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ABSTRACT. We define the notion of co-harmonic functions on a network as a
discrete version of that on a euclidean domain, and show some properties of such
functions. We discuss the Dirichlet problems for discrete co-harmonic functions.
We also show that limits of discrete p-harmonic functions as p — oo are in fact
discrete oo-harmonic.

1. INTRODUCTION

An oco-harmonic function in a euclidean domain D C R? (d > 2) is defined to be
a viscosity solution of the equation

(1) Aot 1= %Vu V|Vul> =0

in D (see [1, 2, 3]). For 1 < p < oo, a p-harmonic function in D is a continuous
weak solution to the p-Laplace equation

(2) Ayu = div(|VulP*Vu) =0

in D. If u, is p,-harmonic in D with p, — oo and u,, — u, then u is co-harmonic
in D (see [1]). This fact shows that (1) is the limiting equation of (2) as p — oo,
and explains the terminology oo-harmonic.

The purpose of this paper is to define the notion of co-harmonic functions on
a network as a discrete version of that on a euclidean domain and obtain some
properties related to such functions. A discrete analogue of the p-Laplacian A,
can be readily defined on a network (see, e.g., [6, 7, 5]). However, there seems
to be no appropriate discrete version of the oo-Laplacian. One may define oo-
harmonic functions on a network as limits of p-harmonic functions as p — oo; but
this definition is somewhat indirect and not so appropriate to handle with to obtain
local properties.
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An oo-harmonic function in a euclidean domain D also arises in the Lipschitz ex-
tension problem; u € W1°°(D) is called an absolutely minimal Lipschitz extension
in D if

IVull o) < Vol

for any domain V' C D and any v with u —v € Wol’oo(V). It is known that an
absolutely minimal Lipschitz extension is co-harmonic (see [2]).

This suggests our definition of a discrete co-harmonicity on a network. We
define the oo-harmonicity of a function on vertices by means of its co-mean value
around a vertex as in [4]. By using discrete derivative of a function, we obtain a
useful criterion as Theorem 3.1 for oo-harmonicity. Most of properties of classical
discrete harmonic functions hold. We discuss the Dirichlet problem for oo-harmonic
functions on a network. We shall introduce in Section 4 an ideal boundary of a
network. Roughly speaking, this ideal boundary is the set of infinite paths. Given
a function on the ideal boundary, we shall show in Theorem 5.7 the existence of co-
harmonic functions satisfying the boundary condition. As in the classical theory, a
set of oo-superharmonic functions and a set of oo-subharmonic functions give the
upper solution and the lower solution of our Dirichlet problem. It is shown that
these solutions take the given boundary value if the boundary value is a bounded
Lipschitz function. We show in Theorem 5.9 that the solutions to the Dirichlet
problem give optimal solutions to an oo-variational problem. We show a boundary
maximum principle for the sum of two oo-subharmonic functions in Lemma 5.11.
With the aid of this result, we show in Theorem 5.12 that the solution to the
Dirichlet problem is unique. Finally we show in Section 6 that the limit of p-
harmonic functions as p — oo is co-harmonic.

2. PRELIMINARIES

Let (V,E) be a locally finite and connected infinite graph without self-loops,
where V' is the set of vertices and F is the set of edges. This means that V' is a
countable set and that an element of F is an ordered pair (x,y) of vertices x,y € V.
We assume that (y,z) € E if (z,y) € E. Let

Or ={y e V;(z,y) € E}, Nz = 0x U{z},
D=DuU{z € V;(z,y) € E for some y € D}.

From our assumptions

(1) (z,x) € E for x € V;

(2) Oz is a finite set for each z € V;

(3) for each z,y € V, there is a sequence {z;}!_, of distinct vertices such that

T =g,y = and (rj_1,x;) € Efor j=1,2,...,L
A sequence in (3) is called a path from z to y.
A resistance r is a positive function on E. We assume that r(y,x) = r(x,y) for

each edge (z,y) € E. A network is a triplet (V, E,r), where (V| E) is a graph and
T 1s a resistance.
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Let L(D) be the set of real valued functions in a subset D C V. For v € L(D)
and (z,y) € E with z,y € D we define the discrete derivative Vu at (z,y) as

u(y) — u(x)
r(z,y)
We define the oo-Dirichlet seminorm Dylu] of uw € L(V') by

Vu(z,y) =

Doolu] = sup [Vu(z,y)|.
(z,y)EE

Let D) be the set of functions in V' with finite co-Dirichlet seminorms.

3. LOCAL 00-VARIATIONAL PROBLEM

For x € V and a function u € L(Nx) let

M,(z) = max|Vu(z,y)|,  pg,(t) = max

yEox ’

for t € R. Note that M,(z) = 3%, (u(x)). Since S, is a convex function such that

limy_ 4o pgf’u(t) = oo and that it is not constant on any open interval, it follows

that there exists a unique oo-mean value Hy*u such that p2°,(t) > pgs, (Hyu) for
any t € R.

Let z € V and v € L(Nz). If usatisfies u(z) < Hu (u(x) > H u, u(z) = Hu,
resp.), then u is said to be co-subharmonic (co-superharmonic, co-harmonic, resp.)
at 2. Let D C V and u € L(D). If u is oo-subharmonic (oo-superharmonic,
oo-harmonic, resp.) at each x € D, then u is said to be oco-subharmonic (oo-
superharmonic, co-harmonic, resp.) in D. Note that u is co-superharmonic if and
only if —u is oo-subharmonic.

We repeatedly use the next theorem, which characterizes oo-superharmonic func-
tions and oo-subharmonic functions.

Theorem 3.1. Let x € V and u a function on Nx.

(1) w is co-superharmonic at x if and only if there is a vertexr y € dx such that
Vu(z,y) = —M,(x).

(2) u is oo-subharmonic at x if and only if there is a vertex y € Oz such that
Vu(z,y) = M,(z).

Proof. Let ty = H®u. Note that there is y € 0x such that either Vu(x,y) = M,(z)
or Vu(z,y) = —M,(z).
Case 1: u(x) < to. Using M, (x) = p3°, (u(r)) > p3s,(to) we have
u(z) —u(x)  wu(z) —to
r(z,z) r(z,z)

for z € Ox. This means that Vu(zx,z) # —M,(z) for z € Ox, and that there is
y1 € Ox such that Vu(z,y,) = M,(z).

Case 2: u(x) > to. It follows from an argument similar to Case 1 that Vu(zx, z) #
M, (z) for each z € Ox and that there is y € Ox such that Vu(z,ys) = —M,(z).
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Case 3: u(x) = to. We show that there is y; € Oz such that Vu(z,y,) = M,(z).
On the contrary we assume that Vu(x, z) < M,(x) for each z € Ox. Then
u(z) —to  u(z) —u(w)
r(z,z)  r(e2)
There is € > 0 such that r(z, 2) " (u(z) — to +¢) < M,(z) for any z € dz. Since
u(z) — (to —¢e)  u(z) —u(w) 4 _¢
r(z, 2) o r(w,2) r(z, z)
£
> _Mu )
Gy M
it follows that ug°, (to —¢) < My(v) = pgs, (u(z)) = pg°,(to), which contradicts the
definition of ¢y. This means that there is y; € dz such that Vu(x,y,) = M,(x).
Similarly there is y, € Oz such that Vu(z,ys) = —M,(x).
Now suppose that u is oo-superharmonic at x. Then either Case 2 or Case 3
holds. There is y» € Ox such that Vu(z,ys) = —M,(x). Conversely, we assume
that Vu(z,ys) = —M,(z) for some yo € Ox. Then Case 1 cannot hold, so that

u(z) > to. This means that u is co-superharmonic at x. Therefore (1) holds. We
can similarly prove (2). O

< M,(x).

M,(x) >

Next proposition implies the Harnack inequality.

Proposition 3.2. Let € V and let u be a function on Nz. Let c, =
maxy,zéax ’I"(f, y)/T(ZL’, Z)
(1) If u is co-superharmonic at x and u > 0 on Nz, then u(y) < (1 + ¢;)u(x)
fory € Ox.
(2) If u is co-subharmonic at x and w < 0 on Nz, then u(y) > (14 ¢, )u(z) for
y € 0.

Proof. We shall prove (1) only. Theorem 3.1 shows that there is z € dx such that
Vu(x,z) = —M,(x). Since Vu(z,y) < M,(z) for y € 0x and u(z) > 0, it follows

that
w) —ule) oo u(e) () ula)
r(z,y) = Vul(z,y) < —Vulz,2) r(z,z) T r(z,z)
This implies that u(y) < (1 +r(x,y)/r(x, 2))u(x), and the assertion. O

Lemma 3.3. Let x € V. Let u and v be functions on Ox with u < v. Then
Ho*u < HPv.

Proof. On the contrary we assume that Hu > H°v. Then u(y) — Hu < v(y) —
He°v for each y € Ox. Let © be the function with o(z) = HXv and ¢ = v on Ox.
Let @ be the function with @(x) = H°u and @ = u on dz. Since 4 is co-harmonic
at x, Theorem 3.1 implies that there is y; € 0z such that

aly) —alx) _ uly) —Hru vy — B
T(ZE,y1> ’I"(l‘,yl) T(xayl)

Mg(x) = Va(z,y) =

_ 0(y) — o(x) = Vo(z,y) < My(z).

r(z,y1)
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Similarly, using yo € Oz with Vo(x,y2) = —M;(z), we obtain Mz(x) < Mg(x), and
a contradiction. O

Lemma 3.4. Let D C V. Let u be a function in D and x € D. Let

o) = JHE U ify = ;
/ u(y) ify#z.

(1) If u is an oo-superharmonic function in D, then @ is an co-superharmonic
function in D such that @ is oco-harmonic at x and that u < u.

(2) If u is an oco-subharmonic function in D, then 4 is an oco-subharmonic
function in D such that u is oco-harmonic at x and that u > u.

Proof. We shall prove (1) only. It is obvious that % is co-harmonic at z. Since
(zr) = Hu < u(z) and u(z) = u(z) for z # z, it follows that & < u. Lemma
3.3 shows that u(z) = u(z) > Hu > Ha for z # x. This means that @ is
oo-superharmonic at z. ]

Lemma 3.5. Let D C V and {uy}xea a family of functions in D.

(1) Suppose that uy is co-superharmonic in D for each X\ € A and that u =
infyca wy is finite for each vertex in D. Then u is co-superharmonic in D.

(2) Suppose that uy is oco-subharmonic in D for each A € A and that u =
SUpycp U S finite for each vertex in D. Then u is co-subharmonic in D.

Proof. We shall prove (1) only. Let x € D. Lemma 3.3 shows that Hu < Huy <
ux(z) for A € A. Hence Hu < u(x). This means that u is co-superharmonic at
x. O

Lemma 3.6. Let {uy}ren be a family of functions in V.

(1) Suppose that u := infyecp uy is finite for each vertex in V.. Then Dylu] <

supyep Dooltn]-
(2) Suppose that u := supye, u s finite for each vertex in V. Then Dyu] <

sUPyep Doolttn]-
We remark that sup,c, Doo[un] < 00.

Proof. We shall prove (1) only. Let (z,y) € E. We may assume u(y) > u(x). For
e > 0 there is A € A such that uy(z) < u(z)+e. Since uy(y) > u(y), it follows that

u(y) —u(x) _ ua(y) —ux(z) +e
@y S @)

£
< sup Dy |uy| + :
’I“(CL’, y) /\EIX [ )\] ’I“(CC, y)

0 < Vu(z,y) =

= Vuy(z,y) +

Letting ¢ — 0 we have that |Vu(z,y)| < supyepx Doo[wn], so that Dyfu] <
suUPyep Doolua]- O
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4. THE IDEAL BOUNDARY OF A NETWORK

For z,y € V let R(x,y) be the geodesic distance between z and y, i.e.,
R(z,y) = inf{z r(zi—1, 2:); {z:}: is a path from z to y} if x #y,

R(z,z) = 0.
Then R is a metric in V. An infinite path is an infinite sequence {x;}:°, of distinct
vertices such that (z;_q,2;) € E for i = 1,2,.... Let P be the set of all infinite

paths and let
Py = {{z}; € P; ZT(Zi—I;Zi> < oo}
i=1

For x € V and for two infinite paths = {z;};,y = {y,}; € Py we let
R(z,y) = R(y,x) = lim R(x,y,), Rz, y) = lim R(zm,yn).
n—oo m—00
n—o0

It is obvious that the right-hand side of each exists and that R satisfies the triangle
inequality in V' U Py. However it is not a metric in general; it happens that
R(x,y) = 0 for distinct &,y € Py. We identify &,y € Py whenever R(x,y) = 0.
We let [x] be the equivalence class containing * € P, and let = be the set of
equivalence classes:

[x] = {y € Py; R(x,y) = 0}, = = {[z];x € Py}.
For z,y € V and &, € = we let
p(x,y) = R(z,y), p(x,n) = pn,x) = R(z,y), p(&;n) = R(z,y),

where € £ and y € 7. It is easy to see that p is well-defined. Also we have that,
for {z,,}m € € and {yn}n € 1,

ple,n) = pn, ) = lm p(z,y,),  p(§;n) = lm p(Zm, yn),
n—o0

and that p is a metric in V U =. We call = the ideal boundary of the network
(V,E,r).

Lemma 4.1. Let u € D®™) and ¢ € Z. Then there exists a finite limit
limy, o0 w(xy,) for {z;}; € &, which is independent of the choice of the represen-
tative.

Proof. Let {z;}; € . It is easy to see that |u(z,,) —u(z,)| < Doo[ulp(@m, ©,), and
that {u(x,)}, is a Cauchy sequence. There is a finite limit lim, o u(x,).

Let £ = {:c(i)} € ¢ for i = 1,2. Then |u(:c,(7}b)) —u(x (2))] < Dyolu ]p(:cm s
and the right-hand side tends to 0 as m,n — oo. Therefore lim,, u(xni )

),
lim,, 00 u(w% )). O

We simply write u(£) = lim,, o u(z,) for u € D) and {z;}; € £ € =.
Proposition 4.2. Let u € D). Then |[u(¢) — u(n)| < Duo[ulp(&,m) for &,n € =.
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Proof. Let {z,}n € § and {ym}m € . Then |u(z,) — w(ym)| < Doolulp(Tn, Ym). Tt
follows that |u(€) — u(n)| < Duolu]p(&,n). O

Next theorem implies the maximal principle.

Theorem 4.3. Let u be a function in' V' and xq € V' with M,(xq) > 0.
(1) If u is co-superharmonic, then there is an infinite path * = {z;}2, € P
such that

u(xy,) < u(zg) — My(xo) Zr(:ﬂi_l,xi) for each n.
i=1
Moreover, if u is bounded from below, then x € Py.
(2) If u is co-subharmonic, then there is an infinite path € = {x;}3°, € P such
that

u(w,) > u(zo) + My(z0) Z r(z;_1,x;) for each n.
i=1
Moreover, if u 1s bounded from above, then x € Py.

Proof. We shall prove (2) only. Theorem 3.1 shows that there is x; € dx such
that Vu(zg,z1) = M,(x). Note that u(z1) = u(zo) + Vu(xg, x1)r(ze, 1) > u(xo).
Again Theorem 3.1 shows that there is x5 € 0z such that

Vu(xy, x9) = My(x1) > Vu(zg, x1) = M,y (x0).

Note that u(xe) = u(xy) + Vu(xy, x2)r(z1, z2) > u(zy), and that x5 # g, 21. Re-
peating this argument we obtain an infinite path @ = {x;}; such that Vu(z;_1,z;) >
M, (o) and u(x;) > u(z;—1) for each i. Therefore
u(r,) — u(zg) = Z Vu(zi-1, 2)r(wio1, 2:) > My(o) ZT(JJi—l, ;)
i=1 i=1
for each n.
If w is bounded from above, then "% r(z;_1,x;) < 0o, so that x € Py. O

Lemma 4.4. Let u € D) and zy € V with M,(xo) > 0.

(1) If u is bounded from below and co-superharmonic, then there is & € = such
that

u(§) < u(zo) — My(z0)p(T0,§).

(2) If uw is bounded from above and oo-subharmonic, then there is & € = such
that

u(§) > u(zo) + My(z0)p(20,§)-

Proof. We shall prove (2) only. Theorem 4.3 shows that there is {z,}, € Py such
that
w(xy) > u(zg) + My(zo) Z r(xim1, ;) > u(zo) + My(x0)p(x0, 21).

=1
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Letting £ = [{z,}»] € E and tending n — oo we have the assertion. O

Corollary 4.5. Let v € D(>)

(1) If u is bounded from below and co-superharmonic, then infy = u = infz u
(2) If u is bounded from above and oco-subharmonic, then supy, =z u = sups u

Proof. We shall prove (1) only. If u is constant, then the assertion trivially holds.
We assume that « is not constant. It suffices to show that infy v > inf=zu. Let
20 € V. We need to show that u(zg) > infzu. Let A = {z € V;u(z) = u(z)}.
Since w is not constant, it follows that there is 2o € A with M, (x¢) > 0. Lemma
4.4 implies that there is £ € = such that u(€) < u(zg) — M, (zo)p(xo,&). Therefore
infzu < u(€) < u(zg) = u(z). O

Lemma 4.6. Let ¢ € = and let u(x) = p((,x). Then u is co-superharmonic and
M, =1 in V. Especially Dy[u] = 1.

Proof. Let x € V and y € 0x. Since |u(z) — u(y)| = |p(C, ) p(C, )| < plx,y) <
r(z,y), it follows that |Vu(z,y)| < 1, and that M, (z) <
Let {zn}n € ¢. Take a path {%}Zzo from z to z,. Then
!
Zr(wi_l,xi) =r(zr,z1)+ ZT(%’—L%) > r(x,x1) + p(x1, 2n)
i=1 1=2

> min(r(z,y) + p(y, 2n)).
yEdx

It follows that p(z,z,) > mingeg,(r(z,y) + p(y, 2,)). Letting n — oo we have
p(z,¢) > mingep,(r(z,y) + p(y,¢)). This means that u(z) > u(y) + r(z,y) for
some y € Oz, or Vu(z,y) < —1. Therefore Vu(x,y) = —1, and M,(z) = 1.
Theorem 3.1 shows that u is oo-superharmonic at x. O

5. THE DIRICHLET PROBLEM

A network is said to be oo-hyperbolic if Py # 0); otherwise a network is said to
be oco-parabolic.

First we shall show a Liouville type theorem for an co-parabolic network, namely
Theorem 5.2, which immediately follows from the next proposition.

Proposition 5.1. Suppose that (V, E,r) is an co-parabolic network.

(1) Let u be an oo-superharmonic function such that liminf, . u(x,) > —oc0
for each {x,}, € P. Then u must be constant.

(2) Let u be an oco-subharmonic function such that limsup,,_, . u(z,) < co for
each {xp}n € P. Then u must be constant.

Proof. We shall prove (2) only. If v is not constant, then there is 2y € V' such that
M, (x¢) > 0. Theorem 4.3 implies that there is @ = {x,}, € P such that
u(an) > u(wo) + My(zo) Y r(wios, ;).
i=1
Since lim sup,,_, . u(z,) < oo, it follows that Y -° r(x;—1,2;) < oo, and therefore
x € Py, which is impossible because Py = (). O
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Theorem 5.2. Suppose that (V,E,r) is an oo-parabolic network. Let u be an
oco-harmonic function which is either bounded from above or bounded from below.
Then uw must be constant.

There may be an unbounded oo-harmonic function on an co-parabolic network.

Example 5.3. Let V = {x,}2 ., F = {(zp-1,2,)}22_ and r = 1. Then
(V,E,r) is an oo-parabolic network. Let u(x,) = n. Then u is an oco-harmonic
function in V. O

From here to the end of this section we always assume that (V, E,r) is an oo-
hyperbolic network. We formulate the Dirichlet problem for co-harmonic functions
as follows:

For a bounded function f on =,

find a bounded oo-harmonic function A € D) such that h = f on Z.

We define the upper class Uy, the lower class Ly, the upper solution ﬁf and the
lower solution H; by

Us — { uwe D u is a bounded from below and oco-superharmonic function }
I " such that v > f on E ;
[, — {v c D). v 1s a bounded from above and oco-subharmonic function }

I " such that v < f on = )

He(z) = inf{u(z);u € Uy}, H(w) =sup{v(z);v € Ly} forx € V.
If Uy = 0, then we let ﬂf =oo. If L; =0, then we let H; = —oo0.

Proposition 5.4. Let f be a constant function on =Z. Then a solution to the
Dirichlet problem for f must be constant.

Proof. Suppose that there is a nonconstant solution h to the Dirichlet problem.
Let xg € V with Mj(z¢) > 0. Lemma 4.4 shows that there are £, 7 € = such that

f(&) = h(§) < h(wo) — Mp(20)p(0,§),
f(n) = nh(n) = h(zo) + Mp(xo)p(xo,n)-
Then

0= f(n) = f(&) = Mn(zo)(p(20, 1) + p(w0,€)) >0,

which is a contradiction. O

Proposition 4.2 shows that the boundary function must be a Lipschitz function
on = whenever a solution to the Dirichlet problem exists. By Proposition 5.4 we
may assume that the boundary function is not constant. Therefore we restrict a
boundary function to a nonconstant Lipschitz function on =. This also means that
= contains at least two points.



10 H. KURATA

For a nonconstant Lipschitz function f on = we let Ly be the Lipschitz constant:

1f(§) — f(n)l
Ly = _— -
F = o &)
§#£n
We define
Lo sup VO 100

nea(er p&m)
ore(@) = f(§) + Lyep(&, ),  Ype(x) = f(§) — Lyep(€, x),
#r(@) = b pre@), V(@) = supvse(e)

foré e=andx e V.

Lemma 5.5. Let f be a nonconstant bounded Lipschitz function on =. Then
Ore,pr €Uy and Yye, Yy € Ly for & € . Moreover

My, ., =My, = Lyg m 'V,
Deolprel = Doo[tse]l = Ly,
pre(€) = re(€) = f(8),
Doolps] = Daothy] = Ly,
or=yr=f on =.

Proof. Lemma 4.6 shows that ¢ is oco-superharmonic, that M,,, = Ly¢, and

that D[pre] = Lye. It is easy to see that pre(§) = f(€). Clearly vre > f(£)
in V', which means that ¢ is bounded from below. Let n € =. Then ¢¢(n) =

f(&) + Lyep(§,m). Since f(n) — f(§) < Lyep(§,m), it follows that ¢re(n) > f(n).
Therefore ¢ ¢ € Uy.

Since pre > f(§) > infz f in V, it follows that ¢y > infz f in V' and that ¢y is
finite at each vertex in V. Lemmas 3.5 and 3.6 show that ¢ is oco-superharmonic
and that Doo[py] < supgez Doo|@fe] = supgez Lye = Ly. For § € Z and {y,}n €
ne=

©ren) = 07eM) — Doolesel p(Yn, ) = @re(n) — Lyep(yn,n)

> f(n) = Lyp(Yn:m)-

Taking the infimum with respect to £ and tending n — oo we obtain () > f(n).
Since ¢r(n) < @rn(n) = f(n), it follows that ¢y = f on = and that ¢y € Uy. The

fact | f(§) — f(n)| = s (§) — @r(n)| < Doolios]p(§, n) gives that D[] > Ly, and
that Doo[gOf] = Lf.
We can similarly prove the assertion for ;¢ and 9. 0

Lemma 5.6. Let f be a nonconstant bounded Lipschitz function on = with Lipschitz
constant Ly. Let

Z;{f:{ueuf;USQOf in V}, Ef:{veﬁf;vzwf in V}.
Then Doolu] < Ly foru € Up U Ly.
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Proof. Let u € Uy and 2o € V. We shall show that M, (ZL‘Q) < L;. We may
assume M, (zg) > 0. Lemma 4.4 shows that there is £ € = such that u(§) <
M.

) >
u(zo) — ) p(0,§), or

u(zo) — u(§)
Mu(@o) < p(x0,§)

Lemma 5.5 shows that f(£) < u() < ¢s(€) = f(£), so that u(&) = f(§). Also

u(wo) < (o) < @re(zo) = f(€) + Lyep(§, o) < f(E) + Lyp(€, xo).

Combining these we have M, (x¢) < L;. This means Dy [u] < Ly.
We can similarly prove Dy [u] < Ly for u € Ly. O

Theorem 5.7. Let f be a nonconstant bounded Lipschitz function on = with Lips-
chitz constant Ly. Then both Hy and H; are bounded oo-harmonic functions with

Do [Hy] < Ly, Doo[H,] < Ly, Hi=H,=[ onE
In particular, both ﬁf and H; are solutions to the Dirichlet problem for f.

Proof. First we shall show that infz f < ﬁf < supz f in V. Since the constant
function supz f is in Uy, it follows that ﬂf <supg f in V. Let u € Uy. Corollary
4.5 shows that infyuzu = infzu > infz f, so that v > infz f in V. Therefore
ﬂf >infz fin V.

Lemma 3.5 shows that H; is oo-superharmonic in V. Let x € V. Let u(z) =
H>®H; and u = H; in V' \ {z}. Then Lemma 3.4 shows that u < H, that u € Uy,
and that u is co-harmonic at x. Therefore ﬁf = u, and that ﬁf is co-harmonic at
x.

It is easy to see that H(x) = inf{u(x);u € Uy} for v € V, where Uy is defined as
in Lemma 5.6. Lemmas 3.6 and 5.6 show that Do [H ] < sup{Dso[u];u € U} < L;.

Next we claim that H;(§) = f(&) for £ € =. Lemma 5.5 shows that H(£) <
wr(&) = f(§). For the converse, let {z,}, € {. Then

H (&) = Hy(xn) = Dos[Help(wn,§) = Hy(wn) — Lyp(za, €).

For n € N and ¢ > 0 there is u € Uy such that H(z,) > u(x,) — . Lemma 5.6
implies that

u(zn) = u(§) = Doo[ulp(2n, &) = F(§) = Lyp(an, §).

Combining these we obtain H (&) > f(£) — 2Lsp(,, &) — e. Tending n — oo and
e — 0 we have H (&) > f(£). Therefore H (&) = f(£).

Similarly we can prove the assertion for H,. O

Proposition 5.8. Let f be a nonconstant bounded Lipschitz function on Z. Let h
be a solution to the Dirichlet problem for f. Then

Vp<Hy<h<H;<@; inV.
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Proof. We note that the set of solutions to the Dirichlet problem coincides with
Uy N Ly, especially h € Uy N Ly. Tt follows that Hy = inf,ey, v < infueyne, u < h
inV.

We shall prove H; < @re in V for § € Z. On the contrary we assume that
A={y e ViH(y) > pre(y)} # 0 for a fixed £ € Z. Let yo € A. Lemma 5.5 and
Theorem 4.3 show that there is {y,}, € n € = such that

re(yn) < ¢re(yo) Lfgz r(Yiz1: 9:)-
Also

Hy(yo) = Hylyn) + Z VH (i, Yi-1)7 (Yi-1, Vi)

=1
Sﬂ yn ZMHf Yi—1 yz 1>yz>

Combining these and the fact that yy € A we have

(3)  wrelyn) +Lf§Z Vi1, i) < Hy(Yn +ZMHf (Yim)7T (Yi-1, Yi)-

i=1
Since f(n) < ¢re(n) and H,(n) = f(n), it follows that Lpe > 2 r(yic1,y:) <
> ic1 Mo, (Yi—1)7(Yi1, ;). There is n > 0 with Lye < My (y). We take the
smallest such n. If n > 1, then, since Ly > Mﬂf(yi_l) for i = 1,2,...,n, the
inequality (3) implies that

Sofs(yn)+Lf£Z r(Yi-1, Y1) < Hy(yn) +2Lfg7“ Yi-1,Yi),

=1

so that vy, € A. This also holds if n = 0.
Let 29 = yn. Then My, (20) > Lye and 29 € A. Lemma 4.4 shows that there is
¢ € = such that

f(€) =H,(C) = Hy(z0) + M, (20)p(20,C) = Hy(20) + Lyep(20, C).

Lemma 5.5 shows that

fF(Q) S pre(Q) < wre(20) + Dool@relp(20, Q) = pre(20) + Lyep(2o,C)-

These imply that oge(20) > H(20), which contradicts 2o € A. This means that
Hy < @seinVfor § € Z, and that H, < ¢y in V.
The other inequalities can be proved similarly. l

Theorem 5.9. Let f be a nonconstant bounded Lipschitz function on = with Lip-
schitz constant Ly. Then a solution to the Dirichlet problem for f is a solution to
the variational problem:

Minimize Doo[u] subject to u € D) and u= f on E.
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More precisely, if u € D) satisfiesu = f on Z, then Du [u] > Ly, and the equality
holds when u s bounded and co-harmonic.

We remark that the equality above can hold even when w is not oco-harmonic.
See Example 5.10.

Proof. Let u € D™ with u = f on Z. Let £,y € Z. Then |f(¢) — f(n)| =
u(§) — u(n)| < Doo[u]p(§, ). This means Dog[u] > Ly.

Let i be a solution to the Dirichlet problem for f. Proposition 5.8 and Lemma
5.6 show that h € Uy and that Do [h] < Ly. O

A solution to the variational problem in Theorem 5.9 is not necessarily unique.

Example 5.10. We note that Lemma 5.5 shows that ¢, is a solution to the vari-
ational problem in Theorem 5.9. Let

V= {O} U {$n7 Yn, Zn}?:l’
E = {(mn—l’ xn)’ (yn—b yn)7 (Zn—h Zn)}zo:p
P(Tn1,%n) = 7 (Yn-1,Yn) = 7(2n-1,20) = 27",

where xg = yo = 20 = 0. Let £ = [{xn}tnl, 1= {untnl, ¢ = {2zn}n]. Let f(§) = —1,
fn) =1, f(¢)=0. Then Ly¢ = Ly, = 1 and Ly = 1/2 We have

0 if x = o; 0 if x = o;
— 27" —1 if x = x,; 27" —1 ifx=x,;
7‘[ ) = mny ) = ny
() 1-27" ifx =y,; #r(@) 1-27" ifx =y
0 if v = 2,, 2—n—1 ifx =2,
for n > 1. Note that ¢ is not co-harmonic at z;. O

Here we show a uniqueness result for a solution to the Dirichlet problem. Let

0(z) = inf p(z,m),
Q= {{z.}n € P; hm 1nf(5(a:n) > 0 and limsup §(z,) < oo}.

n—oo
Lemma 5.11. Let vy and ve be bounded from above and oo-subharmonic functions
with vi, vy € D). Suppose that limsup,, . (vi(z,) + va(2,)) < 0 for all {x,}, €
PyouQ. Then vy +v, <0 in V.

Proof. Let u = vy + vy. It suffices to show that A := {z € V;u(x) > a} = for all
a > 0. On the contrary we assume A # () for some o > 0. Let M;(x) = M,,(x) for
i=1,2 and M(x) = max{M;(x), My(x)}.

If M(x) = 0 for each z € A, then u is constant on A, so that A = V. For
{zp}n € Py, it follows that o < limsup,,_,., u(z,) < 0, which contradicts a > 0.
We may assume that M (zq) > 0 for some z, € A.

We shall show that there exists x1 € 0xg such that either

(1a) u(z1) > u(xg) and M(z1) > M (xp); or

(1b) u(x1) = u(zo), vi(z1) > vi(xo) and M (z1) > M (xg).
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First we consider the case M (z) > Ms(zo). By Theorem 3.1, there exists 1 € dzg
such that

V’Ul(l'o,l'l) = Ml(l'o) > MQ(I()) > —V'Uz(l'o,ilfl),

and hence Vu(zg,x1) > 0, ie., u(xy) > wu(zg). Since M(zy) > Mi(z1) >
Vo (zg, 1) = Mi(xg) = M(xg), it follows that z; satisfies (la). In case
M (o) < Ms(zp), similarly there is x; € dzg with Vuy(zg, 1) = Ma(xg), which
satisfies (1a). Next we consider the case M;(xg) = Ms(xp). By Theorem 3.1, there
exists xy € dxg such that

Vi (zg, x1) = Mi(xo) = Ma(z9) > —Vue(z, 21),

and hence Vu(xg,z1) > 0, i.e., u(xy) > u(xg). If u(zy) > u(zg), then an argument
similar to the first case shows that x; satisfies (1a). If u(z1) = u(zy), then, since
Vui(xg,z1) = M(xo) > 0, it follows that vi(z1) > wvi(xg). The fact M(z) >
Vi (xg,z1) = M(z0) implies that z; satisfies (1b).

Since x1 € A and M(xq) > 0, there is xo € Jz; such that either

(2a) u(xe) > u(xy) and M(zq) > M(z4); or

(2b) u(xe) = u(zy1), vi(z2) > vi(x1) and M(za) > M(xy).
Repeating this argument we obtain a sequence {x,}, such that z, € dz,_; and
that either

(na) u(z,) > u(x,—1) and M(x,) > M(x,_1); or

(nb) u(zy,) = w(Tn_1), v1(xy) > vi(x,—1) and M(z,) > M(x,_1).
Suppose that x, = x; for some k < [. If (ia) holds for some ¢ with k < i <, then

u(wy) > - > ulwg) > u(wiog) > - > ulwg) = u(n),

a contradiction; if (¢b) holds for all ¢ with k < ¢ <, then vy(x;) > -+ > vy (zg) =
vi(x;), a contradiction. Therefore x := {x,},, is an infinite path.

If My(z,) > Ms(x,,), then, since My(z,) = M(x,) > M(zo) > 0, Lemma 4.4
shows that there is 1, € = such that vy (n,) > vi(x,) + My () p(@n, 1) > v1(T,) +
M (zo)p(xn, ). Let s =supwy Vsupvy. Since vi(x,) = u(z,) —ve(z,) > u(z) — s,
it follows that

5 > u(zo) — 5 + M(20)pln, 1),
and that
25 — u(xo)
M (z9)
The same inequality also holds when M;(z,) < Ms(x,). Therefore

5($n) < p(mnvnn) <

, 25 — u(xo)
limsupd(z,) < —————= < 00.

Let ¢ € 2. Then u(z,) — u(¢) < Dulu]p(zy, (). Since u(¢) < 0 and u(z,) > a,
it follows that Do [u]p(z,, () > «, so that

liminf §(z,,) >

[0
> 0.
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Therefore & € Q. The assumption shows that

a < limsup u(z,) <0,

n—o0

which contradicts a > 0. O

Theorem 5.12. Suppose that Q = (). Let f be a nonconstant bounded Lipschitz
function on =Z. Then there exists a unique solution to the Dirichlet problem for f.

Proof. Let u € Uy and v € L;. We apply Lemma 5.11 to v and —u and obtain
v—u < 0in V. This implies ﬂf > H. Proposition 5.8 shows that a solution /h to

the Dirichlet problem satisfies h = ﬁf =H,. O
Now we address the question:

Can we replace Py U @Q in the condition of Lemma 5.11 by Py?

Let w be a nonnegative function on F with w(z,y) = w(y,z) and R C P. Let
tlw, R] = nf{) r(z; 1, z)w(z; 1, 7;); {x;}; € R},
J
Mo (R) = inf{sup w; t{w, R] > 1}.
E

We see that M, is an outer measure on P and we call it the co-modulus. It is
easy to see that M (P \ Po) =0 and Q C P\ Py, so the above question seems
to be affirmative. However the author has no idea to answer the question.

6. AN 0o-HARMONIC FUNCTIONS AS A LIMIT OF p-HARMONIC FUNCTIONS
Let 1 < p < oo and let

1 if t > 0;
wp(t) = [t tsgnt =< 0 if t = 0;
—(=t)P7t ift <0,

For x € V and u € L(0z) we define

20 = Y (U0,

yeax T(I7y)

Since V%, is strictly decreasing and limy 1, V2 () = Foo, there is a unique value

HZu such that 12 (H2u) = 0. Let D C V and u € L(D). If u satisfies u(x) < HEu
(u(z) > HPu, u(x) = HPu, resp.) for each z € D, then w is said to be p-subharmonic
(p-superharmonic, p-harmonic, resp.) in D.

Now we shall show that a limit of p-harmonic functions as p — oo is an co-
harmonic function.

Lemma 6.1. Let z € V and u € L(0x). Then

lim HPu = H u.
p—o0
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Proof. Let t, = HPu and to, = H°u. If w is constant on Oz, then ¢, = t,, = v and
the assertion holds. We assume that u is not constant on 0x. Let @ be the function
such that 4(x) =t and @ = v on Ox. Then Mz(z) > 0. Let

Jo ={y € Omjuy) > t},  J-={y € dz;uly) < i}
Theorem 3.1 shows that there is y; € dx such that
uly) — e aly) — ifa)
r(z,y1) r(z,y1)
This means y; € J, especially J, # (). Since

u(y) —teo _ uly) —ulx) e a(x
r(z,y)  r(z,y) — Vil = )

for y € Ox, it follows that

= Vi(x,y,) = Ma(x) > 0.

u<y)_t00_ (1) = 01> () = u>®
i M52 ) = g5 00) = 50,

Similarly J_ # () and

= T i ().
X = ) Hzu(tos)

Let € > 0 with € < |u(y) — too| for every y € J. U J_. Let Jy = {y € Ox;u(y) =
oo}, which may be an empty set. We consider

(oo +8) = (M)Pl S (M)’”-

yedy r(z,y) yeJ_ Uy r(z,y)
Let
u(y) — too — e\ P! too 2 —uy)\r?
e DU e 3 (St
y€J+ T(I7 y) y€J7UJ0 T(CC, y)
Let ¢ be a number with (p —1)(¢ — 1) = 1. Then
—t —
lim a? ! = maxw < s (o),
p—oo P yeJ4 T(l‘,y) ’
. _ too +€—u(y)
q—1 _ o)
plinoz g yed o r(z,y) > Heultoo):

Therefore v (o +¢) < 0 for sufficiently large p. Similarly v?  (to —¢) > 0.
Since 1L, is strictly decreasing, it follows that ¢ — & < f, < fs + €, and hence

ty — too- O
Theorem 6.2. Let D C V. Let {p,}. be a sequence such that 1 < p, < oo
and lim, o p, = oo. Let {u,}, be a sequence of functions in D such that u,

1S pp-harmonic in D and converges pointwise to a function w in D. Then u is
oco-harmonic in D.



THE DIRICHLET PROBLEM FOR oco-HARMONIC FUNCTIONS 17

Proof. Let x € D and € > 0. By Lemma 6.1 there is n such that |H?"u —HS*u| < e.
We may assume that |u(y) — u,(y)| < ¢ for all y € Nz. Then |H2u — HPu,| < e.
Since HP"u,, = u,(z), it follows that

lu(z) — Hy?u| < fu(z) — un(2)] + [HE w,, — HE u| + [HE u — Hul
<e+e+te,

which means that « is oo-harmonic at z. O
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