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A New Proof of a Conjecture of Good 

Dedicated to Professor Masanori Kishi on his 60th birthday 

Kaoru HATANO * 

Introduction 

Let N ~ 2 be a fixed integer. A real number x (O ~ x ~ 1) is expressed as decimal in the scale 

N (i.e., involving digits O, 1, . . ., N - 1), and let P(x; q, r) denote the number of times the digit 

r occurs among the first q digits of its decimal 

In [3; p.200] I. J. Good' raised the following 

PROBLEM. Let {pr}rN= ol be a sequence of nonnegative numbers such that ~;rN= ol p r = l, and 

set a = -~rN=01 prlog pr/logN. If S is the set of x (O~x~1) for which 

q_= P(~; q, r)/q=pr lim (r=0, "', N 1) 
then is it true that the fracitional dimension of the set S is equal to a ? 

In L2] H. G. Eggleston proved that this is true, and P. Billingsley obtained some more 

general results on a regular Markov chain ( [l]). In particular, as a byproduct he proved 

THEOREM (LI THEOREM 7 I]) Let S*, be the set of x (O~x~1) for which 

P(x; q, r)/q=pr+0(1/q) as q -co for r O N l 

Then the set S ' also has the same fractronal dwaensron a where {pr}rN=01 and a! are given 

above. 

In this note we shall constructively show that dm S ~ a! and so dim S * = a, because S * 
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C: S and dim S ~ af (this is relatively easily obtained), where dim A denotes the fractional 

dimension of a set A 

1. Lemmas 

To prove the above theorem we prepare three lemmas. The last one is used to obtain the 

lower estimation of the fracitonal dimension of S * 

LEMMA 1. Let O~a~1. Then there exists a sequence {ej}j~=1 such that e Is O or I and 

(1) o ~ a k 1~j~ I ej<k~1 for k ~ 1. 

PRooF. We detennine the integer ej inductively. First, take e I = O, so it satisfies (1) for k 

= 1. Suppose e 1' " " ek are obtained and they satisfy inequalities (1). Since the half - open 

interval ((k + 1)a-~J~- Iej~ 1, (k + 1)a-~j~-1ej] contains a unique integer, we take it as e k +1 

Then inequalities (1) replaced k by k + I are fulfilled with s 1' " " e k+1' It remains to prove 

that ek+1 Is O or 1. By the choice of it and the assumption of the induction we have 

1~ 1+a<ek+1<1+a<2 

which implies the desired result 

REMARK. By replacing a by I - a in the lemma, we can prove that for given a. O < a ~ l, there 

exlsts a sequence { ej}J~= I such that e ' is O or I and 

O~k h.~;J~ IeJ a<k~1 for k~l. 

Let h be an increasing continuous function defined on [O, oo) with h(O) = O. We denote 

Ah(A) the Haudorff measure of a set A. In case h(r) = ra for a! > o, we write Aa instead of 

Ah. 

For the sake of completeness, we quote [4; Lemma l] as Lemma 2, but omit its proof 

LEMMA 2. Let F be a closed set in the interval [O, I] and let ~~ be the family of open sets 

(~c) in R each of which is a finite union of. open intervals. /is*"ume that there exi*"ts a 

nonnegative set function ~) on ~~ sati*･f5!ing the following conditions: 

(i) if ~)=Ul~=1coi, ~,i,e ~{: (i=1, "', k), then ~((h,)~~~=1~)(G9i), 

(ii) if Gi) e ~l contains F, then ~)(Go);~b, where b is some positive constant. 



Kaoru HATANO 3 
eiD there exist positive constants a and do such that if I is any interval with length ll[~do-

then ~(1) ~ ah(II I). 

Then Ah(F) ~ b/a. 

Let {nj}J~=1 be a sequence of integers with nj~l for j~l and let {(t(P), . .., t(~-1))}J~=1 be 

Nil (r) J 
a sequence of vectors with positive integral components such that ~;r=0 tj = nj for j ~ 1 

... (N-1))}~ be given above. Let E be the set of x LEMMA 3 Let h {nJ}~ I and {(t(P) t 
' ' J j=1 

(O~x~1) for which 
P(x; nl' r)=t(lr). 

P(x; nl+"'+nj' r)-P(x; nl+"'+nj-1' r)=t(r) for J:~2 and r O, "', N-1. 

Suppose the sequence { n ･}~ is bounded Then the set E is closed and 

J J=1 ' 
(2) M~1 Iim infj-* Kl"'Kjh( 2j) ~ Ah(E) ~ Iim infj-~ K1"'K h( 2 ) 

where Kj=nj!/(t;P)!"'t(~-1)!), 2j=N~nl nf for J~1 and M 2 maxJ:~1 KJ 

REMARK. This is simpler than that of [1; Theorem 4.3], but our assurnptions are more 

restrictive than that of the same theorem 

PRooF. It is clear that E is closed (this is true without the boundedness assumption of 

{ nj}J~_ 1)' Thus in the sequel we prove the inequalities (2). Since E is covered by a union of 

K1"'Kj closed intervals with length 2j' the upper estimate is easily obtained. Hence it 

suffices to prove the lower estimate 

To see this, we may assume that lim infj-= Kl"'Kjh( 2j) > o. Let O < b < Iim infj-* K1 

Kjh( 2j)' Thus there exists an integer jo Such that b < K1"'Kjh( 2j) for j ~jo･ Taking a 

s~quence { ~j}J~=jo of positive numbers such that b = Kl"'Kjh(~j)' then O < ~j< 2j for j~~jo 

So we define the set function ~ as follows 

~(a') = Iimj-*Nj( a') h(~ j) 

for G~ is an open set where N (Go) Is the number of mtervals of type 

LalN~1+... +anl+･･･+n'N~nl~"'~nj, alN~1+... +(anl+･･･+n'+1)N~nl~"'~nj] which meet 

Go. Here the number cff the elements of the set {k!nl+"'+ni_1<k~nl+"'+ni, ak=r} is 

equal to t(･r) for i, I ~ i ~ j and r, O ~ r ~ N - 1. We note that the right side liinit exists, because 

the sequence Nj(Go)h(~j) is decreasing. It is easily checked that ~) satisfies conditions ( i ) and 
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(ii) of Lemma 2. Thus it remains only to prove that it satisfies eiD of the lemma 

Let I be an open interval with length I I I Iess than 2jo' Then there exists an integer j ~jo 

such that 2j+1~ 111 < 2j' so Nj+1(1)~2Kj+1~M. Thus we have 

~(1 ) ~ Nj+1(1 )h(~ j+1) ~ Mh( I I I), 

smce kJ+1~ 2j+1~lll. Therefore the condition eiD with a=M and d0= 2 ･ is satisfied. It 
Jo 

follws from Lemma 2 that Ah(E)~~M I b Smce b rs an arbitrary number such that b < 

liminfj-"K1" ' Kjh( 2j)' the desired estimate is obtained 

QUESTION. In this lemma, if we drop the assumption that { nj}J~0= I rs bounded rs the assertron 

still true for some positive constant M ? 

2. Proof of the theorem 

In this section we construct a sequence {En} of subsets of S * such that lim infn-oo dim E n 

~ a and from this dim S* ~ a. To do so, we may assume that O <po~ "' ~pN_1 < 1, since in 

case some p r = 1, then af = O, so the assertion is clear, and in case some of p r are zero, by 

modifying the following proof, the conclusion can be obtained 

Let no be an integer such that Nnopo~l. For n~no and r=0, "', N-2, we put mr= 
[Nnp J and mN_1=Nn-~;N~2mr' so l~m ~Nnp <'m +1(o~r~N=2) By Lemma 1 

r r=0 - r~ r r ~ ~ ' there exist sequences { e('r)}J~0=1 such that e('r)=0 or 1, and for k ~ I and r, O~ r ~N-2 

o~:Nnp m k 1~~ I e}r)<k~l 

Taking nj=Nn, t(･r)_ mr+ e('r)(r=0, "', N -2) and t(~-1)_ nj~~rN=02t}r) for j~l, the set E 

defined as in Lemma 3 is denoted by En' Then Enc s * . In order to prove this, Iet xeEn and 

q>Nn. Then there exists an integer k(~l) such that kNn~ q < (k+1)Nn. For r =0 "', N -

2, we have by the chorce of the sequences { e (r)} 

k (r) k+1 (r) kmr+~j=1ej ~p(-x; q, r)~(k+1)m +~ r j=1ej ' 
So 

P(x q r)/q~{m +k l~J~_1ef')}/(Nn)+(m.+1)/(kNn)~p.+2(m.+1)/q. 

Similarly, we have 

P(~; q, r)lq~p (m +2)lq 
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Thus we obtain for r=0, "', N-2, 

(3) P(~; q, r)/q=pr+ O(1/q) as q->oo. 

Since ~,~=01P(x q r) q from (3) it follows that 

P(x; q. N-1)/q=pN_1+ O(1/q) as q->oo. 

Thus we have proved that EnCS*. It remains to prove that lim infj-= dim En ~ a! 

To,see this, put minj{nj!/(t;P)!･･･t(/¥r-1)!)} =(Nn)!/(so!･･･sN-1!). Then sr= mr+(~r for r=0, 

･, N-2, sN_1=Nn-~rN=02sr' where (~r=0 or l. Let pn=(NnlogN)~llog{(Nn)!/(so!･･-

SN -1!)}. Then by Lernma 3 we obtain Ap,,(En) > o and thus dim En~pn' since 

{Ili=1ni!/(t!o)!･･･t(N~1)!)} XN~ SN l!) X N~Nnp~}j=1. jNnfi~ ~ { (Nn)!1(so! ･ ･ ･ _ 

by Stirling's formula, it can be shown that limn--pn= a!, which completes the proof 
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