xi$. It is easy to see that $|u(x_m) - u(x_n)| \leq D_{\infty}[u]\rho(x_m, x_n)$, and that $\{u(x_n)\}_n$ is a Cauchy sequence. There is a finite limit $\lim_{n\to\infty} u(x_n)$.

Let $\boldsymbol{x}^{(i)} = \{x_n^{(i)}\}_n \in \xi$ for i = 1, 2. Then $|u(x_m^{(1)}) - u(x_n^{(2)})| \leq D_{\infty}[u]\rho(x_m^{(1)}, x_n^{(2)})$, and the right-hand side tends to 0 as $m, n \to \infty$. Therefore $\lim_{m \to \infty} u(x_m^{(1)}) = \lim_{n \to \infty} u(x_n^{(2)})$.

We simply write $u(\xi) = \lim_{n \to \infty} u(x_n)$ for $u \in \mathbf{D}^{(\infty)}$ and $\{x_j\}_j \in \xi \in \Xi$.

Proposition 4.2. Let $u \in \mathbf{D}^{(\infty)}$. Then $|u(\xi) - u(\eta)| \leq D_{\infty}[u]\rho(\xi,\eta)$ for $\xi, \eta \in \Xi$.

Proof. Let $\{x_n\}_n \in \xi$ and $\{y_m\}_m \in \eta$. Then $|u(x_n) - u(y_m)| \leq D_{\infty}[u]\rho(x_n, y_m)$. It follows that $|u(\xi) - u(\eta)| \leq D_{\infty}[u]\rho(\xi, \eta)$.

Next theorem implies the maximal principle.

Theorem 4.3. Let u be a function in V and $x_0 \in V$ with $M_u(x_0) > 0$.

(1) If u is ∞ -superharmonic, then there is an infinite path $\boldsymbol{x} = \{x_i\}_{i=0}^{\infty} \in \boldsymbol{P}$ such that

$$u(x_n) \le u(x_0) - M_u(x_0) \sum_{i=1}^n r(x_{i-1}, x_i)$$
 for each n.

Moreover, if u is bounded from below, then $x \in P_0$.

(2) If u is ∞ -subharmonic, then there is an infinite path $\boldsymbol{x} = \{x_i\}_{i=0}^{\infty} \in \boldsymbol{P}$ such that

$$u(x_n) \ge u(x_0) + M_u(x_0) \sum_{i=1}^n r(x_{i-1}, x_i)$$
 for each n.

Moreover, if u is bounded from above, then $x \in P_0$.

Proof. We shall prove (2) only. Theorem 3.1 shows that there is $x_1 \in \partial x_0$ such that $\nabla u(x_0, x_1) = M_u(x_0)$. Note that $u(x_1) = u(x_0) + \nabla u(x_0, x_1)r(x_0, x_1) > u(x_0)$. Again Theorem 3.1 shows that there is $x_2 \in \partial x_1$ such that

$$\nabla u(x_1, x_2) = M_u(x_1) \ge \nabla u(x_0, x_1) = M_u(x_0).$$

Note that $u(x_2) = u(x_1) + \nabla u(x_1, x_2) r(x_1, x_2) > u(x_1)$, and that $x_2 \neq x_0, x_1$. Repeating this argument we obtain an infinite path $\boldsymbol{x} = \{x_i\}_i$ such that $\nabla u(x_{i-1}, x_i) \geq M_u(x_0)$ and $u(x_i) > u(x_{i-1})$ for each *i*. Therefore

$$u(x_n) - u(x_0) = \sum_{i=1}^n \nabla u(x_{i-1}, x_i) r(x_{i-1}, x_i) \ge M_u(x_0) \sum_{i=1}^n r(x_{i-1}, x_i)$$

for each n.

If u is bounded from above, then $\sum_{i=1}^{\infty} r(x_{i-1}, x_i) < \infty$, so that $x \in \mathbf{P}_0$.

Lemma 4.4. Let $u \in \mathbf{D}^{(\infty)}$ and $x_0 \in V$ with $M_u(x_0) > 0$.

(1) If u is bounded from below and ∞ -superharmonic, then there is $\xi \in \Xi$ such that

$$u(\xi) \le u(x_0) - M_u(x_0)\rho(x_0,\xi).$$

(2) If u is bounded from above and ∞ -subharmonic, then there is $\xi \in \Xi$ such that

$$u(\xi) \ge u(x_0) + M_u(x_0)\rho(x_0,\xi).$$

Proof. We shall prove (2) only. Theorem 4.3 shows that there is $\{x_n\}_n \in \mathbf{P}_0$ such that

$$u(x_n) \ge u(x_0) + M_u(x_0) \sum_{i=1}^n r(x_{i-1}, x_i) \ge u(x_0) + M_u(x_0)\rho(x_0, x_n).$$

Letting $\xi = [\{x_n\}_n] \in \Xi$ and tending $n \to \infty$ we have the assertion.

Corollary 4.5. Let $u \in \mathbf{D}^{(\infty)}$.

- (1) If u is bounded from below and ∞ -superharmonic, then $\inf_{V \cup \Xi} u = \inf_{\Xi} u$.
- (2) If u is bounded from above and ∞ -subharmonic, then $\sup_{V \cup \Xi} u = \sup_{\Xi} u$.

Proof. We shall prove (1) only. If u is constant, then the assertion trivially holds. We assume that u is not constant. It suffices to show that $\inf_V u \ge \inf_{\Xi} u$. Let $z_0 \in V$. We need to show that $u(z_0) \ge \inf_{\Xi} u$. Let $A = \{x \in V; u(x) = u(z_0)\}$. Since u is not constant, it follows that there is $x_0 \in A$ with $M_u(x_0) > 0$. Lemma 4.4 implies that there is $\xi \in \Xi$ such that $u(\xi) \le u(x_0) - M_u(x_0)\rho(x_0,\xi)$. Therefore $\inf_{\Xi} u \le u(\xi) \le u(x_0) = u(z_0)$.

Lemma 4.6. Let $\zeta \in \Xi$ and let $u(x) = \rho(\zeta, x)$. Then u is ∞ -superharmonic and $M_u \equiv 1$ in V. Especially $D_{\infty}[u] = 1$.

Proof. Let $x \in V$ and $y \in \partial x$. Since $|u(x) - u(y)| = |\rho(\zeta, x) - \rho(\zeta, y)| \le \rho(x, y) \le r(x, y)$, it follows that $|\nabla u(x, y)| \le 1$, and that $M_u(x) \le 1$. Let $\{z_i\}_{i=1}^{n} \in \zeta$. Take a path $\{x_i\}_{i=1}^{l}$ from x to z. Then

Let $\{z_n\}_n \in \zeta$. Take a path $\{x_i\}_{i=0}^l$ from x to z_n . Then

$$\sum_{i=1}^{l} r(x_{i-1}, x_i) = r(x, x_1) + \sum_{i=2}^{l} r(x_{i-1}, x_i) \ge r(x, x_1) + \rho(x_1, z_n)$$
$$\ge \min_{y \in \partial x} (r(x, y) + \rho(y, z_n)).$$

It follows that $\rho(x, z_n) \geq \min_{y \in \partial x} (r(x, y) + \rho(y, z_n))$. Letting $n \to \infty$ we have $\rho(x, \zeta) \geq \min_{y \in \partial x} (r(x, y) + \rho(y, \zeta))$. This means that $u(x) \geq u(y) + r(x, y)$ for some $y \in \partial x$, or $\nabla u(x, y) \leq -1$. Therefore $\nabla u(x, y) = -1$, and $M_u(x) = 1$. Theorem 3.1 shows that u is ∞ -superharmonic at x. \Box

5. The Dirichlet problem

A network is said to be ∞ -hyperbolic if $\mathbf{P}_0 \neq \emptyset$; otherwise a network is said to be ∞ -parabolic.

First we shall show a Liouville type theorem for an ∞ -parabolic network, namely Theorem 5.2, which immediately follows from the next proposition.

Proposition 5.1. Suppose that (V, E, r) is an ∞ -parabolic network.

- (1) Let u be an ∞ -superharmonic function such that $\liminf_{n\to\infty} u(x_n) > -\infty$ for each $\{x_n\}_n \in \mathbf{P}$. Then u must be constant.
- (2) Let u be an ∞ -subharmonic function such that $\limsup_{n\to\infty} u(x_n) < \infty$ for each $\{x_n\}_n \in \mathbf{P}$. Then u must be constant.

Proof. We shall prove (2) only. If u is not constant, then there is $x_0 \in V$ such that $M_u(x_0) > 0$. Theorem 4.3 implies that there is $\boldsymbol{x} = \{x_n\}_n \in \boldsymbol{P}$ such that

$$u(x_n) \ge u(x_0) + M_u(x_0) \sum_{i=1}^n r(x_{i-1}, x_i).$$

Since $\limsup_{n\to\infty} u(x_n) < \infty$, it follows that $\sum_{i=1}^{\infty} r(x_{i-1}, x_i) < \infty$, and therefore $\boldsymbol{x} \in \boldsymbol{P}_0$, which is impossible because $\boldsymbol{P}_0 = \emptyset$.

Theorem 5.2. Suppose that (V, E, r) is an ∞ -parabolic network. Let u be an ∞ -harmonic function which is either bounded from above or bounded from below. Then u must be constant.

There may be an unbounded ∞ -harmonic function on an ∞ -parabolic network.

Example 5.3. Let $V = \{x_n\}_{n=-\infty}^{\infty}$, $E = \{(x_{n-1}, x_n)\}_{n=-\infty}^{\infty}$ and $r \equiv 1$. Then (V, E, r) is an ∞ -parabolic network. Let $u(x_n) = n$. Then u is an ∞ -harmonic function in V.

From here to the end of this section we always assume that (V, E, r) is an ∞ -hyperbolic network. We formulate the Dirichlet problem for ∞ -harmonic functions as follows:

For a bounded function f on Ξ ,

find a bounded ∞ -harmonic function $h \in \mathbf{D}^{(\infty)}$ such that $h \equiv f$ on Ξ .

We define the upper class \mathcal{U}_f , the lower class \mathcal{L}_f , the upper solution $\overline{\mathcal{H}}_f$ and the lower solution $\underline{\mathcal{H}}_f$ by

 $\mathcal{U}_f = \Big\{ u \in \mathbf{D}^{(\infty)}; \begin{array}{l} u \text{ is a bounded from below and } \infty \text{-superharmonic function} \\ \text{such that } u \ge f \text{ on } \Xi \end{array} \Big\}, \\ \mathcal{L}_f = \Big\{ v \in \mathbf{D}^{(\infty)}; \begin{array}{l} v \text{ is a bounded from above and } \infty \text{-subharmonic function} \\ \text{such that } v \le f \text{ on } \Xi \end{array} \Big\}, \\ \end{array}$

$$\overline{\mathcal{H}}_f(x) = \inf\{u(x); u \in \mathcal{U}_f\}, \qquad \underline{\mathcal{H}}_f(x) = \sup\{v(x); v \in \mathcal{L}_f\} \quad \text{for } x \in V.$$

If $\mathcal{U}_f = \emptyset$, then we let $\overline{\mathcal{H}}_f \equiv \infty$. If $\mathcal{L}_f = \emptyset$, then we let $\underline{\mathcal{H}}_f \equiv -\infty$.

Proposition 5.4. Let f be a constant function on Ξ . Then a solution to the Dirichlet problem for f must be constant.

Proof. Suppose that there is a nonconstant solution h to the Dirichlet problem. Let $x_0 \in V$ with $M_h(x_0) > 0$. Lemma 4.4 shows that there are $\xi, \eta \in \Xi$ such that

$$f(\xi) = h(\xi) \le h(x_0) - M_h(x_0)\rho(x_0,\xi),$$

$$f(\eta) = h(\eta) \ge h(x_0) + M_h(x_0)\rho(x_0,\eta).$$

Then

$$0 = f(\eta) - f(\xi) \ge M_h(x_0)(\rho(x_0, \eta) + \rho(x_0, \xi)) > 0,$$

which is a contradiction.

Proposition 4.2 shows that the boundary function must be a Lipschitz function on Ξ whenever a solution to the Dirichlet problem exists. By Proposition 5.4 we may assume that the boundary function is not constant. Therefore we restrict a boundary function to a nonconstant Lipschitz function on Ξ . This also means that Ξ contains at least two points.

For a nonconstant Lipschitz function f on Ξ we let L_f be the Lipschitz constant:

$$L_f = \sup_{\substack{\xi,\eta\in\Xi\\\xi\neq\eta}} \frac{|f(\xi) - f(\eta)|}{\rho(\xi,\eta)}$$

We define

$$L_{f,\xi} = \sup_{\eta \in \Xi \setminus \{\xi\}} \frac{|f(\xi) - f(\eta)|}{\rho(\xi,\eta)},$$

$$\varphi_{f,\xi}(x) = f(\xi) + L_{f,\xi}\rho(\xi,x), \qquad \psi_{f,\xi}(x) = f(\xi) - L_{f,\xi}\rho(\xi,x),$$

$$\varphi_f(x) = \inf_{\xi \in \Xi} \varphi_{f,\xi}(x), \qquad \psi_f(x) = \sup_{\xi \in \Xi} \psi_{f,\xi}(x)$$

for $\xi \in \Xi$ and $x \in V$.

Lemma 5.5. Let f be a nonconstant bounded Lipschitz function on Ξ . Then $\varphi_{f,\xi}, \varphi_f \in \mathcal{U}_f$ and $\psi_{f,\xi}, \psi_f \in \mathcal{L}_f$ for $\xi \in \Xi$. Moreover

$$\begin{split} M_{\varphi_{f,\xi}} &\equiv M_{\psi_{f,\xi}} \equiv L_{f,\xi} & \text{in } V, \\ D_{\infty}[\varphi_{f,\xi}] &= D_{\infty}[\psi_{f,\xi}] = L_{f,\xi}, \\ \varphi_{f,\xi}(\xi) &= \psi_{f,\xi}(\xi) = f(\xi), \\ D_{\infty}[\varphi_{f}] &= D_{\infty}[\psi_{f}] = L_{f}, \\ \varphi_{f} &\equiv \psi_{f} \equiv f & \text{on } \Xi. \end{split}$$

Proof. Lemma 4.6 shows that $\varphi_{f,\xi}$ is ∞ -superharmonic, that $M_{\varphi_{f,\xi}} \equiv L_{f,\xi}$, and that $D_{\infty}[\varphi_{f,\xi}] = L_{f,\xi}$. It is easy to see that $\varphi_{f,\xi}(\xi) = f(\xi)$. Clearly $\varphi_{f,\xi} \ge f(\xi)$ in V, which means that $\varphi_{f,\xi}$ is bounded from below. Let $\eta \in \Xi$. Then $\varphi_{f,\xi}(\eta) =$ $f(\xi) + L_{f,\xi}\rho(\xi,\eta)$. Since $f(\eta) - f(\xi) \le L_{f,\xi}\rho(\xi,\eta)$, it follows that $\varphi_{f,\xi}(\eta) \ge f(\eta)$. Therefore $\varphi_{f,\xi} \in \mathcal{U}_f$.

Since $\varphi_{f,\xi} \geq f(\xi) \geq \inf_{\Xi} f$ in V, it follows that $\varphi_f \geq \inf_{\Xi} f$ in V and that φ_f is finite at each vertex in V. Lemmas 3.5 and 3.6 show that φ_f is ∞ -superharmonic and that $D_{\infty}[\varphi_f] \leq \sup_{\xi \in \Xi} D_{\infty}[\varphi_{f,\xi}] = \sup_{\xi \in \Xi} L_{f,\xi} = L_f$. For $\xi \in \Xi$ and $\{y_n\}_n \in \eta \in \Xi$

$$\varphi_{f,\xi}(y_n) \ge \varphi_{f,\xi}(\eta) - D_{\infty}[\varphi_{f,\xi}]\rho(y_n,\eta) = \varphi_{f,\xi}(\eta) - L_{f,\xi}\rho(y_n,\eta)$$
$$\ge f(\eta) - L_f\rho(y_n,\eta).$$

Taking the infimum with respect to ξ and tending $n \to \infty$ we obtain $\varphi_f(\eta) \ge f(\eta)$. Since $\varphi_f(\eta) \le \varphi_{f,\eta}(\eta) = f(\eta)$, it follows that $\varphi_f \equiv f$ on Ξ and that $\varphi_f \in \mathcal{U}_f$. The fact $|f(\xi) - f(\eta)| = |\varphi_f(\xi) - \varphi_f(\eta)| \le D_{\infty}[\varphi_f]\rho(\xi,\eta)$ gives that $D_{\infty}[\varphi_f] \ge L_f$, and that $D_{\infty}[\varphi_f] = L_f$.

We can similarly prove the assertion for $\psi_{f,\xi}$ and ψ_f .

Lemma 5.6. Let f be a nonconstant bounded Lipschitz function on Ξ with Lipschitz constant L_f . Let

$$\tilde{\mathcal{U}}_f = \{ u \in \mathcal{U}_f ; u \le \varphi_f \text{ in } V \}, \qquad \tilde{\mathcal{L}}_f = \{ v \in \mathcal{L}_f ; v \ge \psi_f \text{ in } V \}.$$

Then $D_{\infty}[u] \leq L_f$ for $u \in \tilde{\mathcal{U}}_f \cup \tilde{\mathcal{L}}_f$.

Proof. Let $u \in \mathcal{U}_f$ and $x_0 \in V$. We shall show that $M_u(x_0) \leq L_f$. We may assume $M_u(x_0) > 0$. Lemma 4.4 shows that there is $\xi \in \Xi$ such that $u(\xi) \leq u(x_0) - M_u(x_0)\rho(x_0,\xi)$, or

$$M_u(x_0) \le \frac{u(x_0) - u(\xi)}{\rho(x_0, \xi)}.$$

Lemma 5.5 shows that $f(\xi) \leq u(\xi) \leq \varphi_f(\xi) = f(\xi)$, so that $u(\xi) = f(\xi)$. Also

$$u(x_0) \le \varphi_f(x_0) \le \varphi_{f,\xi}(x_0) = f(\xi) + L_{f,\xi}\rho(\xi, x_0) \le f(\xi) + L_f\rho(\xi, x_0).$$

Combining these we have $M_u(x_0) \leq L_f$. This means $D_{\infty}[u] \leq L_f$.

We can similarly prove $D_{\infty}[u] \leq L_f$ for $u \in \hat{\mathcal{L}}_f$.

Theorem 5.7. Let f be a nonconstant bounded Lipschitz function on Ξ with Lipschitz constant L_f . Then both $\overline{\mathcal{H}}_f$ and $\underline{\mathcal{H}}_f$ are bounded ∞ -harmonic functions with

$$D_{\infty}[\overline{\mathcal{H}}_f] \leq L_f, \qquad D_{\infty}[\underline{\mathcal{H}}_f] \leq L_f, \qquad \overline{\mathcal{H}}_f \equiv \underline{\mathcal{H}}_f \equiv f \quad on \ \Xi.$$

In particular, both $\overline{\mathcal{H}}_f$ and $\underline{\mathcal{H}}_f$ are solutions to the Dirichlet problem for f.

Proof. First we shall show that $\inf_{\Xi} f \leq \overline{\mathcal{H}}_f \leq \sup_{\Xi} f$ in V. Since the constant function $\sup_{\Xi} f$ is in \mathcal{U}_f , it follows that $\overline{\mathcal{H}}_f \leq \sup_{\Xi} f$ in V. Let $u \in \mathcal{U}_f$. Corollary 4.5 shows that $\inf_{V \cup \Xi} u = \inf_{\Xi} u \geq \inf_{\Xi} f$, so that $u \geq \inf_{\Xi} f$ in V. Therefore $\overline{\mathcal{H}}_f \geq \inf_{\Xi} f$ in V.

Lemma 3.5 shows that $\overline{\mathcal{H}}_f$ is ∞ -superharmonic in V. Let $x \in V$. Let $u(x) = \operatorname{H}_x^{\infty} \overline{\mathcal{H}}_f$ and $u = \overline{\mathcal{H}}_f$ in $V \setminus \{x\}$. Then Lemma 3.4 shows that $u \leq \overline{\mathcal{H}}_f$, that $u \in \mathcal{U}_f$, and that u is ∞ -harmonic at x. Therefore $\overline{\mathcal{H}}_f \equiv u$, and that $\overline{\mathcal{H}}_f$ is ∞ -harmonic at x.

It is easy to see that $\overline{\mathcal{H}}_f(x) = \inf\{u(x); u \in \tilde{\mathcal{U}}_f\}$ for $x \in V$, where $\tilde{\mathcal{U}}_f$ is defined as in Lemma 5.6. Lemmas 3.6 and 5.6 show that $D_{\infty}[\overline{\mathcal{H}}_f] \leq \sup\{D_{\infty}[u]; u \in \tilde{\mathcal{U}}_f\} \leq L_f$.

Next we claim that $\overline{\mathcal{H}}_f(\xi) = f(\xi)$ for $\xi \in \Xi$. Lemma 5.5 shows that $\overline{\mathcal{H}}_f(\xi) \leq \varphi_f(\xi) = f(\xi)$. For the converse, let $\{x_n\}_n \in \xi$. Then

$$\overline{\mathcal{H}}_f(\xi) \ge \overline{\mathcal{H}}_f(x_n) - D_{\infty}[\overline{\mathcal{H}}_f]\rho(x_n,\xi) \ge \overline{\mathcal{H}}_f(x_n) - L_f\rho(x_n,\xi).$$

For $n \in \mathbb{N}$ and $\varepsilon > 0$ there is $u \in \mathcal{U}_f$ such that $\overline{\mathcal{H}}_f(x_n) \ge u(x_n) - \varepsilon$. Lemma 5.6 implies that

$$u(x_n) \ge u(\xi) - D_{\infty}[u]\rho(x_n,\xi) \ge f(\xi) - L_f\rho(x_n,\xi).$$

Combining these we obtain $\overline{\mathcal{H}}_f(\xi) \ge f(\xi) - 2L_f\rho(x_n,\xi) - \varepsilon$. Tending $n \to \infty$ and $\varepsilon \to 0$ we have $\overline{\mathcal{H}}_f(\xi) \ge f(\xi)$. Therefore $\overline{\mathcal{H}}_f(\xi) = f(\xi)$.

Similarly we can prove the assertion for $\underline{\mathcal{H}}_f$.

Proposition 5.8. Let f be a nonconstant bounded Lipschitz function on Ξ . Let h be a solution to the Dirichlet problem for f. Then

$$\psi_f \leq \mathcal{H}_f \leq h \leq \underline{\mathcal{H}}_f \leq \varphi_f \qquad in \ V.$$

Proof. We note that the set of solutions to the Dirichlet problem coincides with $\mathcal{U}_f \cap \mathcal{L}_f$, especially $h \in \mathcal{U}_f \cap \mathcal{L}_f$. It follows that $\overline{\mathcal{H}}_f = \inf_{u \in \mathcal{U}_f} u \leq \inf_{u \in \mathcal{U}_f \cap \mathcal{L}_f} u \leq h$ in V.

We shall prove $\underline{\mathcal{H}}_f \leq \varphi_{f,\xi}$ in V for $\xi \in \Xi$. On the contrary we assume that $A := \{ y \in V; \underline{\mathcal{H}}_f(y) > \varphi_{f,\xi}(y) \} \neq \emptyset$ for a fixed $\xi \in \Xi$. Let $y_0 \in A$. Lemma 5.5 and Theorem 4.3 show that there is $\{y_n\}_n \in \eta \in \Xi$ such that

$$\varphi_{f,\xi}(y_n) \le \varphi_{f,\xi}(y_0) - L_{f,\xi} \sum_{i=1}^n r(y_{i-1}, y_i).$$

Also

$$\underline{\mathcal{H}}_f(y_0) = \underline{\mathcal{H}}_f(y_n) + \sum_{i=1}^n \nabla \underline{\mathcal{H}}_f(y_i, y_{i-1}) r(y_{i-1}, y_i)$$
$$\leq \underline{\mathcal{H}}_f(y_n) + \sum_{i=1}^n M_{\underline{\mathcal{H}}_f}(y_{i-1}) r(y_{i-1}, y_i).$$

Combining these and the fact that $y_0 \in A$ we have

(3)
$$\varphi_{f,\xi}(y_n) + L_{f,\xi} \sum_{i=1}^n r(y_{i-1}, y_i) < \underline{\mathcal{H}}_f(y_n) + \sum_{i=1}^n M_{\underline{\mathcal{H}}_f}(y_{i-1}) r(y_{i-1}, y_i).$$

Since $f(\eta) \leq \varphi_{f,\xi}(\eta)$ and $\underline{\mathcal{H}}_f(\eta) = f(\eta)$, it follows that $L_{f,\xi} \sum_{i=1}^{\infty} r(y_{i-1}, y_i) \leq \frac{1}{2} \sum_{i=1}^{\infty} r(y_{i-1}, y_i)$ $\sum_{i=1}^{\infty} M_{\underline{\mathcal{H}}_f}(y_{i-1}) r(y_{i-1}, y_i)$. There is $n \geq 0$ with $L_{f,\xi} \leq M_{\underline{\mathcal{H}}_f}(y_n)$. We take the smallest such n. If $n \geq 1$, then, since $L_{f,\xi} > M_{\underline{\mathcal{H}}_f}(y_{i-1})$ for $i = 1, 2, \ldots, n$, the inequality (3) implies that

$$\varphi_{f,\xi}(y_n) + L_{f,\xi} \sum_{i=1}^n r(y_{i-1}, y_i) < \underline{\mathcal{H}}_f(y_n) + \sum_{i=1}^n L_{f,\xi} r(y_{i-1}, y_i),$$

so that $y_n \in A$. This also holds if n = 0.

Let $z_0 = y_n$. Then $M_{\underline{\mathcal{H}}_f}(z_0) \geq L_{f,\xi}$ and $z_0 \in A$. Lemma 4.4 shows that there is $\zeta \in \Xi$ such that

$$f(\zeta) = \underline{\mathcal{H}}_f(\zeta) \ge \underline{\mathcal{H}}_f(z_0) + M_{\underline{\mathcal{H}}_f}(z_0)\rho(z_0,\zeta) \ge \underline{\mathcal{H}}_f(z_0) + L_{f,\xi}\rho(z_0,\zeta).$$

Lemma 5.5 shows that

$$f(\zeta) \le \varphi_{f,\xi}(\zeta) \le \varphi_{f,\xi}(z_0) + D_{\infty}[\varphi_{f,\xi}]\rho(z_0,\zeta) = \varphi_{f,\xi}(z_0) + L_{f,\xi}\rho(z_0,\zeta).$$

These imply that $\varphi_{f,\xi}(z_0) \geq \underline{\mathcal{H}}_f(z_0)$, which contradicts $z_0 \in A$. This means that $\underline{\mathcal{H}}_f \leq \varphi_{f,\xi}$ in V for $\xi \in \Xi$, and that $\underline{\mathcal{H}}_f \leq \varphi_f$ in V.

The other inequalities can be proved similarly.

Theorem 5.9. Let f be a nonconstant bounded Lipschitz function on Ξ with Lipschitz constant L_f . Then a solution to the Dirichlet problem for f is a solution to the variational problem:

Minimize
$$D_{\infty}[u]$$
 subject to $u \in \mathbf{D}^{(\infty)}$ and $u \equiv f$ on Ξ .

More precisely, if $u \in \mathbf{D}^{(\infty)}$ satisfies $u \equiv f$ on Ξ , then $D_{\infty}[u] \geq L_f$, and the equality holds when u is bounded and ∞ -harmonic.

We remark that the equality above can hold even when u is not ∞ -harmonic. See Example 5.10.

Proof. Let $u \in \mathbf{D}^{(\infty)}$ with $u \equiv f$ on Ξ . Let $\xi, \eta \in \Xi$. Then $|f(\xi) - f(\eta)| = |u(\xi) - u(\eta)| \leq D_{\infty}[u]\rho(\xi,\eta)$. This means $D_{\infty}[u] \geq L_f$.

Let h be a solution to the Dirichlet problem for f. Proposition 5.8 and Lemma 5.6 show that $h \in \tilde{\mathcal{U}}_f$ and that $D_{\infty}[h] \leq L_f$.

A solution to the variational problem in Theorem 5.9 is not necessarily unique. **Example 5.10.** We note that Lemma 5.5 shows that φ_f is a solution to the variational problem in Theorem 5.9. Let

$$V = \{o\} \cup \{x_n, y_n, z_n\}_{n=1}^{\infty},$$

$$E = \{(x_{n-1}, x_n), (y_{n-1}, y_n), (z_{n-1}, z_n)\}_{n=1}^{\infty},$$

$$r(x_{n-1}, x_n) = r(y_{n-1}, y_n) = r(z_{n-1}, z_n) = 2^{-n},$$

where $x_0 = y_0 = z_0 = o$. Let $\xi = [\{x_n\}_n], \eta = [\{y_n\}_n], \zeta = [\{z_n\}_n]$. Let $f(\xi) = -1$, $f(\eta) = 1, f(\zeta) = 0$. Then $L_{f,\xi} = L_{f,\eta} = 1$ and $L_{f,\zeta} = 1/2$. We have

$$\overline{\mathcal{H}}_f(x) = \begin{cases} 0 & \text{if } x = o; \\ 2^{-n} - 1 & \text{if } x = x_n; \\ 1 - 2^{-n} & \text{if } x = y_n; \\ 0 & \text{if } x = z_n, \end{cases} \qquad \varphi_f(x) = \begin{cases} 0 & \text{if } x = o; \\ 2^{-n} - 1 & \text{if } x = x_n; \\ 1 - 2^{-n} & \text{if } x = y_n; \\ 2^{-n-1} & \text{if } x = z_n \end{cases}$$

for $n \geq 1$. Note that φ_f is not ∞ -harmonic at z_1 .

Here we show a uniqueness result for a solution to the Dirichlet problem. Let

- ()

$$\delta(x) = \inf_{\eta \in \Xi} \rho(x, \eta),$$

$$\boldsymbol{Q} = \{\{x_n\}_n \in \boldsymbol{P}; \liminf_{n \to \infty} \delta(x_n) > 0 \text{ and } \limsup_{n \to \infty} \delta(x_n) < \infty\}.$$

Lemma 5.11. Let v_1 and v_2 be bounded from above and ∞ -subharmonic functions with $v_1, v_2 \in \mathbf{D}^{(\infty)}$. Suppose that $\limsup_{n\to\infty} (v_1(x_n) + v_2(x_n)) \leq 0$ for all $\{x_n\}_n \in \mathbf{P}_0 \cup \mathbf{Q}$. Then $v_1 + v_2 \leq 0$ in V.

Proof. Let $u = v_1 + v_2$. It suffices to show that $A := \{x \in V; u(x) > \alpha\} = \emptyset$ for all $\alpha > 0$. On the contrary we assume $A \neq \emptyset$ for some $\alpha > 0$. Let $M_i(x) = M_{v_i}(x)$ for i = 1, 2 and $M(x) = \max\{M_1(x), M_2(x)\}$.

If M(x) = 0 for each $x \in A$, then u is constant on \overline{A} , so that A = V. For $\{x_n\}_n \in \mathbf{P}_0$, it follows that $\alpha < \limsup_{n \to \infty} u(x_n) \leq 0$, which contradicts $\alpha > 0$. We may assume that $M(x_0) > 0$ for some $x_0 \in A$.

We shall show that there exists $x_1 \in \partial x_0$ such that either

- (1a) $u(x_1) > u(x_0)$ and $M(x_1) \ge M(x_0)$; or
- (1b) $u(x_1) = u(x_0), v_1(x_1) > v_1(x_0)$ and $M(x_1) \ge M(x_0)$.

First we consider the case $M_1(x_0) > M_2(x_0)$. By Theorem 3.1, there exists $x_1 \in \partial x_0$ such that

$$\nabla v_1(x_0, x_1) = M_1(x_0) > M_2(x_0) \ge -\nabla v_2(x_0, x_1),$$

and hence $\nabla u(x_0, x_1) > 0$, i.e., $u(x_1) > u(x_0)$. Since $M(x_1) \ge M_1(x_1) \ge \nabla v_1(x_0, x_1) = M_1(x_0) = M(x_0)$, it follows that x_1 satisfies (1a). In case $M_1(x_0) < M_2(x_0)$, similarly there is $x_1 \in \partial x_0$ with $\nabla v_2(x_0, x_1) = M_2(x_0)$, which satisfies (1a). Next we consider the case $M_1(x_0) = M_2(x_0)$. By Theorem 3.1, there exists $x_1 \in \partial x_0$ such that

$$\nabla v_1(x_0, x_1) = M_1(x_0) = M_2(x_0) \ge -\nabla v_2(x_0, x_1),$$

and hence $\nabla u(x_0, x_1) \ge 0$, i.e., $u(x_1) \ge u(x_0)$. If $u(x_1) > u(x_0)$, then an argument similar to the first case shows that x_1 satisfies (1a). If $u(x_1) = u(x_0)$, then, since $\nabla v_1(x_0, x_1) = M(x_0) > 0$, it follows that $v_1(x_1) > v_1(x_0)$. The fact $M(x_1) \ge$ $\nabla v_1(x_0, x_1) = M(x_0)$ implies that x_1 satisfies (1b).

Since $x_1 \in A$ and $M(x_1) > 0$, there is $x_2 \in \partial x_1$ such that either

- (2a) $u(x_2) > u(x_1)$ and $M(x_2) \ge M(x_1)$; or
- (2b) $u(x_2) = u(x_1), v_1(x_2) > v_1(x_1)$ and $M(x_2) \ge M(x_1)$.

Repeating this argument we obtain a sequence $\{x_n\}_n$ such that $x_n \in \partial x_{n-1}$ and that either

(na) $u(x_n) > u(x_{n-1})$ and $M(x_n) \ge M(x_{n-1})$; or

(nb) $u(x_n) = u(x_{n-1}), v_1(x_n) > v_1(x_{n-1}) \text{ and } M(x_n) \ge M(x_{n-1}).$

Suppose that $x_k = x_l$ for some k < l. If (ia) holds for some i with $k < i \le l$, then

$$u(x_l) \ge \cdots \ge u(x_i) > u(x_{i-1}) \ge \cdots \ge u(x_k) = u(x_l),$$

a contradiction; if (*i*b) holds for all *i* with $k < i \leq l$, then $v_1(x_l) > \cdots > v_1(x_k) = v_1(x_l)$, a contradiction. Therefore $\boldsymbol{x} := \{x_n\}_n$ is an infinite path.

If $M_1(x_n) \ge M_2(x_n)$, then, since $M_1(x_n) = M(x_n) \ge M(x_0) > 0$, Lemma 4.4 shows that there is $\eta_n \in \Xi$ such that $v_1(\eta_n) \ge v_1(x_n) + M_1(x_n)\rho(x_n,\eta_n) \ge v_1(x_n) + M(x_0)\rho(x_n,\eta_n)$. Let $s = \sup v_1 \lor \sup v_2$. Since $v_1(x_n) = u(x_n) - v_2(x_n) \ge u(x_0) - s$, it follows that

$$s \ge u(x_0) - s + M(x_0)\rho(x_n, \eta_n),$$

and that

$$\delta(x_n) \le \rho(x_n, \eta_n) \le \frac{2s - u(x_0)}{M(x_0)}$$

The same inequality also holds when $M_1(x_n) < M_2(x_n)$. Therefore

$$\limsup_{n \to \infty} \delta(x_n) \le \frac{2s - u(x_0)}{M(x_0)} < \infty.$$

Let $\zeta \in \Xi$. Then $u(x_n) - u(\zeta) \leq D_{\infty}[u]\rho(x_n,\zeta)$. Since $u(\zeta) \leq 0$ and $u(x_n) > \alpha$, it follows that $D_{\infty}[u]\rho(x_n,\zeta) \geq \alpha$, so that

$$\liminf_{n \to \infty} \delta(x_n) \ge \frac{\alpha}{D_{\infty}[u]} > 0.$$

Therefore $x \in Q$. The assumption shows that

$$\alpha < \limsup_{n \to \infty} u(x_n) \le 0,$$

which contradicts $\alpha > 0$.

Theorem 5.12. Suppose that $Q = \emptyset$. Let f be a nonconstant bounded Lipschitz function on Ξ . Then there exists a unique solution to the Dirichlet problem for f.

Proof. Let $u \in \mathcal{U}_f$ and $v \in \mathcal{L}_f$. We apply Lemma 5.11 to v and -u and obtain $v - u \leq 0$ in V. This implies $\overline{\mathcal{H}}_f \geq \underline{\mathcal{H}}_f$. Proposition 5.8 shows that a solution h to the Dirichlet problem satisfies $h \equiv \overline{\mathcal{H}}_f \equiv \underline{\mathcal{H}}_f$.

Now we address the question:

Can we replace
$$P_0 \cup Q$$
 in the condition of Lemma 5.11 by P_0 ?

Let w be a nonnegative function on E with w(x, y) = w(y, x) and $\mathbf{R} \subset \mathbf{P}$. Let

$$t[w, \mathbf{R}] = \inf\{\sum_{j} r(x_{j-1}, x_j) w(x_{j-1}, x_j); \{x_j\}_j \in \mathbf{R}\},\$$
$$\mathcal{M}_{\infty}(\mathbf{R}) = \inf\{\sup_{E} w; t[w, \mathbf{R}] \ge 1\}.$$

We see that \mathcal{M}_{∞} is an outer measure on \boldsymbol{P} and we call it the ∞ -modulus. It is easy to see that $\mathcal{M}_{\infty}(\boldsymbol{P} \setminus \boldsymbol{P}_0) = 0$ and $\boldsymbol{Q} \subset \boldsymbol{P} \setminus \boldsymbol{P}_0$, so the above question seems to be affirmative. However the author has no idea to answer the question.

6. An ∞ -harmonic functions as a limit of *p*-harmonic functions

Let 1 and let

$$\varphi_p(t) = |t|^{p-1} \operatorname{sgn} t = \begin{cases} t^{p-1} & \text{if } t > 0; \\ 0 & \text{if } t = 0; \\ -(-t)^{p-1} & \text{if } t < 0. \end{cases}$$

For $x \in V$ and $u \in L(\partial x)$ we define

$$\nu_{x,u}^p(t) = \sum_{y \in \partial x} \varphi_p \Big(\frac{u(y) - t}{r(x, y)} \Big).$$

Since $\nu_{x,u}^p$ is strictly decreasing and $\lim_{t\to\pm\infty}\nu_{x,u}^p(t) = \mp\infty$, there is a unique value $\mathrm{H}_x^p u$ such that $\nu_{x,u}^p(\mathrm{H}_x^p u) = 0$. Let $D \subset V$ and $u \in L(\overline{D})$. If u satisfies $u(x) \leq \mathrm{H}_x^p u$ $(u(x) \geq \mathrm{H}_x^p u, u(x) = \mathrm{H}_x^p u$, resp.) for each $x \in D$, then u is said to be *p*-subharmonic (*p*-superharmonic, *p*-harmonic, resp.) in D.

Now we shall show that a limit of *p*-harmonic functions as $p \to \infty$ is an ∞ -harmonic function.

Lemma 6.1. Let $x \in V$ and $u \in L(\partial x)$. Then

$$\lim_{p \to \infty} \mathbf{H}_x^p u = \mathbf{H}_x^\infty u.$$

 \square

Proof. Let $t_p = H_x^p u$ and $t_{\infty} = H_x^{\infty} u$. If u is constant on ∂x , then $t_p = t_{\infty} = u$ and the assertion holds. We assume that u is not constant on ∂x . Let \tilde{u} be the function such that $\tilde{u}(x) = t_{\infty}$ and $\tilde{u} = u$ on ∂x . Then $M_{\tilde{u}}(x) > 0$. Let

$$J_+ = \{ y \in \partial x; u(y) > t_\infty \}, \qquad J_- = \{ y \in \partial x; u(y) < t_\infty \}.$$

Theorem 3.1 shows that there is $y_1 \in \partial x$ such that

$$\frac{u(y_1) - t_{\infty}}{r(x, y_1)} = \frac{\tilde{u}(y_1) - \tilde{u}(x)}{r(x, y_1)} = \nabla \tilde{u}(x, y_1) = M_{\tilde{u}}(x) > 0.$$

This means $y_1 \in J_+$, especially $J_+ \neq \emptyset$. Since

$$\frac{u(y) - t_{\infty}}{r(x, y)} = \frac{\tilde{u}(y) - \tilde{u}(x)}{r(x, y)} = \nabla \tilde{u}(x, y) \le M_{\tilde{u}}(x)$$

for $y \in \partial x$, it follows that

$$\max_{y \in J_+} \frac{u(y) - t_{\infty}}{r(x, y)} = M_{\tilde{u}}(x) = \mu_{x, \tilde{u}}^{\infty}(\tilde{u}(x)) = \mu_{x, u}^{\infty}(t_{\infty})$$

Similarly $J_{-} \neq \emptyset$ and

$$\max_{y \in J_-} \frac{t_\infty - u(y)}{r(x,y)} = \mu_{x,u}^\infty(t_\infty).$$

Let $\varepsilon > 0$ with $\varepsilon < |u(y) - t_{\infty}|$ for every $y \in J_+ \cup J_-$. Let $J_0 = \{y \in \partial x; u(y) = t_{\infty}\}$, which may be an empty set. We consider

$$\nu_{x,u}^p(t_\infty + \varepsilon) = \sum_{y \in J_+} \left(\frac{u(y) - t_\infty - \varepsilon}{r(x,y)}\right)^{p-1} - \sum_{y \in J_- \cup J_0} \left(\frac{t_\infty + \varepsilon - u(y)}{r(x,y)}\right)^{p-1}.$$

Let

$$\alpha_p = \sum_{y \in J_+} \left(\frac{u(y) - t_\infty - \varepsilon}{r(x, y)} \right)^{p-1}, \qquad \beta_p = \sum_{y \in J_- \cup J_0} \left(\frac{t_\infty + \varepsilon - u(y)}{r(x, y)} \right)^{p-1}.$$

Let q be a number with (p-1)(q-1) = 1. Then

$$\lim_{p \to \infty} \alpha_p^{q-1} = \max_{y \in J_+} \frac{u(y) - t_\infty - \varepsilon}{r(x, y)} < \mu_{x, u}^\infty(t_\infty),$$
$$\lim_{p \to \infty} \beta_p^{q-1} = \max_{y \in J_- \cup J_0} \frac{t_\infty + \varepsilon - u(y)}{r(x, y)} > \mu_{x, u}^\infty(t_\infty).$$

Therefore $\nu_{x,u}^p(t_{\infty} + \varepsilon) < 0$ for sufficiently large p. Similarly $\nu_{x,u}^p(t_{\infty} - \varepsilon) > 0$. Since $\nu_{x,u}^p$ is strictly decreasing, it follows that $t_{\infty} - \varepsilon < t_p < t_{\infty} + \varepsilon$, and hence $t_p \to t_{\infty}$.

Theorem 6.2. Let $D \subset V$. Let $\{p_n\}_n$ be a sequence such that $1 < p_n < \infty$ and $\lim_{n\to\infty} p_n = \infty$. Let $\{u_n\}_n$ be a sequence of functions in \overline{D} such that u_n is p_n -harmonic in D and converges pointwise to a function u in \overline{D} . Then u is ∞ -harmonic in D. Proof. Let $x \in D$ and $\varepsilon > 0$. By Lemma 6.1 there is n such that $|\mathcal{H}_x^{p_n}u - \mathcal{H}_x^{\infty}u| < \varepsilon$. We may assume that $|u(y) - u_n(y)| < \varepsilon$ for all $y \in Nx$. Then $|\mathcal{H}_x^{p_n}u - \mathcal{H}_x^{p_n}u_n| < \varepsilon$. Since $\mathcal{H}_x^{p_n}u_n = u_n(x)$, it follows that

$$|u(x) - \mathbf{H}_x^{\infty} u| \le |u(x) - u_n(x)| + |\mathbf{H}_x^{p_n} u_n - \mathbf{H}_x^{p_n} u| + |\mathbf{H}_x^{p_n} u - \mathbf{H}_x^{\infty} u|$$
$$\le \varepsilon + \varepsilon + \varepsilon,$$

which means that u is ∞ -harmonic at x.

Acknowledgment. The author would like to thank Professor Fumi-Yuki Maeda for showing his unpublished paper [4], which provides some claims in this article.

References

- [1] T. Bhattacharya, E. DiBenedetto, and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino (1989), Special Issue, 15–68 (1991), Some topics in nonlinear PDEs (Turin, 1989).
- [2] Robert Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), no. 1, 51–74.
- [3] Peter Lindqvist and Juan J. Manfredi, The Harnack inequality for ∞-harmonic functions, Electron. J. Differential Equations (1995), No. 04, approx. 5 pp. (electronic).
- [4] Fumi-Yuki Maeda, Discrete ∞ -harmonic functions, unpublished.
- [5] Atsushi Murakami and Maretsugu Yamasaki, Nonlinear potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 26 (1992), 15–28.
- [6] Maretsugu Yamasaki, Ideal boundary limit of discrete Dirichlet functions, Hiroshima Math. J. 16 (1986), no. 2, 353–360.
- [7] _____, Nonlinear Poisson equations on an infinite network, Mem. Fac. Sci. Shimane Univ. 23 (1989), 1–9.

YONAGO NATIONAL COLLEGE OF TECHNOLOGY, YONAGO, TOTTORI, 683-8502 JAPAN *E-mail address*: kurata@yonago-k.ac.jp