赤名花崗閃緑岩深層風化殼

秦 明 徳*

Akinori Hada THE DEEP WEATHERING CRUST OF AKANA GRANODIORITE

I. はじめに

身近な自然現象を通しての地域に即した地質営力研究 とその教材化は、地学教育における最も重要な研究課題 の一つである。本稿では外的地質営力の一つである風化 作用の基礎的研究について報告する。

真砂土化や深層風化殻の形成に特徴づけられる花崗岩 類の風化現象は古くから注目され、多岐にわたる研究が 積み重ねられてきている。風化進行に伴う鉱物の変化や 化学的性質の変化 に つ い ての研究は, Reiche (1943, 1950), 菅野他 (1960), Kato (1964, 1965), 大八木他 (1969 a), 中川他 (1972), 三浦 (1973), 三浦・樋口 (1974) 等多数の報告がある。又,物理的力学的性質の 変化については、Lumb (1962)、大八木 (1969 b) 西田・ 福田 (1979), 木宮 (1975) 等がある。しかしながら, こ れらの研究が、野外における肉眼観察を主とした観察 結果と対応する形で研究が進められている場合が少ない こと、全風化過程を通しての研究が少ないこと、又、諸 性質を総合的視点から精査したものが少ないこと等のた め定説となる風化殻分帯が確立されるには至っていな い。さらに,花崗岩類の生成史に着目した研究が少なく, 花崗岩類が被った風化前変質がどのようなもので、風化 変質が加わるとそれがどのように変化するのかも明らか になっていないことが、その確立を妨げている要因であ る。

これらの問題を解決するのには、古い地形と厚い風化 殻が残存する地域を研究対象として選定することが必要 となる。そこで、島根県出雲市南方、中国脊梁山地に沿 う赤名花崗閃緑岩分布地域を研究対象として用いること にした。本地域は、地形的には中位平坦面(標高400~ 600 m)を形成し、赤色風化を被った深層風化殻を伴っ ている。

筆者は,本地域において,主として鉱物学的手法を用

いながら前述の問題点を明らかにしようとしてきている。本地域の地形的地質的特質,風化前変質及び肉眼観察やX線粉末回折実験等に基づく風化殻分帯については、その一部を既に報告している(秦,1985,1986)。

本稿では、さらに赤名花崗閃緑岩深層風化殻について 化学組成の点から検討を加えるとともに、環境変化に特 に鋭敏な造岩鉱物である黒雲母について、その変質経路 を追跡した結果について報告する。

なお,図-1に調査地域の地質概略と露頭位置を示す。

II. 赤名花崗閃緑岩深層風化殼分帯

本地域の花崗閃緑岩深層風化殻の厚さは,薄い所で50 m,厚い所では100m以上に達する。肉眼観察,顕微鏡 観察,X線粉末実験等の結果から,本風化殻は,鉱物相 の変化から5層に分帯できる(図-2)。各層の特徴は次 の通りである。

(1) 第1層 新鮮花崗閃緑岩

造岩鉱物の色,光沢,透明度などの点から風化作用の 及んでいないと判断される岩盤である。X線回折実験, 顕微鏡観察からも風化作用を受けた徴候は見られない。 密度は 2.68 g/cm³ であり,非常に堅固な岩盤である。

(2) 第2層 初期変色帯(微弱風化花崗閃緑岩帯)

斜長石がやや白濁化し、黒雲母周辺が鉄のしみ出しに より褐色化するが、新鉱物の生成はない。密度は、2.45 ~2.60g/cm³ 程度である。 変色の度合が低い岩盤は堅 固で、ハンマーの感触は新鮮岩とあまり変わらないが、 変色が進んだものでは、岩盤としての性格を残しながら も、ハンマーで軽打すると 10 cm 前後の径を持つ 岩魂 となる。原岩と 比較して 密度が 減少している ことから も、微小な割れ目が生じ、空隙が生じていることが推察 できる。

(3) 第3層 バーミキュライト帯(風化花崗閃緑岩帯) 個々の粒子の硬さは残っているが、ハンマーでたたく 赤名花崗閃緑岩深層風化殻

と、0.5~2 cm 程度の粒子径となりバラバラに崩れる。 これは粒子界や斜長石粒子内に割れ目が生じ、これらの 隙間に沿って溶脱が急速に進んだ結果であろう。この帯 では、黒雲母、緑泥石から変化したバーミキュライトが 特徴的であり、斜長石は溶脱を受け劣化してはいるもの の、まだハロイサイトの形成には及んでいない。密度は 1.70~2.40 g/cm³の間で変化する。

(4) 第4層 カオリン帯 (マサ帯)

斜長石がハロイサイト化する。本層下部では, 斜長石 粒子を指頭でつぶすと相当な抵抗感があり, 核の部分は つぶれないで残るが, 上部では完全に粘土化する。黒雲 母は黄褐色化が進行し, かなりのものは, バーミキュラ イトとなるが, 中途でバーミキュライトは消失し, カオ リナイトが増加する。角閃石は緑色を保ったままである

図-2 赤名花コウ閃緑岩の風化進行に伴う鉱物相変化

I zone:新鮮岩II zone:初期変色帯III zone:バーミキュライト帯 IV zone:カオリン帯

V zone:含赤色酸化鉄カオリン帯

眀

徳

が、第5層との境界付近で褐色となる。下部では、ハンマーで軽打すると砂状にくずれるが、上部では粘土分の 増加によって魂状で採取できる。密度は $1.30 \sim 1.68$ g/cm³ である。

(5) 第5層 含赤色酸化鉄カオリン帯(赤マサ帯)

赤色酸化鉄により全体の色調が赤褐色化する。残留鉱物として、石英と K-長石が残っているが、K-長石は本層上部において急速に分解消失する。黒雲母は大部分がカオリナイトとなるが、一部 "加水雲母"として残存する。密度は、1.1~1.3g/cm³ 程度となる。

赤名花崗閃緑岩分布地域内では、どの地点でも鉱物相 の変化についてほぼ同様な結果が得られる。しかし、そ の中にあって黒雲母の変質物については必ずしも同一の 結果とはならない。このことに関しては、IVで詳述する。

III. 風化進行に伴う花崗閃緑岩の化学組成変化

試料の採取

分析に供した試料は、図-1に示す露頭①、②、③か ら採取した。露頭①では、新鮮岩からカオリン帯までの 7点、露頭②では地表下 11 m, 26 m のカオリン帯から 各1点、地表下 6 m から赤色酸化鉄カオリン帯下部の 試料を1点採取した。露頭③からは本地域内で最も風化 が進行した試料として、地表下 0 m, 3 m から各1 点を 採取した。

2. 分析結果と考察

各試料の分析結果を表-1に示す。なお,化学分析の 方法は凑他(1982)によった。

(1) 化学組成の相対的変化

図-3 風化進行に伴う化学組成変化

	Fresh rock zone		First	t discolo	oration	zone	Vermiculite zone						
	① corestone 1		① corestone 2		① cores	① corestone 3		① corestone 4		① corestone 5		1 corestone 6	
	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	
SiO ₂	67.97	1. 132	68.87	1.147	68.06	1. 133	67.97	1.132	68.20	1.136	67.27	1.120	
TiO_2	0.36	0.005	0.34	0.004	0.32	0.004	0.38	0.005	0.39	0.005	0.41	0.005	
$A1_2O_3$	14.90	0.146	14.69	0.144	14. 35	0.141	16.04	0. 157	15. 91	0.156	15.79	0. 155	
$\rm Fe_2O_3$	3. 70	0. 023	3. 23	0. 020	3.63	0.023	3.4	0.022	3. 22	0. 020	3. 32	0. 021	
MnO	0. 09	0. 001	0.08	0.001	0.08	0. 001	0.09	0.001	0. 08	0. 001	0.09	0. 001	
MgO	1.02	0. 025	0. 98	0.024	1.05	0. 026	0. 99	0. 025	0. 89	0.022	0.96	0.024	
CaO	3. 26	0. 058	3.10	0. 055	3. 48	0.062	2. 93	0.052	2. 98	0. 053	2.97	0. 053	
Na_2O	4.85	0. 078	4.44	0.072	4. 58	0.074	4. 08	0.066	4. 29	0.069	4.29	0. 069	
K_2O	3. 43	0. 036	3. 30	0. 035	2.96	0. 031	3. 15	0. 033	3. 20	0.034	3.25	0. 035	
$H_2O(+)$	0.37	0. 021	0.47	0.026	0. 77	0. 043	0. 91	0. 051	0.85	0.047	0.88	0. 049	
$H_2O(-)$	0.03	0.002	0. 08	0.004	0.23	0.013	0.40	0. 022	0.28	0.016	0.32	0.018	
Total	99. 98		99. 58		99. 51		100. 40		100. 29		99. 55		
Q	23. 0		22. 0		21.7		23. 0		22.1		20. 9		
G	0		0		0		0.6		0		0		
Or	20.0		19.5		17.2		18.4		18.9		19.5		
Ab	40.9		37.7		38.8		34.6		36.2	:	36.2		
An	8.9		10.3		10.0		14.5		14.7		14.2		
Di	6.1		4.2		6.1		0		0		0.5		
Hy	1.4		1.8		1.6		3.0		2.6		2.8		
Hm	1.3		1.0		1.3		1.1		1.0		1.0		
I 1	0.8		0.6		0.6		0.8		0.8		0.8		
Total	102.4		97.1		97.3		96.0		96.3		95. 9		
Bulk density (g/cm ³)	2.68		2. 59		2.45		2.30	i	2. 20		2.28		

表-1 花崗閃緑岩とその風化物の

化学組成とノルム鉱物

		Kaolir	n zone		Kaolin-red iron oxides zone						
① corest	one 7	② 26	m	2 11	m	2 6	m	3	m	3 0 m	
Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.
65. 73	1.094	65.76	1.095	63. 99	1.065	61.72	1.028	62.23	1.036	62.58	1.042
0. 33	0.004	0.42	0.005	0.48	0.006	0. 51	0.006	0. 52	0. 007	0.54	0.007
15.52	0.152	18.42	0. 181	18.67	0. 183	19.30	0. 189	19.85	0.195	19. 31	0. 189
3. 50	0.022	4.02	0.025	4.44	0. 028	4.88	0. 031	4.81	0.030	5.11	0.032
0. 09	0.001	0.09	0.001	0.13	0.002	0.13	0.002	0.13	0.002	0.13	0.002
0.96	0.024	0.89	0.022	0.69	0. 015	0. 43	0.011	0. 50	0.012	0. 72	0. 018
2.15	0.038	1. 79	0. 032	0. 59	0. 011	0. 32	0.006	0. 29	0.005	0. 33	0.006
3. 80	0.061	2.90	0.047	0.68	0. 011	0.43	0.007	0. 08	0.001	0.22	0.004
3. 65	0. 039	2.87	0.030	3. 05	0. 032	3.10	0. 033	2.05	0.022	2.00	0. 021
2.90	0.161	2.35	0. 131	5. 73	0. 318	6.63	0. 368	7.30	0.406	7.02	0.400
1.10	0.061	0. 85	0.047	1.45	0. 081	2. 21	0. 118	1.80	0.100	1.80	0.100
99. 73		100. 38		99.82		99. 57		99. 56		99. 94	
22.2		31.5		45.3		45.4		37.9		50.6	
1.4		7.0		13. 0		14.4		16.8		16.0	
21.7		16.7		17.8		18.3		12.2		11.7	
32. 0		24.6		0.6		0.4		0.5		2.1	
10.6		8.9		3.1		1.7		1.4		1.7	
0		0		0		0		0		0	
2.9	1	2.6		1.8		1.3		1.4		2.2	
1.3		1.9		3.0		3.8		3. 5		3.4	
0.6		0.6		0.6		0.6		0.6		0.6	
92.7		93. 8		85.2		85. 9		74.3		88.3	
1.75		1.65		1.38		1.23		1.25		1.15	

風化による元素の動きを細かく論じるには、個々の岩 石の風化程度を表示できる明確な指標が必要である。既 に, 岩石の風化程度を表示する種々の物理的・化学的風 化指標が提案されている (Ruxton B. P. (1957), 三浦 (1973), 木宮 (1975))。しかし, 現段階では特に優れた 表示法として確立されたものがあるわけではない。そこ で筆者は、物理的基本量であり、しかも測定が容易な密 度を風化指標として用いることにする。図-3は、風化 の進行に伴う各酸化物の相対的増減を示す。相対的に減 少する酸化物は、SiO2, MgO, K2O, Na2O, CaO であ る。一方,相対的に増加する酸化物は、Al₂O₃,TiO₂, $\rm H_2O(+),\, \rm H_2O(-),\, Fe_2O_3(Total Fe),\,\, MnO$ である。 Na₂O, CaO の相対量は急激に減少するが、その一方で Al₂O₃ や H₂O(+)の急激な増加がある。これらは斜長 石の分解とカオリン鉱物の生成にかかわる現象として理 解できる。それに比し、MgO や K2O は、相対量の減 少を生じにくい。MgO は, 密度 1.7 g/cm³ 付近で 減 少傾向を示すが、風化末期まで残存し続ける。これは角 閃石が比較的に風化に強いことと, 黒雲母が形を変えな

- 図-4 An-Ab-Or 三角ダイアグラムによる風化進行に伴う鉱物相変化
 - ●:新鮮岩(I zone)と初期変色帯(II zone)の 試料
 - ○:バーミキュライト帯 (Ⅲ zone)の試料
 - ▼:カオリン帯(IV zone)の試料

図-5 An+Or+Ab-G-Q三角ダイアグラムによる 風化進行に伴う鉱物相変化

がらもその構造を最後まで残すことと深いかかわりがあ る。又, K_2O は風化が進行しても, その相対量をほと んど変化させないが, 密度 1.2 g/cm^3 付近で急激にそ の量を減少させる。これらの結果は, K-長石が風化に 対して強い抵抗性を示しながらも, 含赤色酸化鉄カオリ ン帯上部で不安定となり分解していくことと, 黒雲母が その構造を風化末期まで残存させていることに対応して いると考えられる。 Fe_2O_3 (Total Fe) の漸増は, 含水 酸化鉄の生成により, 溶脱を受けにくくなることに対応 しているものと推定できる。

(2) ノルム鉱物からみた鉱物相変化

花崗閃緑岩とその風化物の化学分析値より求めたノル ム鉱物を用い,風化進行に伴う鉱物相の変化に検討を加 える。

図-4は、曹長石、灰長石、正長石成分で示される/ ルム鉱物による三角ダイアグラムである。この図から斜 長石成分である曹長石や灰長石は、風化の初期から減少 するのに比し、K-長石は風化に対して強い抵抗性を示 すことが読み取れる。このことはX線回折実験や顕微鏡 観察の結果との一致を示す。

図-5は、長石類、ギブサイト、石英成分で示される ノルム鉱物による三角ダイアグラムである。長石成分が 風化の進行に伴い減少し、次第にカオリン成分に近づく ことを示している。

(3) 風化進行に伴う溶脱率の変化

花崗閃緑岩風化物の化学分析値と密度から次のように して溶脱率を求めた。まず化学分析による各酸化物の重 量パーセントをそれぞれの分子量で割りモル比を算出す る。次にこのモル比から陽イオン比を求める。求めた陽 イオン比にそれぞれの風化物の密度を掛ければ,同体積 中の陽イオン比が求められる。よって,各陽イオンの溶 脱率は次式で求められる。

求める陽イオン の 溶 脱 率= $\left\{ 1 - \frac{ B(1 + \nu L \times \overline{\alpha} \underline{B}(\underline{M}(L + \underline{C})))}{B(1 + \nu L \times \overline{\alpha} \underline{B}(\underline{M}(L + \underline{C})))} \right\}$ × 100

以上の方法で求めた各風化段階での陽イオンの溶脱の しやすさは次の通りである。

- バーミキュライト帯の試料(密度 2.28 g/cm³) Na⁺>Fe³⁺>Ca²⁺>Mg²⁺>K⁺>Si⁴⁺>Mn²⁺> Ti⁴⁺>Al³⁺
- カオリン帯の試料(密度 1.65 g/cm³)
 Ca²⁺>Na⁺>K⁺>Mg²⁺>Si⁴⁺>Mn²⁺>Fe³⁺>
 Ti⁴⁺>Al³⁺
- ・含赤色酸化鉄カオリン帯下部の試料(密度 1.23 g/cm³)

 $Na^{+}\!>\!Ca^{2+}\!>\!Mg^{2+}\!>\!Si^{4+}\!>\!K^{+}\!>\!Al^{3+}\!>\!Fe^{3+}\!>$

 $Mn^{2+} > Ti^{4+}$

 ・含赤色酸化鉄カオリン帯上部の試料(密度 1.15 g/cm³)

 $Na^+\!\!>\!\!Ca^{2+}\!\!>\!\!K^+\!\!>\!\!Mg^{2+}\!\!>\!\!Si^{4+}\!\!>\!\!Al^{3+}\!\!>\!\!Fe^{3+}\!\!>$ $Mn^{2+}\!\!>\!\!Ti^{4+}$

図-6は密度を風化指標とした時の溶脱率の変化を示 す。

これらの結果は、Na⁺, Ca²⁺ がどの風化段階でも最も 溶脱しやすく、しかも急激に溶脱が進むことを示してい る。逆に Ti⁴⁺, Al³⁺, Mn²⁺ は溶脱しにくいイオンであ る。しかし、溶脱しにくい Al³⁺ でも、含赤色酸化鉄カ オリン帯では40%以上の溶脱率を示すようになる。Fe³⁺ (Total Fe) は、風化初期には溶脱をよく受けるが、 その後半では溶脱されにくくなる。このことは2価鉄の 3価鉄への変換にかかわっていると考えられる。K⁺ が 風化の末期に溶脱を受けやすくなるのは、カリ長石の分 解とかかわっている。

これらの溶脱率に示される傾向は、必ずしもイオン化

明

徳

傾向に従わないで,むしろ造岩鉱物の風化分解のしやす さを反映している。以上のことは,風化作用が風化鉱物 の生成とともに溶脱現象によって特徴づけられることを 如実に示している。

IV. 風化進行に伴う造岩鉱物の変化

本岩中で風化作用に対して特に鋭敏な鉱物は黒雲母, 斜長石である。そこで,この2種の鉱物のうち黒雲母と その変質物について,鉱物学的に検討した。

赤名花崗閃緑岩においては、肉眼的に新鮮な岩石でも 程度の差こそあれ黒雲母から変質した緑泥石が含まれて いる。又、風化系列の中で黒雲母は他の鉱物の風化変質 の動きに対して対応しないかのように見える特異な動き をすることについても既に述べた。

黒雲母の風化変質については古くから興味が持たれ, 野外室内両面から多数の研究がなされてきた。特に黒雲 母のバーミキュライト化については,種々の条件が明ら かにされつつある(Norrish (1972),長沢 (1972),井上他 (1981)。しかし,野外における黒雲母の変質の研究結果 は,研究地域によって異なることが多い。これは,黒雲 母が鋭敏な鉱物であり,風化環境,風化作用を被る以前 の変質,化学組成等のちがいが黒雲母の変質経路を多様 化させているためだと考えられる。そこで本岩中の黒雲 母の変質物の多様性についても,その産状とのかかわり を明らかにしていくことが必要となる。

 X線粉末回折法による黒雲母とその変質物の同定 水洗した試料中から黒雲母とその変質物をピンセット で拾い出し、さらに実体顕微鏡下で不純物を除去した 後、メノーの乳鉢ですりつぶし、X線粉末回折実験に供 した。粘土鉱物同定のため、必要に応じ次の処理を施し た。

- ① エチレングリコール処理
- ② 塩化マグネシウム処理→グリセロール処理
- ③ 硝酸アンモニウム処理
- ④ 塩化カリウム+水酸化カリウム処理
- ⑤ クエン酸ナトリウム処理→塩化カルシウム処理→ グリセロール処理
- ⑥ 塩酸処理
- ⑦ 加熱処理(150℃, 300℃, 500℃, 600℃)

X線粉末回折の結果,赤名花崗閃緑岩とその風化物中 に含まれる黒雲母とその変質鉱物は,次の7種の基本型 に分類できる。

① 黒雲母 (Biotite)(記号 B)

(001) 面の反射が他の面に比し特に強く,鉄質黒雲母 と推定できる。塩化マグネシウム処理で(001) 面は,10 Å から 14.5Å へ移動し,バーミキュライト様鉱物とな る。

② 加水雲母 (Hydromica) (記号 Hm)

(001) 面の反射の半価幅は黒雲母に比し拡大する。 (001) 面の反射は,一般に10.3~11.0Å になり,黒雲母 の(001) 面の反射よりやや膨潤する。しかし,含赤色酸 化鉄カオリン帯上部において,(001) 面の反射は再び10 Å に近づき,結晶度も高まる。塩化マグネシウム処理で

(001) 面は移動せず,黒雲母と異なる性質を帯びる。この鉱物を後述する化学分析の結果も加味して、^{*}加水雲母(Hydromica) "と名づける。この鉱物については、さらに詳細な研究を要する。

③ カオリナイト (Kaolinite) (記号 K)

④ 緑泥岩 (Chlorite) (記号 Ch)

(001)(003)面の反射に比し、(002)(004)面の反射 が高いことから鉄質緑泥岩と推定できる。

 ⑤ クロライト様 バーミキュ ライト (Chlorite-Vermiculite intergrade) (記号 Ch-V)

無処理試料では、バーミキュライトのX線反射を示す。 硝酸アンモニウム処理,塩化カリウム+水酸化カリウム 処理,エチレングリコール処理,塩化マグネシウム→グ リセロール処理のいずれにも,14.5Åの反射は移動し

図-9 Chlorite Vermiculite intergrade のX線回折

ない。この点では緑泥石的性格を持つが加熱には弱く, 300~500℃の加熱で14.5Åの反射は10Åへ移動する。 ⑥ 低電荷型バーミキュライト (low charged Vermiculite) (記号 low V)

硝酸アンモニウム処理で(001)面の反射が10Å へ移 動する。エチレングリコール処理では(001)面の反射は, 15~16Å へ移動する。しかし、塩化マグネシウム処理→ グリセロール処理で(001)面の反射は14.5Å を示す。 又,加熱処理では、300~500℃で(001)面の反射は10Å へ移行する。これらの性質は、Brindley(1966)の低電 荷型バーミキュライトに相当する。

⑦ Al 層間バーミキュライト (Al intercalated Vermiculite) (記号 Al-V)

秦

月 徳

図-10 low charged Vermiculite のX線回折

図-11 Al intercalated Vermiculite のX線回折

化マグネシウム処理—→グリセロール処理で、14.5Åの 反射は移動しない。クエン酸ナトリウム→塩化カルシウ ム処理→グリセロール処理でも14.5Åの反射を示す。 加熱処理により、14.5Åの反射は徐々に移動し、600℃ では11.5Åに位置する。後述する化学分析の結果もあ わせ、この鉱物をA1層間バーミキュライトとする。

本岩体中の黒雲母とその変質物は、X線回折の結果、 上記の7種の基本型に分類できる。さらに、これらの7 種間で種々の混合層が形成されている。

2. 花崗閃緑岩の産状と黒雲母の変質型

花崗閃緑岩の産状と変質鉱物の種類との対応から、黒

図-12 風化進行に伴う黒雲母とその仮晶の変化 (露頭①)

図-13 風化進行に伴う黒雲母とその仮晶の変化 (露頭②)

雲母の変質型を次の3タイプに分類した。

<正常型>節理塊が大きく熱水作用の影響が弱い型 赤来町来島周辺に典型的に出現する。この地域の風化 断面における黒雲母の変質の代表例を図-12,図-13に 示す。

<熱水型>節理塊が小さく熱水作用の影響が強い型 頓原町寺垣内,古城稲荷周辺に典型的に出現する。頓 原川にそって東西に伸びるこの地域は,節理の発達が著 しい。その節理を熱水性脈物質であるローモンタイト, セリサイト,モンモリナイト等が網目状にうめている (秦,1985)。この地域の黒雲母の変質の代表例を図-14, 図-15に示す。

<中間型>正常型と熱水型の中間的性格を示す型

頓原町大年,城東周辺に典型的に出現する。この地域の黒雲母の変質の代表例を図-16,図-17に示す。

3. X線粉末回折実験に基づく考察

本岩体風化殻の黒雲母の変質を,上記の3タイプに分 けて考察する。

<正常型>

新鮮岩中の黒雲母はほとんど変質を受けず、わずかに 緑泥石を伴うだけである。この黒雲母は、カオリン帯下 部まで変質を示さない。緑泥石は、バーミキュライト帯 で Ch→Ch-V→low V へと変化する (図-12)。又、カ オリン帯上部付近から黒雲母が風化環境で準安定な加水 雲母に移行する(図-13)。図-18は、風化進行に伴い、 黒雲母が(001) 面反射の半価幅を拡大しながら加水雲母

図-14 風化進行に伴う黒雲母とその仮晶の変化 (露頭④)

図-15 風化進行に伴う黒雲母とその仮晶の変化 (露頭⑤)

図-16 風化進行に伴う黒雲母とその仮晶の変化 (露頭⑥)

へ移行する様子を示している。ところが、含赤色酸化鉄 カオリン帯上部で、その半価幅が再び縮小する。これは、 この層準で K-長石が不安定となり分解するので、そこ から加水雲母の層間に K イオンが供給され、その K イ オンによって層間が再び引き締められるためと推定でき る。含赤色酸化鉄カオリン帯では、カオリナイトが風化 進行に伴い、徐々に増加することを示しており、その時 共生する鉱物が主に加水雲母であることにより、加水雲 母のカオリナイト化への経路があることが確認できる。 以上の考察から正常型の変質経路は、次の図式で示され

図-17 風化進行に伴う黒雲母とその仮晶の変化 (露頭⑦)

<熱水型>

る。

新鮮岩帯から初期変色帯までの岩石に含まれる黒雲母 仮晶は緑泥石に変質している。緑泥石から変化したバー ミキュライト類は不安定で,簡単にカオリナイト化する 傾向にある(図-14)。一方,露頭⑤では緑泥石脈が発達 しており,相当強い熱水作用を受けている。その為か, この黒雲母仮晶中の緑泥石は,風化作用に対し,初期段 階では抵抗性が大きく,緑泥石的性格をバーミキュライ ト帯まで残存させている。しかし,バーミキュライト化 した後は変化しやすく,カオリナイト化し,黒雲母仮晶 も消失する。又,地表付近のカオリン帯では,A1 層間 バーミキュライトが確認でき,低電荷型バーミキュライ

眀

徳

トからの変質が推定できる(図-15)。以上のことから, 熱水型変質経路の大要は,次の図式で示される。

(3) 中間型

正常型と熱水型の中間的性質を示す。露頭⑥では,黒 雲母と低電荷型バーミキュライトの混合層(Hydrobiotite)が顕著である(図-16)。地表付近では,Al層間バ ーミキュライトが存在するが,この場合の変質経路は明 確でない。

以上3タイプの考察から,黒雲母の変質経路は,次の 図式にまとめられる。

各風化断面における黒雲母の変質経路は,主として風 化段階前の熱水作用に強く影響される。本岩体風化殻に おいては,黒雲母の直接的なバーミキュライト化,及び バーミキュライトの加水雲母化は,黒雲母仮晶鉱物の量 的関係から見ると可能性が低い。

4. 黒雲母とその変質物の化学分析

試料を水洗し風乾後,黒雲母とその仮晶を拾い出し, 実体顕微鏡下にて不純物を除去した後,メノーの乳鉢で すりつぶす。その試料から磁鉄鉱を除去した後,電磁分 離機でさらに不純物を除去し,化学分析に供した。分析 結果は表-3に示す。

5. 化学分析に基づく考察

化学分析に供したほとんどの試料は、2種以上の鉱物 が混在して存在していることがX線粉末回折実験から明 らかである(表-2)。これらの混合物から,一つの鉱物を 差し引いてしまうことが定量的にできるならば、風化変 質物について、もっと厳密な研究ができるはずである。

そこで、各鉱物の脱水温度の差に着目し、熱重量分析 法を用い、混合物中の一鉱物の定量化を検討した。図-19は、黒雲母(試料番号1)、バーミキュライト(試料番号 2)、加水雲母とカオリナイトの混合物(試料番号13)の 3 試料の TG・DTG 曲線である。この3 試料の測定結 果を比較すると、DTG 曲線に示される 500℃ 付近の重

表-2 黒雲母とその仮晶の化学分析試料とその構成鉱物

sample No.	locality	minerals
1	1	Biotite
2	6	Chlorite Vermiculite intergrade> low charged Vermiculite
3	④ 2 m	Chlorite Vermiculite intergrade> lowcharged Vermiculite» Biotite
4	15 m	low charged Vermiculite≫ Biotite+Kaolinite
5	⑦ 20 m	low charged Vermiculite, Blotite≫ <b i-v+="" kaolinite<="" td="">
6	14 m	Biotite, Hydromica+Kaolinite
7	8 m	Biotite, Hydromica+Kaolinite
8	2 m	Kaolinite+Al intercalated Vermiwlite
9	② 26 m	Chlorite Vermiculite intergrade, Biotite+Kaolinite
10	22 m	Biotite+Kaolinite
11	10 m	Hydromica+Kaolinite
12	0.5 m	Hydromica+Kaolinite
13	30 m	Hydromica+Kaolinite
14	(5) 30 m	Chlorite

赤名花崗閃緑岩深層風化殻

					_	_	_	_						
		2	3	4	5	6	7	8	9	10	11	12	13	14
SiO_2	35.28	34.14						38.24			38. 77		39. 43	
TiO_{2}	3.64	2.90						2.61			2.39		2.06	
Al_2O_3	12.77	14.72						25.73			25.42		26.72	
$\mathrm{Fe_2O_3}$	4.65	24.20	19.30	17.86	17.63	15.17	14.97	13.63	15.58	15.74	12.33	11.76	9.36	27.45
FeO	17.60	0.56	2.07	0.84	0. 89	1.38	1.00	1.16	I. 51	0.85	0.59	0.68	1.06	
MnO	0.68	0.44	0. 37	0.35	0.25	0.24	0.21	0.19	0.36	0.32	0.24	0.23	0.18	0.60
MgO	8.70	5.20	7.05	5.70	4.25	4.23	4.05	3.50	5.80	5.25	3.60	4.40	3. 05	8.55
CaO	0.82	2.60	2.87	1.64	1.76	0.61	0. 76	0.52	1.10	1.01	0.28	0.27	0.32	3. 53
Na₂O	0.36	0.46	0. 52	1.65	0.43	0.18	0.37	0.21	0.41	0.48	0.12	0.19	0.14	0.50
K_2O	10.72	2.16	3.66	3. 73	2.57	3.46	3.07	1.40	3. 18	4.27	3. 36	3. 59	3.16	2. 3 1
$H_2O(+)$	1.82	7.75	7.33	7.83	8.05	9.01	9.27	10.91	8.17	8.17	9.84	9. 75	10.65	
$H_2O(-)$	3. 15	5. 81	5.43	4.69	3. 70	3. 59	3. 04	2.66	4.25	3. 69	3.47	2. 93	3. 37	
Total	100.19	100. 94						100. 75			100. 41		99. 50	

表-3 黒雲母とその仮晶の化学組成

量減は、加水雲母とカオリナイトの試料のみに 表われ る。さらに 500℃ 付近の脱水は、カオリナイト特有のも のである。従って、DTG 曲線に示される 500℃ 付近の 重量減は、カオリナイトによるものと考えられる。

そこでまず, TG 曲線に示されるカオリナイトの脱水 による 500℃ 付近の重量減を読みとり,その値からカオ リナイト量を計算で求める。次に全重量から計算で求め たカオリナイト量を引き去れば,黒雲母仮晶中のカオリ ナイト以外の鉱物量が得られる。

以上の方法でカオリナイトを除いた成分の化学分析値 を再計算した結果を表-4に示す。

次に全分析を行った試料については、この分析値から モル比を求めた。その結果は表-5に示す。

求めたモル比から陽イオン比を出し、さらに陽イオン

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SiO ₂	35.28	34.14						33. 31			34.62	1	33. 58	
TiO_{2}	3.64	2.90						4.16			3.64		3. 76	
Al_2O_3	12.77	14.72						17.53			18.05		16.37	
FeO	17.60	0. 50	2.07	1.01	1.18	2.04	1.52	1.85	2.00	1.19	0.90	1.12	1.93	
Fe_2O_3	4.65	24.20	19.30	21.48	23.53	22.39	22.82	21.72	20.60	22.06	18. 79	19.41	17.06	27.45
MnO	0.68	0.44	0.37	0.42	0.33	0.35	0.32	0.30	0.48	0.45	0.37	0.38	0.33	0.60
MgO	8. 70	5.20	7.05	6.85	5.67	6.24	6.17	5. 58	7.67	7.36	5.49	7.26	5.56	8.55
CaO	0.82	2.60	2.87	1.97	2.35	0. 90	1.16	0. 83	1.45	1.42	0.43	0.45	0. 58	3. 53
Na_2O	0.36	0.46	0.52	1.98	0.57	0.27	0.56	0. 33	0.54	0.67	0.18	0. 31	0.26	0.50
K_2O	10.72	2.16	3.66	4.49	3. 43	5.11	4.68	2.23	4.20	5.99	5.12	5.92	5.76	2.31
$H_2O(+)$	1.82	7.75	7.33	6.59	6.07	6.66	6.81	9.10	6.30	5.85	7.68	4. 83	5.92	
$H_2O(-)$	3. 15	5.81	5.43	5.64	4.94	5.30	4.63	4.24	5.62	5.17	5.29	7.01	7.93	
Total	100. 19	100. 94						101.18			100. 50		99. 04	
Kaolinite (Wt. %)	0	0	0	16.8	25.1	32. 2	34.4	37.3	24.4	28.7	34.4	39.4	45.1	0

表-4 カオリナイトを除いた黒雲母とその仮晶の化学組成

表-5	カオリナイ	トを除いた黒雲母	母とその仮晶の化学組成とモル比
-----	-------	----------	-----------------

	Bi	otite	Vern	niculite	Al-Ve	rmiculite	Hyd	romica	Hydromica		
	1			2		8		11	13		
	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	Wt. %	Mol. prop.	
SiO ₂	35.28	0. 5872	34.14	0. 5683	33. 31	0. 5544	34.62	0. 5763	33. 58	0. 5597	
TiO_2	3.64	0.0450	2.90	0. 0303	4.16	0.0521	3.64	0.0456	3.76	0.0471	
Al_2O_3	12.77	0. 1252	14.72	0.1444	17.53	0. 1719	18.05	0.1770	16.37	0.1605	
FeO_3	4.65	0. 0291	24.20	0. 1516	21.72	0. 1360	18.80	0.1177	17.06	0. 1069	
FeO	17.60	0.2450	0.56	0. 0076	1.85	0. 0257	0.90	0.0125	1.93	0. 0269	
MnO	0.68	0.0096	0.44	0.0062	0.30	0.0042	0.37	0.0052	0.33	0.0047	
MgO	8.70	0. 2159	5.20	0. 1290	5.58	0. 1384	5.49	0.1362	5.56	0. 1380	
CaO	0.82	0.0146	2.60	0.0464	0.83	0.0148	0.43	0.0077	0.58	0. 0103	
Na_2O	0.36	0. 0030	0.40	0.0039	0.33	0.0028	0.18	0. 0015	0.26	0.0022	
K_2O	10.72	0. 1138	2.16	0. 0229	2.23	0. 0247	5.12	0.0544	5.76	0. 0611	
$H_2O(+)$	1.82	0. 1010	7.75	0. 4302	9.10	0. 5051	7.68	0. 4263	5.92	0. 3286	
$H_2O(-)$	3. 15	0. 1748	5.81	0.3224	4.24	0. 2353	5.29	0. 2936	7.39	0.4402	
Total	100.19		100. 94		101.18		100.56		99. 04		

Vermiculite=Chloririte Vermiculite in tevgrade+ low charged vermiculite

比の合計を求めた。

黒雲母とバーミキュライトの一般式は次式で与えられ る。尚,黒雲母の式に2分の1を乗じたのは、バーミキ ュライトの式のイオン数と合わせるためである。 Biotite: $K_2(Fe^{2+}, Mg)_{0-4}(Fe^{3+}, Al, Ti)_{0-2}$ $(Si_{0-5}Al_{2-3})O_{20-22}(OH, F)_{4-2} \times \frac{1}{2}$ Vermiculite: $Mg_2(Mg, Fe)(Al Si_3)O_{10}$ $(OH)_2Mg_{0.35}4.5H_2O$ これらを基準式として,求めた陽イオン数比を割り振 って求めた化学式を次に示す。

Biotite

 $\bullet \ K(Fe_{1.2}^{2+}Fe_{0.3}^{3+}Mg_{1.1}Ti_{0.2})(Si_{2.8}Al_{1.2})$

 $O_{10}(OH)_2 0.3 H_2 O$

Vermiculite

• $K_{0.2}Ca_{0.2}(Fe_{1.4}^{3+}Mg_{0.6}Ti_{0.2}Al_{0.1})(Si_{2.7}Al_{1.3})$ $O_{10}(OH)_22.6H_2O$ Al intercalated Vermiculite

• $K_{0.2}Ca_{0.1}Al_{0.2}(Fe_{0.1}^{2+}Fe_{1.3}^{3+}Mg_{0.7}^{--}Ti_{0.3})$ (Si_{2.6}Al_{1.4})O₁₀(OH)₂2.5H₂O

Hydromica

- $$\begin{split} \bullet \ K_{0.5}H_{0.5}(Fe_{0.1}^{2+}Fe_{1.1}^{3+}Mg_{0.6}Ti_{0.2}Al_{0.2}) \\ (Si_{2.6}Al_{1.4})O_{10}(OH)_{2}2.\ 4H_{2}O \end{split}$$
- $K_{0.6}H_{0.4}(Fe_{0.1}^{2+}Fe_{1.0}^{3+}Mg_{0.7}Ti_{0.2}Al_{0.3})$ (Si_{2.7}Al_{1.3})O₁₀(OH)₂2. 2H₂O

図-20 カオリナイト量の変化に伴う黒雲母(仮晶)の 化学組成変化

- Biotite and Hydromica
- Vermiculite (+Mica)
- × Vermiculite
- △ Al intercalated Vermiculite
- * Chlorite

- Biotite and Hydromica
- \bigcirc Vermiculite (+Mica)
- \times Vermiculite
- △ Al-interculated Vermiculite
- * Chlorite

これらの算出された化学式から次のことがわかる。黒 雲母の式を見ると、鉄分が多く、鉄質黒雲母であるごと がわかる。このことはX線実験の結果と一致する。又、 含赤色酸化鉄カオリン帯に特徴的な雲母は層間イオンの 不足を H_3O^+ の形で補っていると考えられ、その意味で 加水雲母 (Hydromica) と呼ぶことにする。これは黒雲 母からバーミキュライトへ移行する段階で生じるとされ ている黒雲母とバーミキュライトの混合層である加水黒 雲母 (Hydrobiotite) とは異なるものであり、さらに詳細 な研究を要する。黒雲母と加水雲母の化学組成を比較し てみると、黒雲母に比し加水雲母は K_2O , MgO, Total Fe が減少すること、 Fe^{2+} から Fe^{3+} へ変化すること、 Al_2O_3 と H_2O が増加することがわかる。化学組成上か らは、黒雲母が Trioctahedral 型に対し、加水雲母は Dioctahedral 型に近づいていることがわかる。

一方風化初期に出現するバーミキュライト類に共通す ることは Ca²⁺ の存在である。この Ca²⁺ が層間で水酸 イオンを引きつけることにより、パーミキュライトの膨 潤を導き出していると考えられる。

又,地表近くで出現する Vermiculite-Chlorite intergrade は AI^{3+} が 0.2 だけ層間にはいることが 化学 式に示されている。従ってこの鉱物は,従来から知られ ている AI 層間バーミキュライトと同種と考えられる。

次に,化学分析の結果に基づき,黒雲母の変質経路に 検討を加える。図-20はカオリナイトの変化量に伴う黒 雲母とその変質物中のアルカリ・アルカリ土類の変化を 示すものである。尚,この場合,カオリナイト量を除い た残量成分の分析値を用いている。

図中に示される各酸化物の変化で、バーミキュライト 類と雲母類の間で差が認められるのは、 K_2O , CaO の動 きである。ただし Al intercalated Vermiculite につ いては、他のバーミキュライト 類と産状を 異にするの で、同一の議論の対象とはしない。

 K_2O は、新鮮な黒雲母では、10.72%の値を示し、風 化の進行に伴い次第にその値を減少させてくるが、加水 雲母に至っても5%以上の値を示している。これに対 し、緑泥石、バーミキュライトでは2~3%の量を示し ている。 K_2O が4%程度のやや高い値を示すのは、黒 雲母との混合による影響と考えられる。CaO は緑泥石、 バーミキュライトでは2~3%の値をとるのに対し、雲 母類では1%以下の値をとるものが多い。MgO、Na₂O については両者にあまり大きな差はない。

図-21は、アルカリ、アルカリ土類成分のうち黒雲母 仮晶の構成鉱物種によって変化がみられた CaO と K_2O の関係を表現したものである。この図は K_2O の増加に

徳

つれて、CaO が減少し、逆に CaO が増加するにつれて K_2O が減少することを示しており、両者には負の 相関 が成り立つ。この図からも緑泥石、バーミキュライト類 と黒雲母・加水雲母類は、別のグループに分類できる。 バーミキュライトの成因を考える場合、黒雲母が風化過 程初期に K_2O を放出しながら CaO を受けとる反応が 進行したとするよりも、黒雲母が Ca 系の熱水変質を受 け、CaO が付加され、緑泥石やその類似鉱物に変化した ものが、風化過程でバーミキュライト化したと考える方 が可能性が高いことをこの図は示している。しかし、風 化過程で斜長石の溶脱により持たらされる Ca イオン が、風化しはじめた黒雲母の層間に選択的に取り込まれ る可能性も残されている。

以上黒雲母の変質について産状に基づきながら,X線 回折と化学分析の結果について考察を加えてきた。その 結果,赤名花崗閃緑岩体において,黒雲母がバーミキュ ライト化するのには,黒雲母が緑泥石化ないしその類似 鉱物化する過程を経ている可能性が大きいことが推定で きた。又,含赤色酸化鉄カオリン帯を中心に,黒雲母が 半安定的な加水雲母に変化していることも確認できた。

しかし,風化過程で黒雲母が直接バーミキュライト化 する可能性も残されている。この場合,熱水変質を経て 生成されたバーミキュライトとどこがどうちがうかを明 確にすることが今後の課題となる。又,風化過程での加 水雲母の生成についても,直接黒雲母が加水雲母化する のみでなく,一度バーミキュライト化したものが,Kイ オン付加を受け,加水雲母化する可能性も否定できない。 これらの問題について,さらに詳細な研究を要する。

V. まとめ

1. 赤名花崗閃緑岩深層風化殻は,風化生成鉱物相に より次の5層に分帯できる。(1)新鮮岩,(2)初期変色 帯,(3) バーミキュライト帯,(4)カオリン帯,(5)含 赤色酸化鉄カオリン帯

2. 風化進行に伴い、 Al_2O_3 , TiO_2 , $H_2O(+)$, H_2O (-), Fe_2O_3 (Total Fe), MnO は増加するが、他の元素 は減少する。CaO, Na₂O の急激な減少と Al_2O_3 , H_2O の増加は、斜長石のハロイサイト化に対応する。Total Fe の増加はゲーサイトの生成による。一方、 K_2O と MgO は、風化段階の初期には徐々に減少するが、風化段 階末期には急激な減少を示す。これは、K-長石や角閃石 が比較的風化作用に抵抗性を示すことに対応している。

3. 黒雲母は化学的環境に対し鋭敏に反応する。赤名

花崗閃緑岩体においては,熱水作用により,Kイオンが 取り去られ,Caイオンが付加された。その結果,緑泥石 ないし緑泥石類似鉱物が生成された。黒雲母の変質経路 は,次の図のように推定される。

黒雲母は、半安定状態の加水雲母を経て、最終的には カオリナイトとなる。

謝辞

本論文は、兵庫教育大学学校教育研究科における修士 論文の一部をまとめたものである。研究をすすめるにあ たり、兵庫教育大学徳山明教授および兵庫教育大学湊秀 雄教授には、研究の全般にわたり、終始親切な御指導を 賜わった。島根大学教育学部三浦清教授には、風化作用 における基本問題について御教示いただくと共に、野外 調査の御指導を賜わった。以上の方々に深く感謝の意を 表する。

引用文献

- Brindley, G. W. (1966) Ethylen glycol and glycerol complexe: of Smectites and Vermiculites : Claymineral, 6, 237-259.
- 秦 明徳(1985)風化作用の研究(I)一赤名花崗閃緑 岩分布地域の特質と風化前変質一:島大附中紀要第27 号,51~62.
- 秦 明徳(1986)風化作用の研究(Ⅱ)一赤名花崗閃緑 岩深層風化殻の風化分帯一:島大附中紀要第28号,59 ~72.
- 井上厚行・清水糸子・湊 秀雄(1981)フロゴパイトの 変質機構と反応経路:鉱物学雑誌,15,特別号,61-84.
- Kato, Y. (1964) Mineralogical study of weathering products of granodiorite at Shinshiro city (Ⅱ), Weathering of primary minerals- stability of primary minerals : Soil Sci. and Plant Nutrition, 10, 264-269.
- Kato, Y. (1965) Mineralogical study of weathering products of granodiorite at Shinshiro city (Ⅲ), Weathering of primary minerals (2) mineralogical characteristics of weathered mineral grains: Soil Sci. and Plant Nutrition, 11, 30-40.
- 菅野一郎・本荘吉男・有村玄洋(1960)花コウ岩に由来 する赤黄色土中の黒雲母の風化:粘土科学の進歩(2), 217-228.

木宮一邦(1975)花崗岩類の物理的風化指標としての引

張強度一花崗岩の風化・第1報一:地質学雑誌, 81, 341-364.

- Lumb, P. (1962) The properties of decomposed granite : Geotechnique, 12, 226-243.
- Minato. H, etal (1982) Occurrence of Halloysite in the Deep Weathering Crust in the Eartern Chugoku Region : Hyogo University of Teacher Educational Journal, Vol 2.
- 三浦 清(1973) 深成岩類の風化に関する研究,第1報, 第三紀末の赤色風化作用による江津深成岩体の風化: 応用地質, 14-3, 1-16.
- 三浦 清・樋口和之(1974)深成岩類の風化に関する研 究,第2報,鳥取県日野閃緑岩体の赤色風化:応用地 質,15-1,23-34.
- 中川善兵衛・小坂丈予・浦部和順・山田久夫(1972) 岩 手県千厩地方における石英閃緑岩の風化について:岩 鉱, 67, 283-290.
- 長沢敬之助(1972)風化 過程に おける ウンモの 変質: 鉱物学雑誌,10,6,528-539.

- 西田一彦・青山千彰(1979)花コウ岩風化層の間ゲキ径 と水分吸着特性について:応用地質,20,3-12.
- Norrish, K. (1972) Factors in the weathering of Mica to Vermiculite: Proc. Inter. Clay Conf., Madrid, 417-431.
- 大八木規夫・内田哲男・鈴木宏芳(1969a)加茂・大東 地方花崗閃緑岩地帯における風化帯の粘土鉱物:防災 科学技術センター研究報告,第2号,21-44.
- 大八木規夫・熊谷貞治・内田哲男(1969b) 花崗岩類風 化帯における P 波速度:応用地質, 10-2, 17-24.
- Reiche, P. (1943) Graphic representation of chemical weathering : J. Sed. Pet., 13, 58-68.
- Reiche, P. (1950) A survey of weathering processes and products : New Mexico Univ. Publ. Geology, 3.
- Ruxton, B. P. and Berr, L. (1957) The weathering of granite and associated errosional features in Hong Kong: Bull. Geol. Soc. Amer., 68, 1263-92.

162