
~~~j~~~~~C=~~F~~~~E~: (~~~~~}-~F) ~~30~~ I ~:-9~~ IF;~~ 8 L~12;~ 

Implementation and Evaluation of Parallel Processing 
Methods for Numerical Multiple Integrals 

Makoto FUKUSHIMA 

Summary 

A subroutine program for the parallel processing of numerical multiple integrals is 

implemented and its performance evaluation is carried out with a transputer-system. The 

subroutine program where GLP(GOod Lattice Points) method is adopted for numerical 

integration is wntten by usrng 3L Parallel FORTRAN. Three programmmg methods for the 

parallel processing are consldered and discussed in this paper for obtammg an effective 

subroutine program. 

Keywords : Multiple Integral, Good Lattice Points Transputer 

1. Introduction 

Monte Carlo method[1] based on pseudorandom numbers has usually been used for the numerical 

calculation of over one-dirnensronal integral. However, good convergence in the numerical integration 

cannot be obtained by the Monte Carlo method. Good Lattice Points(GLP) method[2] based on 

quasirandom numbers has more effective convergence in the numerical integratron than that of the 

Monte Carlo method. The examples of effective good lattice points for up to four-dirnensional integral 

have been reported [3] . 

In this paper, we implement and evaluate a subroutine program for two-, three- and four-dimensional 

integrals by the GLP method using a parallel processing system with six transputers [4] 

2. Parallel processing for GLP method 

2.1 Parallel GLP method 

We discuss the parallel programming for the GLP method in this section. A multiple integral is defined 

by 

* Department of Technology, Faculty of Education, Shimane University 



2 Parallel Processing for Multiple Integrals 

Table I . Good lattice points for three- and four-dimensional integrals. [3] (gl=1) 

w
8
　
2 93 〃

厚
　
2

厚
　
3

8
　
4

185 26 64 1－42 150 187 274
266 27 69 3001 174 266 1269
418 90 130 6007 1051 5080 3086
597 63 169 10007 1206 3421 2842
828 285 358 28117 17549 1900 24455
1010 140 237 57091 52590 柵787 38790
1459 256 373

1958 202 696

2440 638 1002

3237 456 1－07

4044 400 1054

5037 580 1997

fl' f (X) dx 
(1) 

where I, is the S-dimensional unit hyper-cube. Expression (1) can be approximated by the GLP method 

as follows: 

N~ 1 

1 k~0f({kJ~g_~ },･･････, {~~LgN~s}). (2) 
N 

Here, N and gs are the specific natural numbers; {hgs/N} denotes the decimal of hgs/N. The values of 

N and gs are given for the two-dimensional integral (s=2) by using Fibonacci number F~ as follows 

N=Fn (3) 

and 

{gl'g2} = {1,F~_1}. (4) 

For three- and four-dimensional integrals, the combinations of good lattice points of N and gs 

(s=2.3,4) have also been given in Table 1. [3] If N-oo in expression (2) , the result of the numerical 

mtegratron usually becomes more accurate. However, computing time increases with N. In the case of 

the two-dimensional integral, the criterion of the convergence in the numerical calculation is given by 

I~-1,,_1 I
~
 

where e is relative accuracy and I~ is the computing result for N=F.. The parallel programming of the 

GLP method can be implemented by a processor farm using the flood-fill method of Parallel 



Makoto FUKUSHIMA 3
 

FORTRAN. [5] This method provides one master tash[5] which divides the calculations into small and 

independent pieces as the packets which include the parameters for the divided calculations, such as the 

10wer and upper bounds of integrals, and worher tashs[5] which are distributed to all transputers in a 

network for processing the divided calculations when they receive the packets. After the worher tasks 

finish the calculations, they send the results as packets back to the master tash. If all the worher tashs 

are busy, the master tash waits until a worher tash becomes idle. This programming method (Method 

1) can be described by 

~] 2 [j] 
N N { ~ f(a) + = ~ f(a)+ .. + 

k = o k = (P-1) [j] +1 
k = ~] +1 k=0 

with 

a = ({;~~g_~} ･･････,{h~~g_NS}) 
(7) 

and 

Lj] = [(N-1)/P], (8) 

where [ I denotes Gauss' notation and P is the number of the packet of the flood-fill method. if 

MOD(N-1,P) ~ O where MOD(N-1,P) is the remainder of (N-1)/P, then we add an extra packet which 

has the iteration number of MOD(N-1,P) . From the results of the actual performance where we have 

investigated the effect of the numbers of packet on the approximation of equation (9) with a 

transputer network shown in Fig.3, we have decided the number of the packet as follows: P=3 for 

N

2.2 Parallel processing of multiple integral subroutines 

When we have to repeat the integration with varying the bounds of integral, the parallel processing for 

the multiple integral can also be carried out with the parallel processing of the integral subroutines, 

where the numerical calculation Is carried out by the sequential GLP method whrch is the basic GLP 

method on a uniprocessor. The parallel processing of the sequential GLP method(Method 2) by which 

each worher tash processes a multiple integral when they receive the upper and lower bounds of the 

integral as a packet, is effective for the iterative calculations of the multiple integral, because the 

flood-fill method becomes more effective with increasing the CPU tune of the integration 

Furthermore, the parallel programming of Method 2 is more simple than that of Method 1, because the 

program for the sequential GLP method has already been provided. However, this Method 2 includes an 

inefficient process, such as while some of the transputers work with receiving the packets, the rest of 

them are idle and ineffective. This inefficient process arises from the variations in the CPU time of 

each integral and the imbalance of the numbers between the transputers and packets such as MOD(P, 



4 Parallel Processing for Multiple Integrals 

T) ~ O and P>T, where T is the number of the transputers. It becomes important, especially when we 

have to repeat the integration with the several different sets of the parameters of the integrand. To 

avoid this, we adopt the following method (Method 3) : 1) All the parameters, the upper and lower 

bounds which we need in the mtegral subroutrne program are calculated and provlded from a data file 

in the master tash. Then they are passed to a packet-sending subroutine as arguments. 2) All the 

packets which include the parameters and bounds are send to the worher tashs on the transputers by the 

packet-sending subroutine of the rr~aster tash. 3) The each worher tash receives a packet and calculates 

one multiple integral by the sequential GLP method. Then they send the obtained result as a packet 

back to the packet-receiving subroutine of the master tash. This process is repeated until all the 

packets are processed. The processes 2) and 3) are performed in parallel 

3. Performance results of parallel processing 

We evaluate the performance of the parallel processing by the above three methods. The mtegral used 

in the calculation is given by [6] 

1
 - ~ Id rt z (t) Id I(t/)f(x, t- t/)dt/dx 

~ o Jo 
(9) 

where 

I(t) = -IijCOS(cot) (10) 

and 

f(X,t) = v(t)g(X,t) (11) 

with 

v(t) = voexp( t/T)+v., (12) 

V~7yexp ~ ) 1 [x-M(t)] g(x, t) 2S ( t) ' (13) 

M(t) = fo' V(t')dt (14) 

and 

S(t) = 30t. (15) 



Makoto FUKUSHIMA 5
 

Table 2. Values of the parameters and the constants used in the calculation 

(a) Parameters 

1
ヴ

1
ゴ ω

6，090．10’3 96．0x10’7 2πx300．0x10g

1，595×10．2 110．0．10．フ 2π。200．0x10g

0．11455 181．0．10’7 2冗xgO．Ox10g

0．30160 246．0．10’7 2πx60．0×10g

(b) Constants 

v
 

6.4x I 07 

v
 

6.0x I 06 

7
 

8.0x I 0~14 

Here, g(x, t) is a Gaussian function; I~, w and Id are parameters; v., T and v. are constants. The values 

of the parameters and the constants are given in Table 2. We repeat the integration of eq.(9) with 

increasing the upper bound t of the inner integral from 2 7c /a) to 4 7c l(L) with an incremental value 2 

7c l(21 * (c)), where the constant value 21 is chosen from the efficiency of the further processing of the 

result i.(t) with a FFT program. Moreover, we repeat the integration four times with the four 

different sets of the parameters used in the integrand. Therefore, eighty-four results are obtained from 

the above integration of eq. (9) . The block diagrams of the parallel processing by Method 2 and Method 

3 are shown in Fig.1 and Fig.2, respectively 

The transputer-system used for the parallel processing is shown in Fig.3, where six T-800 transputers 

are used at 20 MHZ clock cycle with three processor-cycle-time and I MB memory. The performance 

results m execution-time by the three methods for relative accuracy 10-3, 10-4 and 10-5 are shown in Table 

3, with those by a sequential GLP method[7] using one transputer. We have measured the 

execution-time with f77 timer r~ow routine [5] of Parallel FORTRAN. From the results, it is found 

that the most effective method is Method 3 by which we obtain about 4 to 5 times smaller 

execution-time than that of the sequential GLP method using one transputer 

4. Conclusions 

In the rterative calculations of the multiple integrals with varying the parameters of the integrand, it 

is found that Methods 2 and 3, the parallel processing of the integral subroutines by the sequential GLP 

method, are more effective than the parallel GLP method (Method 1). However, Method 2 has an 

inefficient process where some of the transputers are unloaded and ineffective. Therefore, the most 

effective method is Method 3. The advantage of Method 2 is simple programming and less memory 

consumption when the CPU time of every integral is almost same 



6
 

Parallel Processing for Multiple Integrals 

Worker tasks Worker tasks Worker tasks 
Parameters Parameters Parameters 
A1 ,BI ,.. A2,B2,.. A4,B4,.. 

Master task Il Master task Il Il 
Pre pare L~l Pfe pare 

parameters 
[~l [~l 

parameters 
and upper ~l and upper 
I'mits limits ~] ~] A1,BI .. A2,B2 .. 
tl tt2,. . tl ,t2, .. 

~l [~] ~~l 

Receive 21 results Receive 21 results Receive 21 results 
Master task 

Parallel 

process 

Master task Master'task 
/
 Sequential process -> 4*21 packets 

~] : An integration on a transputer by sequential GLP method 

Fig.1 Parallel processing of eq. (9) by Method 2, where tl't2,....and t21 are the 

upper limits of the inner integral. Master task loaded on a root transputer 
prepares the parameters and upper limits, and provides the packets for the 
worher tashs loaded on every transputer 

Sequential process -> 

Fig.2 Parallel processing of eq. (9) by Method 3, where all the packets 

out by calling the packet-sending subroutine of the rr~aster tash 

Worker tasks 

Parameters A1 ,B I ,.. 

~ll 
t~ 

Parameters A2.B2,.. 

Master task 

~II Prepare parameters and upper limits 

_ A4,B4t"' - M ,t2,... 

4･21 packets 
A1 ,B ~ t"' 

tl ,t2t" ' 

A2t B2, . . . 

tl ,t2 ... , 

Parameters A4,B4,.. 

~~i 

Receive 4~21 results 
¥
 
¥ l' 

Parallel 

process 

are send 



Makoto FUKUSHIMA 7
 

HOST 
.(PC-9801) 

ROOT 
T-8100 

T-800 
2
 

T-800 
3
 

T-800 
5
 

Fig.3 Parallel processing system using six T-800 transputers. 

Table 3. Performance results in execution-time. Time unit is second. 

Relative 

Accuracy 

l 0-3 

l 0-4 

l 0-5 

Method 1 

57.178 

96.571 

l 20.623 

Method 2 

54.047 

79.220 
l 09.28 1 

Method 3 Sequential GLP 
method using 
one trans uter 

35.796 

66.508 
9 1 . 1 22 

163.368 

305.993 

396.922 

If the iterative calculations of multiple integrals are not required, the choice of Method I gives about 

3 times smaller executron-tune than the sequential GLP method using one transputer, even though the 

parallel programming for Method I is not so simple as Method 2. An example program by Method 3 is 

shown in Appendix. 

Ref e renc e s 

[1] H.Engels: Numerical quadrature and cubature. Academic Press, New York, 1980 

L2] E.Hlawka: Zur angen~erten berechung mehrfacher integrale. Monatsh. Math. , 66, 140-151, 1962 

[3] L.K.Hua eLnd Y.Wang: Applications of number theory to numerical analysis. Springer, Beijing, 1981 

[4] The Transputer Databook. INMOS Ltd., 1988. 

L5] PareLllel Fortran. 3L Ltd., 1990. 

[6] I.Song and D-S.Pang: Analysis and simulation of the quantum well injection transit time diode. IEEE 

Trans.,ED, 35, 12, pp.2315-2322, 1988. 

[7] M.Mori: FORTRAN77 numerical c6Llculation programming. The lwanami Computer Science Series, 

1987 . 



8
 

Parallel Processing for Multiple Integrals 

A p pendix 

An example of the multiple integral by Method 3 is presented 

1) Purpose:Compute eL two-, three- or four-dimensional integral as follows: 

fob fod fof foh f (x, y, w z) dxdydwdz (A 1) 

2) Usage: 

CALL MUL TIN(MD,13 , D.F, H,EPS, RESUL T.ERREST. NT, PA CKETS, PA R .NP) 

3) Arguments: 

Dimension of the integral. (Integer, Input) (MD=2, 3 or 4) MD-
~, D. F,H- Array of length PACKETS containing upper limits of the integral. (Real, Input) 

Relative accuracy desired. (Real, Input) EPS-

RESULT- Array of length PACKETS containing computed results of the integral. (Real, Output) 

ERREST- Estimate of the absolute value of the error. (Real, Output) 

Array of length PACKETS containing total iteration number in an integral routine. (Integer, NT-
Out put) 

PACKETS- Number of the packets for flood-fill method. The number is equal to the iteration number of the 

integration. (Integer, Input) 

PAR- Two-dimensional array of length PACKETS'NP containing the values of the parameters of the 

integrand. These parameters are available in the user supplied function func such as comm07b 

par, where par(1) =NP,par(2) =parameterl, par(3) =parameter2, . . . and par(10) =pararr~eter9. 

However, the length of commorb par must be 20 for including workspace. (Real, Input) 

NP- Number of the parameters of the integrand. NP must satisfy I ~ NP ~ 9. (Integer, Input) 

4) Example 

In this example, we calculate the following integral 30 times with increasing the upper bound d of the inner 

integral from I to 10 for three values of the parameter p. 

folfodpxydxdy (p = 1,2 or4) (A2) 



o
 
c
 
c
 

c
 

c
 

c
 

c
 

200 
1 OO 

c
 

c
 

300 
400 
2001 

c
 
c
 
c
 

o
 

Makoto FUKUSHIMA 

Program List 

program master 

sample program for GLP 

real*8 result(30) , b(30) ,d(30) ,f(30) ,h(30) 

real*8 eps,errest(30) ,ev(3) ,par(30 , I ) 

integer packets, md , i j, ik,indx, nt(30) 

md=2 

ev(1 )=0.25dO 

ev(2)=0.5dO 
ev(3)=1 .OdO 

packets=30 
eps=1 .Od-3 

do 100 ik=1 ,3 

do 200 ij=1 ,1 O 

indx=i j+ I O*(ik-1 ) 

if(ik.eq.1) then 

par(indx, I )= I .OdO 

else if(ik.eq.2) then 

par(indx, I )=2.0dO 

else 
par(indx, I )=4 .OdO 

end if 

d(indx)=real(i j) 

b(indx)=1 .OdO 

continue 
continue 

np=1 

call multin(md,b,d,f,h,eps,result,errest,nt,packets,par, np) 

do 400 ik=1 ,3 

do 300 ij=1 ,1 O 

indx=i j+ I O*(ik-1 ) 

abserFabs(result(indx)-real(i j)**2*ev(ik)) 

write(6,2001 )ik, i j, nt(indx) ,result(indx) ,errest(indx) , abserr 

continue 

continue 
format(/' gip ', 

$' p=',i2,' d=',i2,' : nt=',i7,' result=',1pd22.15/ 

$' :esterF',d7.1 , 

$' :abserF',d7.1) 

end 
double precision function func(x,y) 

sample program f2 for glp 

real*8 x,y,p,par(20) 

common par 
p=pa r(2) 

f u n c= p*x* y 

return 

end 

9
 


