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ABSTRACT. We characterize isoparametric hypersurfaces in a sphere by using
covariant derivatives of their shape operators and by observing the extrinsic
shape of their geodesics.

1. INTRODUCTION

It is well-known that a hypersurface M in an (n + 1)-dimensional sphere
S™tl(c) (n = 2) of constant sectional curvature c is isoparametric if and only if all
of its principal curvatures in the ambient sphere S"™!(c) are constant. The study
of isoparametric hypersurfaces is one of the most interesting objects in differential
geometry. The classification problem of isoparametric hypersurfaces in a sphere is
still open. However, we know that the number ¢ of distinct principal curvatures of
isoparametric hypersurfaces in a sphere is either g = 1,2, 3,4 or 6 (see [6, 7]). Note
that this result is not obtained by classifying all isoparametric hypersurfaces.

We know that every isoparametric hypersurface with ¢ = 1 (totally umbilic
hypersurfaces) or ¢ = 2 (Clifford hypersurfaces) has parallel shape operator but
other isoparametric hypersurfaces do not have parallel shape operator. Moreover,
a hypersurface M in S"*1(c) is totally umbilic if and only if every geodesic of M is
a circle (i.e., either a great circle or a small circle of positive curvature) on S"(c).

The main purpose of this paper is to give a characterization of all isoparametric
hypersurfaces in a sphere by weakening these geometric properties (see Theorem

).

2. STATEMENTS OF RESULTS

We first recall some basic terminology in the theory of hypersurfaces. Let M
be a hypersurface in an (n + 1)-dimensional sphere S"™(c) (n = 2) of constant
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sectional curvature ¢ and A a unit normal vector field on M in S"*!(c). Then the
Riemannian connections V of S"™(c) and V of M are related by Gauss formula

(2.1) VxY = VxV + (AX, V)N
and Weingarten formula
(2.2) VN = —AX

for arbitrary vector fields X and Y on M, where (, ) denotes the Riemannian
metric on M induced from the standard metric on S"™!(c) and A is the shape
operator of M in S"™!(c). The Codazzi equation can be written as

(2.3) (VxAY, Z) = (Vy A)X, 2)

for vector fields X,Y and Z tangent to M. Eigenvalues and eigenvectors of the
shape operator A are called principal curvatures and principal curvature vectors,
respectively.

Next we recall the definition of circles in Riemannian geometry. A smooth curve
v = v(s) in a Riemannian manifold M parametrized by its arclength s is called a
circle of curvature k (2 0) if it satisfies the following ordinary differential equation:

Vi Vig = =k,
where k is constant and 6ﬁ denotes the covariant differentiation along v with

respect to the Riemannian connection V of M. Since ||677|| = k, a circle of null
curvature is nothing but a geodesic.

Theorem 1. Let M be a connected hypersurface in an (n+ 1)-dimensional sphere
S™tl(c) (n = 2) of constant sectional curvature c. Then the following three condi-
tions are mutually equivalent.

(1) M s locally congruent to an isoparametric hypersurface in S™"1(c).

(2) The tangent bundle TM of M is decomposed as the direct sum of the prin-
cipal distributions Vy, = {X € TM|AX = \X} such that the covariant
derivative of the shape operator A of M in S™1(c) satisfies (VxA)Y =0
for all X,Y € V), associated to every principal curvature \;, where V de-
notes the Riemannian connection of M.

(3) For each point p of M, there exists an orthonormal basis {vy, ..., vy, } of the
orthogonal complement of ker A, in T,M (m, = rank A,) such that every
geodesic of M through p with initial vector v; is a small circle of positive
curvature in S"(c).

In our previous paper [4], we proved that the above Conditions (1) and (3) are
mutually equivalent. However, for readers we give a complete proof of Theorem 1.

Proof of Theorem 1. We first verify that Conditions (1) and (2) are mutually equiv-
alent. Suppose Condition (1). Then the tangent bundle TM of M is decomposed
as the direct sum of the principal distributions V), = {X € TM|AX = \; X} asso-
ciated to constant principal curvature A;. For any X,Y € V), and any Z € TM,



CHARACTERIZATIONS OF ISOPARAMETRIC HYPERSURFACES 43

the Codazzi equation (2.3) shows

(VxA)Y,Z) = (VzA)Y, X) = (V4(AY) — AV,Y, X)
= (M — AV Y, X) = (V5Y, (M — A)X) = 0.

Hence the covariant derivative of the shape operator A satisfies (VxA)Y = 0 for
any X,Y € VM'

We next suppose Condition (2). Taking a nonzero element X in V)., we have for
all Z € TM

(VxA)X, Z) = (VzA)X, X) = (Vz(AX) — AV X, X)
— (ZM)X + (M — AV X, X)
= (ZX)IX)? + (V2 X, (NI = A)X) = (Z0)| X%

Since (VxA)X = 0 and X is not zero, we get Z\; = 0 for all Z € TM. Thus we
see that all principal curvatures of M in the ambient sphere S™!(c) are constant,
so that Conditions (1) and (2) are mutually equivalent.

In the following, we study the relation between Conditions (1) and (3). Suppose
Condition (1). Let M be an isoparametric hypersurface of S"*!(c) with constant
principal curvatures A;,..., ;. Then the tangent bundle TM is decomposed as:
TM = V), @ V), @ ---V,,. We here recall the fact that every Vj, (1 =i =< g) is
integrable and moreover every leaf L), of V), is totally geodesic in the hypersurface
M. (To do show that, we verify that VxY € V), for all X|Y € V,,. For such
vectors X, Y we have (VxA)Y = 0 by Condition (2), and hence

A(VxY) = Vx(AY) — (Vx A)Y = \(VxY).)

The above fact, together with Gauss formula (2.1), implies that and every leaf L,
is totally umbilic in the ambient sphere S"*!(c). Note that L, is nothing but
a sphere S™i(¢;) with m; = dimV), and ¢; = ¢+ A?. So, when \; # 0 (resp.
Ai = 0), every geodesic v = ~(s) through p = 7(0) on M with 4(0) € V), is a
small circle of positive curvature |\;| (resp. a great circle) on S"™!(c). Therefore,
choosing an orthonormal basis {vy, ..., vy, } of the orthogonal complement of ker A,
in T,M (m, = rank A,) as principal curvature vectors of M in S™**(c), we obtain
the desired Condition (3).

Conversely, suppose Condition (3). We consider the open dense subset U =
{p € M|the multiplicity of each principal curvature of M in S™"!(c) is constant
on some neighborhood V,(C U) of p} of M. Note that all principal curvature
functions are differentiable on ¢/. In the following, we shall study on a fixed neigh-
borhood V,. We remark that the shape operator A has constant rank on V.

Let v = 7i(s) (1 =i £ m,) be geodesics of M with +;(0) = p and §(0) = v;,
where {vy, ..., vy, } is an orthonormal basis of the orthogonal complement of ker A,
in T,M. We denote by V and V the Riemannian connections of S™"*!(c) and M,
respectively. Then they satisfy

(2.4) Vi Vi = =k
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for some positive constant k;. Here, without loss of generality we can set k1 < ko <
- < k. It follows from Gauss formula (2.1) and Weingarten formula (2.2) that

(2.5) Vi Vidi = — (A%, ) A% + (V4. Ao, N
Comparing the tangential components of (2.4) and (2.5), at s = 0 we obtain
(Avg, v;) Av; = kv,
This, together with k; # 0, implies
Av; = kv, or Av; = —kv;, (1S40 my),
which means that the tangent space T),M is decomposed as:

T,M = kerA, & {v e T,M|Av = —k;,v} & {v € T,M|Av = k; v}
©--@{veT,M|Av = —kjv} ®{v e T,M|Av = k;,v},

where 0 < k;; < ki, < --- < k;, and g is the number of positive distinct k; (j =
1,...,my). Note that every k;, IS differentiable on V,. We shall show the constancy
of k;l-] We first note that v;, kZ] = 0 (see the normal component of Equation (2.5)).
Let {vm,+1,--.,vn} be an orthonormal basis of ker A. Then {vy,...,v,} forms an
orthonormal basis of T,M. For any v, (1 < ¢ # i; < n), since A is symmetric, we
see

(26) <(vv¢j A)UZ7 vij> - <U€7 (Vvij A)Ulj>

In order to compute Equation (2.6) easily, we extend an orthonormal basis
{v1,...,v,} to principal curvature unit vector fields on some neighborhood W,(C
V), say {V1,...,V,}. Moreover we can choose VVij Vi, = 0 at the point p, where
(V;j )p = vi;. Such a principal curvature unit vector field V;, can be obtained as
follows.

We first define a smooth vector field W;; on some sufficiently small neighborhood
W,(C V,) by using parallel displacement for the vector v;, along each geodesic with
origin p. We remark that in general W, is not principal on W, but AW, = k; W,
on the geodesic v = v(s) with v(0) = p and §(0) = v;;. We here define the vector
field U;, on W, as U;; = Hoggkij (A—al)W;,, where a runs over the set of all distinct
principal curvatures of M except for the principal curvature k;;. We remark that
Ui, # 0 on the neighborhood W, because (Uj;), # 0. Moreover the vector field
U satisfies AU;, = k;,U;; on W,. We define V by normalizing U;; in some sense.
That is, when Ha#j(k —a)(p) > 0 (resp. Ha#j(k,] — a)(p) < 0), we define
Vi, = U, /Uy, || (xresp. Vi, = =U;,/||Uy||). Then we know that AV; = k;;V;, on
W, and (V;,), = v;,. Furthermore, our construction shows that the integral curve
of V;, through the point p is a geodesic on M, so that in particular VV;-]. Vi, =0 at
the point p.
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Thanks to the Codazzi equation, at the point p we have
(the left hand side of (2.6)) = ((Vy, A)vi;, vi;) = (Vv,A)Vi,, Vij)p
= (Vi (ki Vi)) = AV, Vi), Vi
= ((Veki))Vi; + (ki) — A)Vy, Vi, Vi )p = veks,
and

(the right hand side of (2.6)) = (V¢, (Vv,, A)V,),

5

= (vy, (v3; ki, )vi;) = 0.

Thus we can see that the differential dk;; of k;, vanishes at the point p, which
shows that every k; (> 0) is constant on W, since we can take the point p as an
arbitrarily fixed point of W,. So the principal curvature function k;, is constant
locally on the open dense subset U of M. This, combined with the continuity
of k;; and the connectivity of M, yields that k;; is constant on the hypersurface
M. Hence all nonzero principal curvatures of M are constant, so that we obtain
Condition (1). O

As an immediate consequence of Conditions (1) and (3) in Theorem 1 we have
the following:

Theorem 2 ([4]). Let M be a connected hypersurface in an (n + 1)-dimensional
sphere S"1(c) (n = 2) of constant sectional curvature c. Then M s locally congru-
ent to an isoparametric hypersurface with nozero principal curvatures in S™(c) if
and only if for each point p of M there exists an orthonormal basis {vy,...,v,} of
T,M such that every geodesic of M through p with initial vector v; is a small circle
of positive curvature in S™*1(c).

Isoparametric hypersurfaces in S™"*1(c) with two distinct constant principal cur-
vatures are called Clifford hypersurfaces. For a pair (c1,cy) of positive constants
satisfying 1/c¢; +1/co = 1/c and a positive integer r with 1 < r < n— 1, we denote
by My, = M., ,(c1,c2) a naturally embedded hypersurface in S™*!(c) which
is congruent to S”(cy) x S™"(cg). It has two distinct constant constant principal
curvatures A\ = c1/y/c1 + ¢ and Ay = —co/+/c1 + ¢z with multiplicities r and
n — r, respectively. Let TV, ,,_, = Vy, @ V), be the decomposition into principal
distributions coresponding to principal curvatures A, As.

Proposition 1 ([1]). Let v be a geodesic on a Clifford hypersurface M, ,_,(c1,c2)
in S"T(c). Then

(1) The curve 7 is a geodesic in S™(c) if and only if the initial vector is of the
form 4(0) = (/2 wy + \/c1 wa)/\/c1 + ca with unit vectors w; € Vy, (i =
1,2).

(2) If the initial vector 4(0) is neither principal nor of the form in (1), then
is a circle (namely, a great circle or a small circle of positive curvature) on
Snri(c).
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Proof. Since M,.,,_, has parallel shape operator, we find

d

—{A43(5), 7(5)) = ((V44)3(5), 7(s)) = 0.

Thus we may study geodesics at its initial point. We set 4(0) = ajw; + asws
with unit vectors w; € V), (i = 1,2) and nonnegative constants aj, as satisfying
a? + a2 = 1. In this case we have (A5(0),7(0)) = ai\; + a3)y. Hence we can
see that (A%,9) = 0 if and only if a; = /&3 /v/c1 +¢2 and ay = (/&1 /a1 + ¢
Therefore, from Gauss formula (2.1), we get Statement (1).

Statement (2) is an immediate consequence of the proof of Theorem 1 and the
above Statement (1). O

Paying attention to Proposition 1, we characterize all Clifford hypersurfaces
M, (1, c) in S™T(c).

Theorem 3 ([1]). A connected hypersurface M in S™1(c) is locally congruent to
a Clifford hypersurface M, ,,.(c1,ce) with some r (1 < r < n —1) if and only if
there exist a function d : M — {1,2,...,n— 1}, a constant o (0 < o < 1) and an
orthonormal basis {vy,...,v,} of T,M at each point p € M satisfying the following
two conditions:
(1) Every geodesic on M through p with initial vector v; (1 < i < n) is a small
circle of positive curvature in S™(c);
(2) Every geodesic ~y;; on M through p with initial vector av;++v1 — a2 v; (1 =
i < d(p) < j =n) is a great circle in S"(c).
In this case d is a constant function with d =r and
M = M, ,_.(c/a? c/(1—a?)).

Proof. The “only if” part follows from Theorem 2 and Proposition 1. So, we
shall prove the “if” part. By Condition (1) we see that our real hypersurface M
is isoparametric with nonzero principal curvatures in S"*!(c) (see Theorem 2 ).
Consider a fixed point py. Setting Av; = N\jv; (1 £ 4 < n) at this point py, we can
see that

(2.7) ?Ai+(1—a*)N; =0 for1<i<d(p)<j=n.

Therefore M has just two distinct constant principal curvatures, so that M is locally
congruent to some M, ,_,(c1,c2). Moreover, from the equalities 1/¢; + 1/cy =

/e, i = ai/\/er+ca, A\j = —ca/v/er + ¢ and (2.7) we can see that ¢; = ¢/a?
and ¢y = ¢/(1 — a?). O

Remark 1. In Theorem 3, setting o = /7/n, we obtain a characterization of all
minimal Clifford hypersurfaces M = M, ,,_.(nc/r,nc/(n —r)) in S""(c) (see [5]).

We finally study minimal isoparametric hypersurfaces with three distinct prin-
cipal curvatures in S™"!(c) from the viewpoint of Theorem 1. Isoparametric
hypersurfaces with three distinct principal curvatures are usually called Cartan
hypersurfaces. If we denote by m; the multiplicity of a principal curvature \;,
then we find that these three principal curvatures have the same multiplicity (i.e.,
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my = mg = mg) (see [6, 7]). When a Cartan hypersurface is minimal, it is congru-
ent to one of the following hypersurfaces:
M? =80(3)/(Zy + Zy) — S*(c),
M® =SU(3)/T* — S"(c),
M2 = $p(3)/Sp(1) x Sp(1) x Sp(1) > §3(c),
M?** = F,/Spin(8) — S*(c).

Principal curvatures of a Cartan minimal hypersurface are /3¢, 0, —v/3c (see
2, 3]).

Theorem 4 ([1]). Let M be a connected hypersurface of S"™'(c). Suppose that at
each point p € M there exists an orthogonal basis {vi,...,vm,} of the orthogonal
complement of ker A, in T,M (m, = rank A,) such that

(1) all geodesics through p with initial vector v; (1 < i < my) are small circles

of positive curvature in S"(c),

(2) they have the same curvature k,,.
Then k, = k (constant) on M and M s locally congruent either a totally umbilc
hypersurface S™(c1) with k = \/c1 — ¢, a Clifford hypersurface M, ,,—.(2¢,2¢) (1 <
r<n—1) with k =\/c, or a Cartan minimal hypersurface with k = /3c.
Proof. A totally umbilic hypersurface satisfies the hypothesis of Theorem 4 trivially.

By the discussion in the proof of Theorem 1 we see that a hypersurface satisfying the
hypothesis of Theorem 4 is isoparametric with at most three principal curvatures

k, —k, 0 in S"*!(c). Thus we get the desired result. O
Remark 2. (1) In Theorems 3 and 4, we only need Condition (2) at some point
Do € M.

(2) If we add a condition that M is complete to assumptions of Theorems 1, 2,
3 and 4, then these theorems are global results. So, we can delete “locally”
in these statements.

(3) In the assumptions of Theorems 1, 2, 3 and 4, we do not need to take the
vectors {v;} as a local smooth field of orthonormal frames on M.

At the end of this paper, we pose the following open problem related to Theorem
1:

Problem. Let M be a connected hypersurface in an (n + 1)-dimensional sphere
S™tl(c) (n = 2) of constant sectional curvature c. If for each point p of M, there
exists an orthonormal basis {v1,...,v,} of T,M such that every geodesic of M
through p with initial vector v; is a circle (i.e., either a small circle of positive cur-
vature or a great circle) in S™*1(c), then is M locally congruent to an isoparametric
hypersurface in this ambient sphere?
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