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Abstract. We study a system of size-structured population models having non-
linear vital rates such as growth, mortality and fertility rates, each of which has a
nonlocal term different from each other. Our aim is to show how can be applied
Banach’s fixed point theorem to obtain the existence of a unique solution.

1. Introduction

We are concerned with size structured population models with growth rate de-
pending on the individual’s size and the weighted total population. Suppose that
there are N species and let pi(s, t) represent the density of population with respect
to size s ∈ (0, si†) at time t ∈ [0, T ] for the i-th species, where si† ∈ (0,∞] is the
maximum size. It is natural to think that each population interacts in some sense
each other. We employ three weighted total populations P i

w(t), P
i
m(t) and P i

b (t)
with weight functions wi(s), mi(s) and bi(s), respectively, and we assume that vital
rates such as growth rate, mortality rate and fertility rate depend on the differently
weighted total populations.
Our model describing the dynamics of N -populations is formulated as the fol-

lowing system of initial boundary value problems with different nonlocal terms in
vital rates:

(P)


∂tp

i + ∂s(g
i(s, Pw(t))p

i) = −µi(s, Pm(t))p
i(s, t), s ∈ [0, si†), t ∈ [0, T ],

gi(0, Pw(t))p
i(0, t) =

∫ si†

0

βi(s, Pb(t))p
i(s, t) ds, t ∈ [0, T ],

pi(s, 0) = pi0(s), s ∈ [0, si†),
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where

Pw(t) = (P 1
w(t), · · · , PN

w (t)), P i
w(t) =

∫ si†

0

wi(s)pi(s, t) ds,(1)

Pm(t) = (P 1
m(t), · · · , PN

m (t)), P i
m(t) =

∫ si†

0

mi(s)pi(s, t) ds,(2)

Pb(t) = (P 1
b (t), · · · , PN

b (t)), P i
b (t) =

∫ si†

0

bi(s)pi(s, t) ds,(3)

respectively. Calsina and Saldaña [2] studied a single species model and the usual
total population or biomass are considered as the weighted total populations. Their
technique is based on reducing to a system of Volterra integral equations as devel-
oped for age-structured Gurtin-MacCamy models [3]. Ackleh, Banks, and Deng [1]
considered a system of subpopulation model where the birth process is replaced by

(4) gi(0, P (t))pi(0, t) = C i(t) +
N∑
j=1

∫ s†

0

βij(s, P (t))pj(s, t) ds,

where P (t) is the usual total population, i.e., P (t) = Pw(t) with w ≡ 1 in (1) and
Ci(t) represents the inflow of zero-size individuals (i.e. newborns) from outside.
They showed existence of a unique weak solution by finite difference approximation
technique. It is possible to replace the birth process in (P) to (4) in our analysis
but we do not treat such a birth process for simplicity. Kato [4] studied a similar
system as (P) but the growth rates are assumed to be common for each species
and the methods are based on a system with time-dependent linear growth rate
and Schauder’s fixed point theorem. Our methods are based on the argument of
[4], but in this paper, we show that Banach’s fixed point theorem works and obtain
the existence of a unique solution.
The paper is organized as follows. In Section 2, we state our assumptions,

preliminary facts and the main result. We give some lemmas in Section 3 and
prove the main theorem in Section 4.

2. Preliminaries and results

In this section, we first state our assumptions and preliminary facts including
definition of solutions. Then we state our main results on the existence of a unique
solution of (P). Let s† = max{s1†, · · · , sN† } and L1 := L1(0, s†;RN) be the Banach

space of Lebesgue integrable functions from (0, s†) to RN with norm ∥ϕ∥L1 :=∫ s†
0

|ϕ(s)|N ds =
∑N

i=1

∫ si†
0 |ϕi(s)| ds for ϕ ∈ L1, where | · |N denotes the norm of

RN . Then define L1
0 :=

{
ϕ = (ϕ1, · · · , ϕN) ∈ L1 | ϕi(s) = 0 a.e. s ∈ (si†, s†)

}
. For

T > 0, we set LT := C([0, T ];L1
0), the Banach space of L1-valued continuous

functions on [0, T ] with supremum norm ∥p∥LT
:= sup0≤t≤T ∥p(t)∥L1 for p ∈ LT .

Note that each element of LT can be viewed as an element of L1((0, s†)×(0, T );RN)
by relation [pi(t)](s) = pi(s, t) for a.e. (t, s) ∈ (0, T )× (0, s†). See [6, Lemma 2.1].
Furthermore, let RN

+ be the usual positive cone in RN , L1
0,+ := {ϕ ∈ L1

0 | ϕ(s) ∈
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RN
+ for a.e. s ∈ (0, s†)}, and LT,+ := C([0, T ];L1

0,+). Finally, let W
1,∞(0, s†) be the

usual Sobolev space. For i = 1, · · · , N , we assume the following basic assumptions:

(H1) µi : [0, si†) × RN → R+ is bounded by µ̄ > 0 and there is an increasing
function cµ : [0,∞) → [0,∞) such that

|µi(s1, P1)− µi(s2, P2)| ≤ cµ(r) (|s1 − s2|+ |P1 − P2|N)

for s1, s2 ∈ [0, si†) and |P1|N , |P2|N ≤ r.

(H2) βi : [0, si†) × RN → R+ is bounded by β̄ > 0 and there is an increasing
function cβ : [0,∞) → [0,∞) such that

|βi(s, P1)− βi(s, P2)| ≤ cβ(r) (|s1 − s2|+ |P1 − P2|N)

for s1, s2 ∈ [0, si†) and |P1|N , |P2|N ≤ r.

(H3) gi : [0,∞) × RN → R+ is a bounded continuous function. gi(s, P ) > 0 for
(s, P ) ∈ [0, si†) and in case of si† < ∞, gi(s, P ) = 0 for (s, P ) ∈ [si†,∞)×RN .

For each P ∈ RN , gi(s, P ) is differentiable with respect to s ∈ [0, si†) and

the partial derivative ∂sg
i(s, P ) is continuous on [0, s1†)×RN . There exists

an increasing function cg : [0,∞) → [0,∞) such that

|gi(s1, P1)− gi(s2, P2)| ≤ cg(r) (|s1 − s2|+ |P1 − P2|N)

for s1, s2 ∈ [0, si†) and |P1|N , |P2|N ≤ r.

(H4) wi, mi, bi ∈ W 1,∞(0, s†) and 0 ≤ wi(s) ≤ w̄, 0 ≤ mi(s) ≤ m̄, 0 ≤ bi(s) ≤ b̄
for some constants w̄, m̄, b̄ > 0.

We may extend the function gi(s, P ) on (−∞,∞) × RN keeping the Lipschitz
property in (H3) by putting gi(s, P ) := gi(0, P ) for s ∈ (−∞, 0). In what follows,
gi(s, P ) is supposed to be extended on (−∞,∞)× RN as above.
Let P ∈ C([0, T ];RN) be given arbitrarily. Before considering problem (P), we

consider the following nonautonomous problem:

(P̃)


∂tp̃

i + ∂s(g
i(s, P (t))p̃i) = −µi(s, P̃m(t))p̃

i(s, t), s ∈ [0, si†), t ∈ [0, T ],

gi(0, P (t))p̃i(0, t) =

∫ si†

0

βi(s, P̃b(t))p̃
i(s, t) ds, t ∈ [0, T ],

p̃i(s, 0) = pi0(s), s ∈ [0, si†),

where P̃m(t) and P̃b(t) are defined similarly to Pm(t) and Pb(t) as in (2) and (3).
For given P ∈ C([0, T ];RN), we define the characteristic curve φi

P (t; t0, s0)
through (s0, t0) ∈ (−∞,∞)× [0, T ] by the solution si(t) of the differential equation

d

dt
si(t) = gi(si(t), P (t)), t ∈ [0, T ]

si(t0) = s0 ∈ (−∞,∞).

For P ∈ C([0, T ];RN), set

ciP (t) := φi
P (0, t, 0) = −

∫ t

0

gi(0, P (u)) du (≤ 0),
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which is considered as an imaginary initial size of those who are born at time t.
Let ziP (t) := φi

P (t; 0, 0) denote the characteristic curve through (0, 0) in the (s, t)-
plane. For (s0, t0) ∈ [ciP (T ), s

i
†)×[0, T ] such that s0 < ziP (t0), define τ

i
P := τ iP (t0, s0)

implicitly by the relation

(5) φi
P (τ

i
P ; t0, s0) = 0, or equivalently, φi

P (t0; τ
i
P , 0) = s0.

For c ∈ [ciP (T ), s
i
†), set

tic =

{
τ iP (0, c) if c < 0,

0 if c ≥ 0.

We define

W i
P (t, u; c) = exp

[
−
∫ t

u

∂sg
i(φi

P (σ; 0, c), P (σ)) dσ

]
,

U i
P (t, u; c, p) = exp

[
−
∫ t

u

µi(φi
P (σ; 0, c), Pm(σ)) dσ

]
(6)

U i
P (t, u; c, p) = W i

P (t, u; c)U
i
P (t, u; c, p)

for tic ≤ u ≤ t ≤ T and p ∈ LT , where Pm(t) is defined by (2) and depends on p.
Let

(7) F i(ϕ) =

∫ si†

0

βi(s, Pbϕ)ϕ
i(s) ds

for ϕ ∈ L1
0, where Pbϕ = (P 1

b ϕ, · · · , PN
b ϕ) with P i

bϕ =
∫ si†
0 bi(s)ϕi(s) ds.

Suppose that p̃i(s, t) satisfies (P̃) in a strict way. Put νi
c(t) := pi(φi

P (t; 0, c), t)
for t ∈ [tic, T ] and c ∈ [ciP (T ), s

i
†). Then we have

d

dt
νi
c(t) = ∂tp̃

i(φi
P (t; 0, c), t) + ∂sp̃

i(φi
P (t; 0, c), t)

d

dt
φi
P (t; 0, c)

= ∂tp̃
i(φi

P (t; 0, c), t) + ∂sp̃
i(φi

P (t; 0, c), t)g
i(φi

P (t; 0, c), P (t))

= −
[
µi(φi

P (t; 0, c), P̃m(t)) + ∂i
sg

i(φi
P (t; 0, c), P (t))

]
νi
c(t).

(8)

The differential equation (8) admits a solution written by

νi
c(t) = U i

P (t, t
i
c; c, p̃)ν

i
c(t

i
c).

For a.e. s ∈ (0, ziP (t)), letting c := ciP (τ
i
P ) = φi

P (0; t, s) < 0, we have

νi
c(t

i
c) = p̃i(φi

P (t
i
c; 0, c), t

i
c) = p̃i(0, τ iP (t, s)) =

F i(p̃(·, τ iP ))
gi(0, P (τ iP ))

,

where τ iP = τ iP (t, s) is defined by (5) and F i is defined by (7). Hence we have

p̃i(s, t) = U i
P (t, τ

i
P ; c

i
P (τ

i
P ), p̃)

F i(p̃(·, τ iP ))
gi(0, P (τ iP ))

= U i
P (t, τ

i
P ;φ

i
P (0; t, s), p̃)

F i(p̃(·, τ iP ))
gi(0, P (τ iP ))

for a.e. s ∈ (0, ziP (t)). For a.e. s ∈ (ziP (t), s†), letting c = φi
P (0; t, s) > 0,

νi
c(t

i
c) = p̃i(φi

P (0; 0, c), 0) = pi0(φ
i
P (0; t, s)).
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Then we have

p̃i(s, t) = U i
P (t, 0;φ

i
P (0; t, s), p̃)p0(φ

i
P (0; t, s))

for a.e. s ∈ (ziP (t), s
i
†). From above observation, we define a solution of (P̃) by

putting pP = p̃ as follows.

Definition 2.1. For P ∈ C([0, T ];RN), a function pP ∈ LT is said to be a solution
of (P̃) if pP satisfies

piP (s, t) =

U i
P (t, τ

i
P ; c

i
P (τ

i
P ), pP )

F i(pP (·, τ iP ))
gi(0, P (τ iP ))

, a.e. s ∈ (0, ziP (t))

U i
P (t, 0;φ

i
P (0; t, s), pP )p

i
0(φ

i
P (0; t, s)), a.e. s ∈ (ziP (t), s

i
†)

where τ iP = τ iP (t, s) is defined by (5) and F i is defined by (7).

If we can find P ∈ C([0, T ];RN) satisfying

(9) P i(t) =

∫ si†

0

wi(s)piP (s, t) ds,

pP ∈ LT is certainly a solution of (P) and hence we define a solution of (P) as
follows:

Definition 2.2. A function p ∈ LT is said to be a solution of (P) if p = pP is a
solution of (P̃) for P ∈ C([0, T ];RN) satisfying (9).

Proposition 2.3. Let p ∈ LT be a solution of (P). Then we have

P i(t) =

∫ t

0

wi(φi
P (t;u, 0))U

i
P (t, u; c

i
P (u), p)F

i(p(·, u)) du

+

∫ si†

0

wi(φi
P (t; 0, ξ))U

i
P (t, 0; ξ, p)p

i
0(ξ) dξ.

(10)

Proof. By change of variables u = τ iP (t, s) and ξ = φi
P (0; t, s), we have

P i(t) =

∫ ziP (t)

0

wi(s)U i
P (t, τ

i
P ; c

i
P (τ

i
P ), p)

F i(p(·, τ iP ))
gi(0, P (τ iP ))

ds

+

∫ si†

ziP (t)

wi(s)U i
P (t, 0;φ

i
P (0; t, s), p)p

i
0(φ

i
P (0; t, s)) ds

=

∫ t

0

wi(φi
P (t;u, 0))U

i
P (t, u; c

i
P (u), p)F

i(p(·, u)) du

+

∫ si†

0

wi(φi
P (t; 0, ξ))U

i
P (t, 0; ξ, p)p

i
0(ξ) dξ.

Thus (10) holds. □

Our main result is stated as follows:
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Theorem 2.4. Let (H1)–(H4) hold. Then for any initial value p0 ∈ L1
0,+, there

exists a unique solution p ∈ C([0,∞);L1
0,+) of (P) satisfying the following estimate:

(11) ∥p(·, t)∥L1 ≤ eβ̄t∥p0∥L1 , t ∈ [0,∞).

3. Lemmas

In this section, we prepare some lemmas to prove Theorems 2.4. Throughout this
section, we assume (H1)–(H4). First, we recall the following Gronwall’s lemma:

Lemma 3.1 (Gronwall’s Lemma). Let c ∈ C[0, T ], c(t) ≥ 0 and f ∈ C1[0, T ]. Let
a ∈ [0, T ] be fixed.
(i) If v ∈ C[0, T ] satisfies

(12) v(t) ≤ f(t) +

∫ t

a

c(s)v(s) ds, t ∈ [a, T ].

Then we have

v(t) ≤ f(t) +

∫ t

a

exp

(∫ t

s

c(τ) dτ

)
c(s)f(s) ds

= exp

(∫ t

a

c(τ) dτ

)
f(a) +

∫ t

a

exp

(∫ t

s

c(τ) dτ

)
f ′(s) ds, t ∈ [a, T ].

(13)

(ii) If v ∈ C[0, T ] satisfies

(14) v(t) ≤ f(t) +

∫ a

t

c(s)v(s) ds t ∈ [0, a].

Then we have

v(t) ≤ f(t) +

∫ a

t

exp

(∫ s

t

c(τ) dτ

)
c(s)f(s) ds

= exp

(∫ a

t

c(τ) dτ

)
f(a)−

∫ a

t

exp

(∫ s

t

c(τ) dτ

)
f ′(s) ds, t ∈ [0, a].

(15)

Proof. That (12) implies (13) follows from usual Gronwall’s lemma and the inte-
gration by parts. To show that (14) implies (15), put

q(t) :=

∫ a

t

c(s)v(s) ds, t ∈ [0, a].

Then q is of class C1 and satisfies q′(t) = −c(t)v(t) for t ∈ (0, a). By (14) and the
positivity of c(t), we have

q′(t) ≥ −c(t)f(t)− c(t)q(t), t ∈ (0, a).

Then

d

dt

{
q(t) exp

(
−
∫ a

t

c(τ) dτ

)}
= [q′(t) + c(t)q(t)] exp

(
−
∫ a

t

c(τ) dτ

)
≥ −c(t)f(t) exp

(
−
∫ a

t

c(τ) dτ

)
, t ∈ (0, a).
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Integrating the above inequality over [t, a], we obtain

q(a)− q(t) exp

(
−
∫ a

t

c(τ) dτ

)
≥ −

∫ a

t

c(s)f(s) exp

(
−
∫ a

s

c(τ) dτ

)
ds.

Since q(a) = 0,

q(t) ≤
∫ a

t

c(s)f(s) exp

(∫ s

t

c(τ) dτ

)
ds, t ∈ [0, a].

Then by (14) and the integration by parts, we conclude that (15) holds. □

Lemma 3.2. Let P , P̂ ∈ C([0, T ];RN) and ∥P∥C([0,T ];RN ), ∥P̂∥C([0,T ];RN ) ≤ r. Then
we have

(16) |φi
P (t; t0, s0)− φi

P̂
(t; t0, s0)| ≤ cg(r)e

cg(r)T

∣∣∣∣∫ t

t0

|P (η)− P̂ (η)|N dη

∣∣∣∣ ,
where cg(r) appears in (H3).

Proof. By definition of characteristic curves and (H3),

|φi
P (t; t0, s0)− φi

P̂
(t; t0, s0)|

≤
∣∣∣∣∫ t

t0

|gi(φi
P (σ; t0, s0), P (σ))− gi(φi

P̂
(σ; t0, s0), P̂ (σ))| dσ

∣∣∣∣
≤

∣∣∣∣∫ t

t0

cg(r)
(
|φi

P (σ; t0, s0)− φi
P̂
(σ; t0, s0)|+ |P (σ)− P̂ (σ)|N

)
dσ

∣∣∣∣ .
For t ≥ t0, we have

|φi
P (t; t0, s0)− φi

P̂
(t; t0, s0)|

≤
∫ t

t0

cg(r)|φi
P (σ; t0, s0)− φi

P̂
(σ; t0, s0)| dσ +

∫ t

t0

cg(r)|P (σ)− P̂ (σ)|N dσ.

For t < t0, we have

|φi
P (t; t0, s0)− φi

P̂
(t; t0, s0)|

≤
∫ t0

t

cg(r)|φi
P (σ; t0, s0)− φi

P̂
(σ; t0, s0)| dσ +

∫ t0

t

cg(r)|P (σ)− P̂ (σ)|N dσ.

Then Lemma 3.1 implies (16). □

Lemma 3.3. Let P , P̂ ∈ C([0, T ];RN) and let pP , pP̂ ∈ LT,+ be the corresponding

solutions to (P̃) with initial values p0, p̂0 ∈ L0,+ satisfying ∥pP∥LT
, ∥pP̂∥LT

≤ r.
Then for 0 ≤ η ≤ u ≤ t ≤ T , ξ ∈ [0, si†), we have the following estimate:

|U i
P (t, u;φ

i
P (0; η, ξ), pP )− U i

P̂
(t, u;φi

P̂
(0; η, ξ), pP̂ )|

≤ Γ1(r, T )

∫ t

0

(
|Pm(σ)− P̂m(σ)|N + |P (σ)− P̂ (σ)|N

)
dσ

(17)

where Γ1(r, T ) is a constant depending on r and T .
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Proof. It follows from (6) and the mean value theorem that

|U i
P (t, u;φ

i
P (0; η, ξ), pP )− U i

P̂
(t, u;φi

P̂
(0; η, ξ), pP̂ )|

≤
∫ t

u

|µi(φi
P (σ, η, ξ), Pm(σ))− µi(φi

P̂
(σ, η, ξ), P̂m(σ))| dσ.

By (H1) and Lemma 3.2,

|µi(φi
P (σ, η, ξ), Pm(σ))− µi(φi

P̂
(σ, η, ξ), P̂m(σ))|

≤ cµ(m̄r)
(
|φi

P (σ, η, ξ)− φi
P̂
(σ, η, ξ)|+ |Pm(σ)− P̂m(σ)|N

)
≤ cµ(m̄r)

(
cg(r)e

cg(r)T

∫ σ

η

|P (σ)− P̂ (σ)|N dσ + |Pm(σ)− P̂m(σ)|N
)
.

Then, we have (17) with Γ1(r, T ) := cµ(m̄r)
(
cg(r)e

cg(r)T + 1
)
. □

Lemma 3.4. Let P , P̂ ∈ C([0, T ];RN). Let pP , pP̂ ∈ LT,+ be the solutions of (P̃)
with initial values p0, p̂0 ∈ L0,+ and suppose that ∥pP∥LT

, ∥pP̂∥LT
≤ r. Then we

have

|F i(pP (·, t))− F i(pP̂ (·, t))|

≤ Γ2(r, T )

(
|Pb(t)− P̂b(t)|N +

∫ t

0

|Pb(τ)− P̂b(τ)|N dτ

+

∫ t

0

|Pm(τ)− P̂m(τ)|N dτ +

∫ t

0

|P (τ)− P̂ (τ)|N dτ

)
+ Γ3(r, T )∥p0 − p̂0∥L1 ,

(18)

where Γ2(r, T ) and Γ3(r, T ) are some constants depending on r, T .

Proof. Note first that by (H2), if ∥pP∥LT
≤ r, the following estimate holds:

(19) |F i(pP (·, t))| ≤
∫ si†

0

|βi(s, t, Pb(t))p
i
P (s, t)| ds ≤ β̄r.

Similarly to Proposition 2.3, we have

F i(pP (·, t)) =
∫ t

0

βi(φi
P (t;u, 0), Pb(t))U

i
P (t, u; c

i
P (u), pP )F

i(pP (·, u)) du

+

∫ si†

0

βi(φi
P (t; 0, ξ), Pb(t))U

i
P (t, 0; ξ, pP )p

i
0(ξ) dξ.

(20)
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It follows from (20) that

|F i(pP (·, t))− F i(pP̂ (·, t))|

≤
∫ t

0

|βi(φi
P (t;u, 0), Pb(t))U

i
P (t, u; c

i
P (u), pP )F

i(pP (·, u))

− βi(φi
P̂
(t;u, 0), P̂b(t))U

i
P̂
(t, u; ci

P̂
(u), p̂P̂ )F

i(pP̂ (·, u))| du

+

∫ si†

0

|βi(φi
P (t; 0, ξ), Pb(t))U

i
P (t, 0; ξ, pP )p

i
0(ξ)

− βi(φi
P̂
(t; 0, ξ), P̂b(t))U

i
P̂
(t, 0; ξ, pP̂ )p̂

i
0(ξ)| dξ =: K1 +K2.

By (H2) and (19),

K1 ≤ β̄rcβ(b̄r)

∫ t

0

(
|φi

P (t;u, 0)− φi
P̂
(t;u, 0)|+ |Pb(t)− P̂b(t)|N

)
du

+ β̄2r

∫ t

0

|U i
P (t, u; c

i
P (u), pP )− U i

P̂
(t, u; ci

P̂
(u), pP̂ )| du

+ β̄

∫ t

0

|F i(pP (·, u))− F i(pP̂ (·, u))| du

K2 ≤ cβ(b̄r)

∫ si†

0

(
|φi

P (t; 0, ξ)− φi
P̂
(t; 0, ξ)|+ |Pb(t)− P̂b(t)|N

)
|pi0(ξ)| dξ

+ β̄

∫ si†

0

|U i
P (t, 0; ξ, pP )− U i

P̂
(t, 0; ξ, pP̂ )||p

i
0(ξ)| dξ + β̄

∫ si†

0

|pi0(ξ)− p̂i0(ξ)| dξ.

By Lemmas 3.2 and 3.3, we have

K1 ≤ β̄rcβ(b̄r)

∫ t

0

(
cg(r)e

cg(r)T

∫ t

u

|P (η)− P̂ (η)|N dη + |Pb(t)− P̂b(t)|N
)

du

+ β̄2r

∫ t

0

(
Γ1(r, T )

∫ t

0

(
|Pm(σ)− P̂m(σ)|N + |P (σ)− P̂ (σ)|N

)
dσ

+ Γ2(r, T )

∫ u

0

|P (τ)− P̂ (τ)|N dτ

)
du+ β̄

∫ t

0

|F i(pP (·, u))− F i(pP̂ (·, u))| du,

K2 ≤ cβ(b̄r)

(
cg(r)e

cg(r)T

∫ t

0

|P (η)− P̂ (η)|N dη + |Pb(t)− P̂b(t)|N
)
∥p0∥L1

+ β̄

(
Γ1(r, T )

∫ t

0

(
|Pm(σ)− P̂m(σ)|N + |P (σ)− P̂ (σ)|N

)
dσ

)
∥p0∥L1

+ β̄∥p0 − p̂0∥L1 .
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Hence we have

|F i(pP (·, t))− F i(pP̂ (·, t))|

≤ β̄

∫ t

0

|F i(pP (·, u))− F i(pP̂ (·, u))| du

+ C(r, T )

(
|Pb(t)− P̂b(t)|N +

∫ t

0

(
|Pm(σ)− P̂m(σ)|N + |P (σ)− P̂ (σ)|N

)
dσ

)
+ β̄∥p0 − p̂0∥L1 ,

where C(r, T ) is a constant depending on r and T . Then by Gronwall’s lemma,
the desired estimate (18) holds. □

4. Proof of Theorem 2.4

Define a closed subset E of C([0, T ];RN) by

E :=

{
P ∈ C([0, T ];RN

+ )

∣∣∣∣ P i(0) =

∫ si†

0

wi(s)pi0(s) ds

}
.

Step 1. Given P ∈ E, put g̃iP (s, t) := gi(s, P (t)). Problem (P̃) can be written
in the following form:

(21)


∂tp̃

i + ∂s(g̃
i
P (s, t)p̃

i) = Gi(p̃(·, t))(s) s ∈ [0, si†), t ∈ [0, T ],

g̃iP (0, t)p̃
i(0, t) = F i(p̃(·, t)) t ∈ [0, T ],

p̃i(s, 0) = pi0(s), s ∈ [0, si†),

where F i is defined by (7) and Gi is defined by

Gi(ϕ)(s) = −µi(s, Pmϕ)ϕ
i(s), a.e. s ∈ (0, si†)

for ϕ ∈ L1
0, where Pmϕ is defined similarly to Pbϕ appearing in (7). Let F (ϕ) =

(F 1(ϕ), · · · , FN(ϕ)) and G(ϕ)(s) = (G1(ϕ)(s), · · · , GN(ϕ)(s)). It is shown that
F : L1

0 → RN , G : L1
0 → L1

0, and there exist increasing functions cF , cG : [0,∞) →
[0,∞) such that

|F (ϕ1)− F (ϕ2)|N ≤ cF (r)∥ϕ1 − ϕ2∥L1 , ∥G(ϕ1)−G(ϕ2)∥L1 ≤ cG(r)∥ϕ1 − ϕ2∥L1

for ϕ1, ϕ2 ∈ L1
0. It is obvious that F (ϕ) ∈ RN

+ for ϕ ∈ L1
0,+ and G(ϕ) + µ̄ϕ ∈ L1

0,+

for ϕ ∈ L1
0,+. Furthermore,

N∑
i=1

[
F i(ϕ) +

∫ si†

0

Gi(ϕ)(s) ds

]
≤ β̄∥ϕ∥L1

for ϕ ∈ L1
0,+. Then we can apply the results of [5] and problem (21), and hence (P̃)

admits a unique global solution pP ∈ LT,+ such that

piP (s, t) =

U i
P (t, τ

i
P ; c

i
P (τ

i
P ), pP )

F i(pP (·, τ iP ))
g̃iP (0, τ

i
P )

, a.e. s ∈ (0, ziP (t))

U i
P (t, 0;φ

i
P (0; t, s), pP )p

i
0(φ

i
P (0; t, s)), a.e. s ∈ (ziP (t), s

i
†)
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where τ iP = τ iP (t, s), and pP satisfies

(22) ∥pP (·, t)∥L1 ≤ eβ̄t∥p0∥L1 .

Step 2. Let [KwP ](t) = ([KwP ]1(t), · · · , [KwP ]N(t)) with

(23) [KwP ]i(t) :=

∫ si†

0

wi(s)piP (s, t) ds, t ∈ [0, T ].

It is obvious that Kw maps E into itself. Our aim is to find a fixed point P ∈ E of

Kw by using Banach’s fixed point theorem. Then since P i(t) =
∫ si†
0 wi(s)piP (s, t) ds,

it is evident that pP corresponding to the fixed point P becomes the solution of
(P). In order to treat different nonlocal terms, we introduce auxiliary mappings
Kb and Km on E similarly to Kw as follows:

[KbP ]i(t) :=

∫ si†

0

bi(s)piP (s, t) ds, t ∈ [0, T ],

[KmP ]i(t) :=

∫ si†

0

mi(s)piP (s, t) ds, t ∈ [0, T ]

for P ∈ E. Recall that [KwP ]i defined by (23) is represented by the right hand of
(10), that is,

[KwP ]i(t) =

∫ t

0

wi(φi
P (t;u, 0))U

i
P (t, u; c

i
P (u), pP )F

i(pP (·, u)) du

+

∫ si†

0

wi(φi
P (t; 0, ξ))U

i
P (t, 0; ξ, pP )p

i
0(ξ) dξ.

(24)

Letting r := eβ̄T∥p0∥L1 , we have ∥pP (·, t)∥L1 ≤ r by (22) and then |F i(pP (·, u))| ≤
β̄r. Let P, P̂ ∈ E. It follows from (24) that∣∣∣[KwP ]i(t)− [KwP̂ ]i(t)

∣∣∣ ≤ w̄

∫ t

0

|F i(pP (·, u))− F i(pP̂ (·, u))| du

+ β̄r

∫ t

0

|wi(φi
P (t;u, 0))− wi(φi

P̂
(t;u, 0))| du

+ w̄β̄r

∫ t

0

|U i
P (t, u; c

i
P (u), pP )− U i

P̂
(t, u; ci

P̂
(u), pP̂ )| du

+

∫ si†

0

|wi(φi
P (t; 0, ξ))− wi(φi

P̂
(t; 0, ξ))||pi0(ξ)| dξ

+ w̄

∫ si†

0

|U i
P (t, 0; ξ, pP )− U i

P̂
(t, 0; ξ, pP̂ )||p

i
0(ξ)| dξ.

Using Lemmas 3.2–3.4, we have

|KwP (t)−KwP̂ (t)|N ≤ w̄Γ̃(r, T )

∫ t

0

(
|P (u)− P̂ (u)|N

+|KbP (u)−KbP̂ (u)|N + |KmP (u)−KmP̂ (u)|N
)
du

(25)
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for some constant Γ̃(r, T ) > 0 depending on r and T . Similarly, we have

|KbP (t)−KbP̂ (t)|N ≤ b̄Γ̃(r, T )

∫ t

0

(
|P (u)− P̂ (u)|N

+|KbP (u)−KbP̂ (u)|N + |KmP (u)−KmP̂ (u)|N
)
du,

(26)

|KmP (t)−KmP̂ (t)|N ≤ m̄Γ̃(r, T )

∫ t

0

(
|P (u)− P̂ (u)|N

+|KbP (u)−KbP̂ (u)|N + |KmP (u)−KmP̂ (u)|N
)
du.

(27)

Put

Ψ(t) := |KbP (t)−KbP̂ (t)|N + |KmP (t)−KmP̂ (t)|N

and ω := w̄ + b̄+ m̄. Then it follows from (25)–(27) that

|KwP (t)−KwP̂ (t)|N +Ψ(t)

≤ ωΓ̃(r, T )

∫ t

0

Ψ(u)du+ ωΓ̃(r, T )

∫ t

0

|P (u)− P̂ (u)|N du
(28)

It is easily seen that

Ψ(t) ≤ ωΓ̃(r, T )

∫ t

0

Ψ(u)du+ ωΓ̃(r, T )

∫ t

0

|P (u)− P̂ (u)|N du.

By Gronwall’s lemma, we have

Ψ(t) ≤ ωΓ̃(r, T )eωΓ̃(r,T )

∫ t

0

|P (σ)− P̂ (σ)|N dσ.(29)

It follows from (28) and (29) that

(30) |KwP (t)−KwP̂ (t)|N ≤ C(r, T )

∫ t

0

|P (u)− P̂ (u)|N du

for some constant C(r, T ) > 0. We introduce a norm on C([0, T ];RN), which is
equivalent to the usual norm by

∥P∥λ := sup
t∈[0,T ]

e−λt|P (t)|N for P ∈ C([0, T ];RN),

where λ > 0 is determined later. Then it follows from (30) that

∥KwP −KwP̂∥λ ≤ sup
t∈[0,T ]

e−λtC(r, T )

∫ t

0

|P (u)− P̂ (u)|N du ≤ C(r, T )

λ
∥P − P̂∥λ

for P , P̂ ∈ E. Therefore, choosing λ > C(r, T ), Kw becomes a contraction on E.
Finally, note that (11) holds from (22). This completes the proof.
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