A New Proof of a Conjecture of Good

Dedicated to Professor Masanori Kishi on his 60th birthday

Kaoru Hatano*

Introduction

Let $N \ge 2$ be a fixed integer. A real number x ($0 \le x \le 1$) is expressed as decimal in the scale N (i.e., involving digits 0, 1, ..., N-1), and let P(x; q, r) denote the number of times the digit r occurs among the first q digits of its decimal.

In [3; p.200] I. J. Good raised the following

PROBLEM. Let $\{p_r\}_{r=0}^{N-1}$ be a sequence of nonnegative numbers such that $\sum_{r=0}^{N-1} p_r = 1$, and set $\alpha = -\sum_{r=0}^{N-1} p_r \log p_r / \log N$. If S is the set of x $(0 \le x \le 1)$ for which

$$\lim_{q \to \infty} P(x; q, r)/q = p_r \qquad (r = 0, \dots, N-1),$$

then is it true that the fracitional dimension of the set S is equal to α ?

In [2] H. G. Eggleston proved that this is true, and P. Billingsley obtained some more general results on a regular Markov chain ([1]). In particular, as a byproduct he proved

THEOREM ([1; THEOREM 7.1]). Let S^* be the set of x ($0 \le x \le 1$) for which

$$P(x; q, r)/q = p_r + O(1/q)$$
 as $q \rightarrow \infty$, for $r = 0, \dots, N-1$.

Then the set S^* also has the same fractional dimension α , where $\{p_r\}_{r=0}^{N-1}$ and α are given above.

In this note, we shall constructively show that dim $S^* \ge \alpha$ and so dim $S^* = \alpha$, because S^*

 Department of Mathematics, Faculty of Education, Shimane Universiy, Matsue, Japan. This research was paritially supported by Grand-in-Aid for Scientific Research (NO. 03640159), Ministry of Education.

conjecture of Good.

 $\subseteq S$ and dim $S \leq \alpha$ (this is relatively easily obtained), where dim A denotes the fractional dimension of a set A.

1. Lemmas

To prove the above theorem we prepare three lemmas. The last one is used to obtain the lower estimation of the fractional dimension of S^* .

LEMMA 1. Let $0 \le a \le 1$. Then there exists a sequence $\{\varepsilon_j\}_{j=1}^{\infty}$ such that ε_j is 0 or 1 and

(1)
$$0 \leq a - k^{-1} \Sigma_{j=1}^k \varepsilon_j \langle k^{-1} \text{ for } k \geq 1.$$

PROOF. We determine the integer ε_j inductively. First, take $\varepsilon_1 = 0$, so it satisfies (1) for k = 1. Suppose $\varepsilon_1, \dots, \varepsilon_k$ are obtained and they satisfy inequalities (1). Since the half-open interval $((k+1)a - \sum_{j=1}^k \varepsilon_j - 1, (k+1)a - \sum_{j=1}^k \varepsilon_j]$ contains a unique integer, we take it as ε_{k+1} . Then inequalities (1) replaced k by k+1 are fulfilled with $\varepsilon_1, \dots, \varepsilon_{k+1}$. It remains to prove that ε_{k+1} is 0 or 1. By the choice of it and the assumption of the induction we have

 $-1 \leq -1 + a < \varepsilon_{k+1} < 1 + a < 2$,

which implies the desired result.

REMARK. By replacing *a* by 1 - a in the lemma, we can prove that for given *a*, $0 \le a \le 1$, there exists a sequence $\{\varepsilon_j\}_{j=1}^{\infty}$ such that ε_j is 0 or 1 and

$$0 \leq k^{-1} \Sigma_{j=1}^k \varepsilon_j - a < k^{-1} \text{ for } k \geq 1.$$

Let *h* be an increasing continuous function defined on $[0, \infty)$ with h(0)=0. We denote $\Lambda_h(A)$ the Haudorff measure of a set *A*. In case $h(r)=r^{\alpha}$ for $\alpha > 0$, we write Λ_{α} instead of Λ_h .

For the sake of completeness, we quote [4; Lemma 1] as Lemma 2, but omit its proof.

LEMMA 2. Let F be a closed set in the interval [0, 1] and let \mathfrak{A} be the family of open sets $(\neq \phi)$ in R each of which is a finite union of open intervals. Assume that there exists a nonnegative set function Φ on \mathfrak{A} satisfying the following conditions:

- (i) if $\omega = \bigcup_{i=1}^{k} \omega_i$, $\omega_i \in \mathfrak{A}$ (i=1, ..., k), then $\Phi(\omega) \leq \sum_{i=1}^{k} \Phi(\omega_i)$,
- (ii) if $\omega \in \mathfrak{A}$ contains F, then $\Phi(\omega) \ge b$, where b is some positive constant,

 $\mathbf{2}$

Kaoru HATANO

(iii) there exist positive constants a and d_0 such that if I is any interval with length $|I| \le d_0$, then $\Phi(I) \le ah(|I|)$.

Then $\Lambda_h(F) \geq b/a$.

Let $\{n_j\}_{j=1}^{\infty}$ be a sequence of integers with $n_j \ge 1$ for $j \ge 1$ and let $\{(t_j^{(0)}, \dots, t_j^{(N-1)})\}_{j=1}^{\infty}$ be a sequence of vectors with positive integral components such that $\sum_{r=0}^{N-1} t_j^{(r)} = n_j$ for $j \ge 1$.

LEMMA 3. Let h, $\{n_j\}_{j=1}^{\infty}$ and $\{(t_j^{(0)}, \dots, t_j^{(N-1)})\}_{j=1}^{\infty}$ be given above. Let E be the set of x $(0 \le x \le 1)$ for which

$$P(x; n_1, r) = t_1^{(r)}.$$

$$P(x; n_1 + \dots + n_j, r) - P(x; n_1 + \dots + n_{j-1}, r) = t_j^{(r)} \text{ for } j \ge 2 \text{ and } r = 0, \dots, N-1.$$

Suppose the sequence $\{n_i\}_{i=1}^{\infty}$ is bounded. Then the set E is closed and

(2)

$$M^{-1} \liminf_{j \to \infty} K_1 \cdots K_j h(\ell_j) \le \Lambda_h(E) \le \liminf_{j \to \infty} K_1 \cdots K_j h(\ell_j),$$

where $K_j = n_j! / (t_j^{(0)}! \cdots t_j^{(N-1)}!), \ \ell_j = N^{-n_1 - \cdots - n_j} \text{ for } j \ge 1 \text{ and } M = 2 \max_{j \ge 1} K_j.$

REMARK. This is simpler than that of [1; Theorem 4.3], but our assumptions are more restrictive than that of the same theorem.

PROOF. It is clear that E is closed (this is true without the boundedness assumption of $\{n_j\}_{j=1}^{\infty}$). Thus in the sequel we prove the inequalities (2). Since E is covered by a union of $K_1 \cdots K_j$ closed intervals with length ℓ_j , the upper estimate is easily obtained. Hence it suffices to prove the lower estimate.

To see this, we may assume that $\liminf_{j\to\infty} K_1 \cdots K_j h(\ell_j) > 0$. Let $0 < b < \liminf_{j\to\infty} K_1 \cdots K_j h(\ell_j)$. Thus there exists an integer j_0 such that $b < K_1 \cdots K_j h(\ell_j)$ for $j \ge j_0$. Taking a sequence $\{\lambda_j\}_{j=j_0}^{\infty}$ of positive numbers such that $b = K_1 \cdots K_j h(\lambda_j)$, then $0 < \lambda_j < \ell_j$ for $j \ge j_0$. So we define the set function Φ as follows:

$$\Phi(\omega) = \lim_{i \to \infty} N_i(\omega) h(\lambda_i)$$

for ω is an open set, where $N_j(\omega)$ is the number of intervals of type

 $[a_1N^{-1}+\dots+a_{n_1}+\dots+n_jN^{-n_1}-\dots-n_j, a_1N^{-1}+\dots+(a_{n_1}+\dots+n_j+1)N^{-n_1}-\dots-n_j]$ which meet ω . Here the number of the elements of the set $\{k;n_1+\dots+n_{i-1} < k \le n_1+\dots+n_i, a_k=r\}$ is equal to $t_i^{(r)}$ for $i, 1 \le i \le j$ and $r, 0 \le r \le N-1$. We note that the right side limit exists, because the sequence $N_j(\omega)h(\lambda_j)$ is decreasing. It is easily checked that Φ satisfies conditions (i) and

conjecture of Good.

(ii) of Lemma 2. Thus it remains only to prove that it satisfies (iii) of the lemma.

Let *I* be an open interval with length |I| less than ℓ_{j_0} . Then there exists an integer $j \ge j_0$ such that $\ell_{j+1} \le |I| < \ell_j$, so $N_{j+1}(I) \le 2K_{j+1} \le M$. Thus we have

$$\Phi(I) \leq N_{i+1}(I)h(\lambda_{i+1}) \leq Mh(|I|),$$

since $\lambda_{j+1} \leq \ell_{j+1} \leq |I|$. Therefore the condition (iii) with a = M and $d_0 = \ell_{j_0}$ is satisfied. It follows from Lemma 2 that $\Lambda_h(E) \geq M^{-1}b$. Since b is an arbitrary number such that $b < \liminf_{j \to \infty} K_1 \cdots K_j h(\ell_j)$, the desired estimate is obtained.

QUESTION. In this lemma, if we drop the assumption that $\{n_j\}_{j=1}^{\infty}$ is bounded, is the assertion still true for some positive constant M?

2. Proof of the theorem

In this section we construct a sequence $\{E_n\}$ of subsets of S^* such that $\liminf_{n\to\infty} \dim E_n \ge \alpha$ and from this dim $S^* \ge \alpha$. To do so, we may assume that $0 < p_0 \le \cdots \le p_{N-1} < 1$, since in case some $p_r = 1$, then $\alpha = 0$, so the assertion is clear, and in case some of p_r are zero, by modifying the following proof, the conclusion can be obtained.

Let n_0 be an integer such that $Nn_0p_0 \ge 1$. For $n \ge n_0$ and $r=0, \dots, N-2$, we put $m_r = [Nnp_r]$ and $m_{N-1} = Nn - \sum_{r=0}^{N-2} m_r$, so $1 \le m_r \le Nnp_r < m_r + 1(0 \le r \le N-2)$. By Lemma 1 there exist sequences $\{\varepsilon_j^{(r)}\}_{j=1}^{\infty}$ such that $\varepsilon_j^{(r)} = 0$ or 1, and for $k \ge 1$ and $r, 0 \le r \le N-2$

$$0 \leq Nnp_{r} - m_{r} - k^{-1} \Sigma_{j=1}^{k} \varepsilon_{j}^{(r)} < k^{-1}.$$

Taking $n_j = Nn$, $t_j^{(r)} = m_r + \varepsilon_j^{(r)}(r=0, \dots, N-2)$ and $t_j^{(N-1)} = n_j - \sum_{r=0}^{N-2} t_j^{(r)}$ for $j \ge 1$, the set E defined as in Lemma 3 is denoted by E_n . Then $E_n \subseteq S^*$. In order to prove this, let $x \in E_n$ and q > Nn. Then there exists an integer $k(\ge 1)$ such that $kNn \le q < (k+1)Nn$. For r=0, N-2, we have by the choice of the sequences $\{\varepsilon_j^{(r)}\}$

$$km_r + \sum_{j=1}^k \varepsilon_j^{(r)} \le P(x; q, r) \le (k+1)m_r + \sum_{j=1}^{k+1} \varepsilon_j^{(r)},$$

$$P(x; q, r)/q \le \{m_r + k^{-1} \sum_{j=1}^k \varepsilon_j^{(r)}\}/(Nn) + (m_r + 1)/(kNn) \le p_r + 2(m_r + 1)/q$$

Similarly, we have

SO

$$P(x; q, r)/q \ge p_r - (m_r + 2)/q.$$

4

Thus we obtain for $r=0, \dots, N-2$,

(3)
$$P(x; q, r)/q = p_r + O(1/q) \quad \text{as } q \to \infty.$$

Since $\sum_{r=0}^{N-1} P(x; q, r) = q$, from (3) it follows that

$$P(x; q, N-1)/q = p_{N-1} + O(1/q)$$
 as $q \to \infty$.

Thus we have proved that $E_n \subset S^*$. It remains to prove that $\lim \inf_{i \to \infty} \dim E_n \ge \alpha$.

To see this, put $\min_j \{n_j!/(t_j^{(0)}!\cdots t_j^{(N-1)}!)\} = (Nn)!/(s_0!\cdots s_{N-1}!)$. Then $s_r = m_r + \delta_r$ for r = 0, \cdots , N-2, $s_{N-1} = Nn - \sum_{r=0}^{N-2} s_r$, where $\delta_r = 0$ or 1. Let $\beta_n = (Nn \log N)^{-1} \log\{(Nn)!/(s_0!\cdots s_{N-1}!)\}$. Then by Lemma 3 we obtain $\Lambda_{\beta_n}(E_n) > 0$ and thus dim $E_n \ge \beta_n$, since

$$\{\Pi_{i=1}^{j} n_{i}! / (t_{i}^{(0)}! \cdots t^{(N-1)}!)\} \times N^{-jNn\beta_{n}} \ge \{(Nn)! / (s_{0}! \cdots s_{N-1}!) \times N^{-Nn\beta_{n}}\}^{j} = 1.$$

By Stirling's formula, it can be shown that $\lim_{n\to\infty}\beta_n = \alpha$, which completes the proof.

References

- [1] P. Billingsley, Hausdorff dimensions in probability theory, Ill, J. Math. 41(1961), 187-209.
- [2] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Oxford, 20 (1949), 31-36.
- [3] I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc. 37 (1941), 199 – 228.
- [4] K. Hatano, Evaluation of Hausdorff measures generalized Cantor sets, Sci. Hiroshima Univ. Ser. A I. 32(1968), 371 – 379.