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Introduction
Let N = 2 be a fixed integer. A real number x (0=x=1) is expressed as decimal in the scale
N (i.e., involving digits 0, 1, ..., N —1), and let P(x; g, ) denote the number of times the digit

7 occurs among the first ¢ digits of its decimal.
In [3; p.200] 1. J. Good raised the following

ProBrem. Let {p,}2";! be a sequence of nonnegative numbers such that =M_;' . =1, and

set a=—30"0' p,logp,/logN. If S is the set of x (0<x=1) for which
im0 P(% g, 7)/q=0, (r=0, -, N—1),
then is it true that the fracitional dimension of the set S is equal to a ?

In [2] H. G. Eggleston proved that this is true, and P. Billingsley obtained some more
general results on a regular Markov chain ([1]). In particular, as a byproduct he proved

Tueorem ([1; Tueorem 7.1]). Let S™ be the set of x 0=x=1) for which
P(x g, 7)/q=p,+001/q) as ¢ >0, for r=0, -, N—1.

Then the set S™ also has the same fractional dimension a, where {p,}N_)' and o are given
above.

In this note, we shall constructively show that dim S* =« and so dim S* =a, because S*
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2 conjecture of Good.
CS and dim S=a« (this is relatively easily obtained), where dim A denotes the fractional
dimension of a set A.

1. Lemmas

To prove the above theorem we prepare three lemmas. The last one is used to obtain the

‘lower estimation of the fracitonal dimension of S*.
Lewma 1. Let 0=a=1. Then there exists a sequence {&;};Z, such that &; is 0 or 1 and
) 0<a—&'2f) <k for kz1.

Proor. We determine the integer & ; inductively. First, take &,=0, so it satisfies (1) for %
=1. Suppose ¢,, ", &, are obtained and they satisfy inequalities (1). Since the half - open
interval ((k+1)a—2f:ls i1 (k+1)a—2]’?=1£ j] contains a unique integer, we take it as e, ;.
Then inequalities (1) replaced & by £+1 are fulfilled with &, -, & z+1. 1t remains to prove
that £, is 0 or 1. By the choice of it and the assumption of the induction we have

—l=—-1+a<¢e,11<1+a<2,
which implies the desired result.

Remark. By replacing a by 1 - @ in the lemma, we can prove that for given ¢, 0<¢=1, there

exists a sequence {;};=; such that &; is 0 or 1 and
0Sk7I28 e —a<k™! for k21

Let % be an increasing continuous function defined on [0, o) with %(0)=0. We denote
A (A) the Haudorff measure of a set A. In case i(r)=7“ for >0, we write A, instead of
Ay,

For the sake of completeness, we quote [4; Lemma 1] as Lemma 2, but omit its proof.

LemMma 2. Let F be a closed set in the interval [0, 1] and let N be the family of open sets
(F¢) in R each of which is a finite union of open intervals. Assume that theve exists a
nonnegative set function ® on U satisfying the following conditions:

(1) f e=U% 0, 0,€ A (i=1, -, k), then B(w)<ZF_ ®(w,),
(i) f @ € U contains F, then ®(w)= b, where b is some positive constant,
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(i) there exist positive constants a and dgy such that if I is any interval with length|I|<d,,
then ®<ah(|I).
Then Ay(F)Zb/a.

Let {n;}72, be a sequence of integers with 7;=1 for j=1 and let {(t;-o), e (W _1))};';1 be

a sequence of vectors with positive integral components such that EZ,V:_Ol t;-’): n; for j=1.

Lemma 3. Let b, {nj}]o-';l and {(tgo), IR t§N _1))};";1 be given above. Let E be the set of x
0=x=1) for which
P(x; ny, r):t({).

P my+-+nj, 1) =P my+-+n_y, N=t{ for j22 and r=0, -+, N—1.
Suppose the sequeﬁce {n;};2, is bounded. Then the set E is closed and
@) M7 lim infj KyKh(L)) < AY(E) < lim infjc0 KK h(L)),
where K j=n /({1 N0, 0= NTMTTT for j21 and M=z max;z; K.

Remark. This is simpler than that of [1; Theorem 4.3], but our assumptions are more
restrictive than that of the same theorem.

Proor. It is clear that E is closed (this is true without the boundedness assumption of
{nj};'il). Thus in the sequel we prove the inequalities (2). Since E is covered by a union of
KK closed intervals with length Qj, the upper estimate is easily obtained. Hence it
suffices to prove the lower estimate.

To see this, we may assume that lim inf; Kl--'th( ﬂ,j)>0. Let 0<b6<lim infj_,oo Ky
Kl B]-). Thus there exists an integer j; such that b <K - K ;h( 0 j) for j=jj. Taking a
sequence {1 j};i j, of positive numbers such that b=K,**K (), then 0<2;< 2; for jZj,.
So we define the set function @ as follows:

(@) =lim; oo Nj(@) (2 ;)

for @ is an open set, where Nj(w) is the number of intervals of type

[alN‘1+~--+anl+...+an—”1““‘"f, alN_l-I—'"+(a,zl+...+nj+1)N_”1_"'_”i] which meet
@. Here the number of the elements of the set {kn,+-+n;_<k=n;+...+n; a,=7r} is
equal to tgf) fori,1=i<jand », 0= =N —1. We note that the right side limit exists, because

the sequence Nj(m)h(/l j) is decreasing. It is easily checked that @ satisfies conditions (i) and
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(i) of Lemma 2. Thus it remains only to prove that it satisfies (i) of the lemma.
Let 7 be an open interval with length | 7| less than £;. Then there exists an integer /=,
such that £;1=[I|<¢; so N;([)<2K; <M. Thus we have

@(I)él\/}+1(1)h(lj+1)§ Mhn(|1)),
since 4;41= £; . =|I|. Therefore the condition (i) with a= M and do=0;, is satisfied. It

follws from Lemma 2 that Ay (E)= M~ 1. Since b is an arbitrary number such that 6 <
liminfj_,ooK 1K ]-h( 2 j), the desired estimate is obtained.

QuEsTioN. In this lemma, if we drop the assumption that {# j};il is bounded, is the assertion
still true for some positive constant M ?

2. Proof of the theorem

In this section we construct a sequence {E,} of subsets of S* such that lim inf,,_,., dim E,,
2« and from this dim S*Z . To do so, we may assume that 0<py=-=pn_1<1, since in
case some p,=1, then & =0, so the assertion is clear, and in case some of p, are zero, by
modifying the following proof, the conclusion can be obtained.

Let »n; be an integer such that Nnypy=1. For n=ny and »=0, -, N—2, we put m,=
(Nnp,] and my 1:Nn—2]rv-02m so ISm s=Nnp,<m,+10=y=N—2). By Lemma 1
there exist sequences {s(’)} =1 such that .s =0or 1, and for 221 and 7, 0Sy=N—2

0SNmp,—m,—k '2F ) I<r™h

Taking n;=Nn, t(’)— mr+s§’)(r=0, , N—2) and t(N D—n 2])[ (-7) for j=1, the set E
defined as in Lemma 3 is denoted by £,. Then E,C S*. In order to prove this, let x€E, and
q> Nn. Then there exists an integer 2(=21) such that ANn=q<(k+1)Nn. For »=0 -, N—

2, we have by the choice of the sequences {ey)}
fem, 2 eV P g S (R+HDm, +2E D),
SO
P(x; g, )/ q={m,+k 1=k} /(N +(m, +1)/ (RN < p , +2(m,+1)/ q.

Similarly, we have

P(x; q 7)/qzp,—(m,+2)/q.
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Thus we obtain for »=0, =, N —2,
®) P q,7)/q=p,+0(1/q) as q—o°.
Since =N P g, r)=g, 'fromv(3) it follows that

P&; ¢ N—1)/q=pn_+01/q) as g,

Thus we have proved that E,,CS”. It remains to prove that lim inf; .o, dim £, 2 a.

To.see this, put min {21/t 1N ")} =(Wn)l/(s!+sy—1). Then s, =m,+3, for =0,
oy N=2, sy_1=Nn—2N"% , where 6,=0 or 1. Let ,Bn:(anogN)_llog{(Nn)!/(so!~-
sy—1)}. Then by Lemma 3 we obtain Ag (E,)>0 and thus dim E,28,, since

(X _y 2,1/ (O ¢V =0 5 N TINRBuz (N /(515 5y ) X N “VPBn}T =1
By Stirling’s formula, it can be shown that lim,,_,..8,, = «, which completes the proof.
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