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A note on («, p)-thinness of
symmetric generalized Cantor sets

Dedicated to Professor M. Yamada on the ocassion of his 60th birthday

Kaoru HaTaNoO*

1. Introduction. Let ¢, be a Bessel kernel of order @, 0 <& <0, on the #-dimensional
Euclidean space R"(# Z 1), whose Fourier transform is (1 +gf) “**>. The Bessel capacity
B

(-4

» 1s defined as follows: For a set A C R”,
B,,(4)= inf {7 (x)%ax,
where the infimum is taken over all functions f € L; such that
g,*f(x)=1 forall x €A
We shall always assume that 1 <p<o and 0 <ap=#n. We say that a set A is (a,p)-thin
at x € R"(see, [5]) if

1
S {rap—nBap(AmB(x, y))}l/(p_l)f’_ldr<00,
0 p

where B (x, ) denotes the open ball with center at x and radius 7.

In [ 4; Theorem 2] Hedberg and Wolff have proved that the Kellogg property, i.e.,
B,,(ANe(A))=0 for any set A C K", where ¢(A) ={x € R"; A is (a,p)-thin at x}, also
holds in the non-linear potential theory. It is easily seen from this property that B, ,(A4) =
0 if and only if A is (@,p)-thin at all of its points. In this note in a special case where E

is a symmetric generalized Cantor set (for the definition, see [ 3]), we prove the following

TueorREM. Let E be the symmetric generalized Cantor set constructed by the system
[{kj};‘; nv; j}?; o) with 8y< 1. Then the following three assertions ave mutually equivalent:

@ B,,(E)=0;

(b) E is (a,p)-thin at some point x € E;
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2 (a,p)—thinness

(© SZ,u;v; =00,

where #; = (k,-k;) "*"" and

- p—-1) .
PP e ap <o,

max {—log 4;, 1} if ap =n.

2. Proof of the theorem. To prove the theorem we prepare two lemmas. We owe the
proof of Lemma 1 to professor F—Y. Maeda.

Lemma 1. Let{a; } and {b, } be two sequences of positive numbers satisfying the following
conditions:

(@)  There is a positive number A< 1such that a;,,<Aa; for all i;

() {b;} is monotone increasing and b; >0 (i—),
If 3 a;b; <0, then

oo

2, (b, —b,_ )32, ab;)”

j=i%iY;

Proor. (i) The case liminf,..4,_,5; ' < 1. In this case, we find a positive number x
<1 and a sequence of positive integers {#, } such that », »co(£—) and b <ub

for all k. Note that b,, -, <u(1—u) '(b, —b,, _,) for all k. Since

np-—1 np

Siiia;(b; —b;o )=3,a;b;, —3,_ a4, 0;
=S (a; —a;01)b; —a;b; 1 Z(1 =13, a;b; —a;b;-),

we have
3, ab; = (1= ST, ¢;(b; —b; ) +a, b,, 1}
=(1-0)7" 52, a;(b; —b,_ 1)+,u(1 - a, (b,, —b,, )}
S(1-0" N (1—-w 's2 ,,ka](b —b;_1).

Hence,
2, aib; —b,_ ) (37, a:b,) "

232, a:(b; =6, 1) (372, a;6,) 7 Z(1=2)(1—x)>0
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for all £ Thus, we have the desired result.

(ii) The case lim;.b,_,b; '= 1. In this case, there is 7, such that b,_,5; ' >2

for all 7=4,.

Hence,

52 ab, < ab,Se_A"'=M 'a,b,

j=i “jYj
for all 7=27,, where M=1 -2 Therefore, for any k=i,

Sipai(b; —b; 1) (S, ab;) 'Z2M3Z, a;(b; —b,_1)a; ‘b;

i %iv; i= i

2 M lim,,_..b, 'S, (b, —b,_) =M lim,,_.b,, (b, —b,_,) =M,

which implies the desired result.

1/2

Lemma 2 ([ 3; Tusorem]). Let E be the symmetrvic genevalized Cantor set in R”
constructed by the system[{k; };2,,{ £; ;2 ]with 0, <1. Then there is a constant C> 1

dependent only on n, p and a such that

C (v, +32, u0;) ' PSB,,(E)SCEL, uv;) ' 72

Proor oF THE THEOREM. The implication (c)=>(a) follows from Lemma 2, and the

implication (a)= >(b) is trivial by the definition of the (a, p)-thinness.
(b)=>(c): It suffices to show that if 372, u;v; <, then

1
S (r*7"B, (ENBx »)}* YV Tdy=c0
0

for any x € E. Let i, be'an integer = 3 such that 207" >»n"”. Then w0, <1 fori

={,. Also, note that —log ¢; > 1 for = 2. Given x € E, for each 121, x is contained an

n-dimensional cube 7 ff) of length ¢, which appears in the definition of the Cantor set E.

Then I C B(x, £;), so that

B, (ENI?)<B, ,(ENB (x,0})),

where ¢ = n' ;. Since ENIT i,i) is a symmetric generalized Cantor set constructed by the

system[{%,,;};2,,{ £;+;}}= 4], by Lemma 2 we obtain

B,,(ENINzZC (v, +32,, 0 u; ') ' 7°

1ot -
=C ' ulT (S upv;) Y

j=i



4 (a,p)—thinness

Hence,

1
g {(r?7"B,(EN Blx, r)}* Yy ar

0

0’
232, g[l {(r*"B,(E N Blx, »))}V V0 gy
=5 Ba,,,l(Eﬂ Bz, 97) e~V ij“l pler=w/e= D=1 g,

v

0
oo oo -1
C'2i=,~ou,~ (Z)l- —v,-_l) (2]':,' u]-vj )

with a positive constant C’. If 2 #;v; <o, then Lemma 1 shows that the last expression in
the above inequalities is ©. Thus the implication (b)= >(c) is proved.

Remark. The (a,p)-fine topology z,, is defined by the family
{H C R” ; R"\H is (a,p)-thin at every point of H}.
In [ 3], we constructed a symmetric generalized Cantor set E such that

(%) (R*N\E) U {x°} €7, \7,, for "€ E,

in the following four cases: (i) 0 <gg<ap<m, (ii) 0<Bg<ap=mn, (iii) 0 <Bg=ap<
nand ¢>p and (iv) 0 <Bg=ap == and ¢>p. The above theorem shows that we can not
obtain a symmetric generalized Cantor set E satifying (%) in the remainder case, namely in
case 0 <ap=pg<nand (n—ap)/(p— 1)<(n—pBq)/(qg— 1) (cf. [1; Theorem B]). In fact,
if there is such a set E, then E is (8,q) -thin at x°, so that B s.(E) =0 by the theorem. But
this implies that B, ,(E) =0, since ap <fq or ap=pg and p>q (see, [ 2; Theorem 5.51]);
and hence E is (a,p)-thin at x°, which contradicts ().
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