摘み上げて離したゴムひもの振動

高橋成和*,古川明信**

Masakazu Takahashi, Akinobu Furukawa Longitudinal Vibrations of Plucked Rubber String

Iはじめに

「音」に関連した学習指導は、小学校第2学年の「音 のあそび」に始まり、小学校第5学年での「音の伝播、 強弱」をへて、高等学校物理の「弦の共振、気柱の共鳴 など」へと続く。

例えば、小学校第5学年のある教科書¹⁰は、音の強弱 が振動の振幅の大小に関連することを調べる方法とし て、両端を固定した弦の中央を摘み、これを弦に直交し た方向に変位させてから離し、発生する音の強弱をみる 実験を掲載している。そのまとめとして、弦の振動領域 を大・小のふくらみを持つ紡錘形で表し、これらと振動 音の強・弱とを対応させている。

このように,弦や気柱の振動・波動の説明において教 科書,参考書に登場する図面は,正弦波形ないし紡錘形 が大半である。このことが学習者に根強く浸透し,また 日常経験する振動弦などの運動領域・波形が紡錘形・正 弦波形として目に映ることにもより後々までも,それら の形はそのようであると思われがちである。

事実このことは、上記の実験における弦はどんな形で 振動しているかを問う調査結果からもうかがえる。すな わち、当学部の学生285名、松江市内の小学校教員86名、 合計371名の調査対象中、74%の者は正弦波ないし紡錘 形と答え、16%は高さが減少する二等辺三角形、4%は 円弧の形であり、残りは的はずれの形か白紙のままであ った。また、この解答比は、学生と教員の間に大差がな かった。

しかし,中央を摘み上げて二等辺三角形の二つの等辺 を形作っている弦が,振動の最初から,別の形である正 弦波形になることは考えにくい。

この運動は解析的に求められようが,一様に張られた

しなやかな弦の微小部分に働く張力を考えれば、その初 期の運動は容易に予想できる。すなわち,弦が摘みから 離れた直後におけるその部分は、その両側に連なる弦か ら等しい張力を受け、平衡状態にあるので、静止を保つ はずである。ただ運動を開始できる部分は、摘み上げた 二等辺三角形の頂点の近傍のみであろう。何故ならば、 この部分は二辺に沿って等しい張力を受け、その合力は 打ち消すことなく二等辺三角形の高さに沿った弦の両固 定端の中央に向く力となるからである。したがって、こ の部分はその方向に加速される。この議論の続きは後に 述べることにしても、少なくとも振動の初期において、 頂点の近傍のみが運動し、その両側にある部分は固定さ れ、弦は正弦波形や高さが減少する二等辺三角形にはな りえない。

他方このような理とは別に、振動中の弦を眼視観察す ると、その振動領域は確かに紡錘形に見える。いったい 弦はどんな形で、どのように振動しているのであろう か。この解答を具体的に明示するために、本論文におい ては、弦にゴムひもを用いて振幅を大きくとり、その振 動の様子を写真撮影の手法で追求することを試みる。合 せて、この結果を解析的にも、図形的にも考察すること に触れよう。

Ⅱ 実験装置:機械部と写真撮影部

図1に装置の全体図を示す。これはゴムひもを両端固 定で水平に張り、その1点を摘み上げて離す機械部と、 写真撮影にかかわる背景、照明などの撮影部から構成さ れる。

前者のゴムひもを固定する部分は,鉛直に立てた2本 の柱の中央に相対して付けた2個のドリルチャックであ る。ゴムひもは,まず右側のチャックで一端を固定す る。次に左側のチャックを貫通し,滑車を介して重りを 吊るす。しかる後に左側のチャックを締める。このとき 滑車は,水平に張ったゴムひもが,その接線になる位置

^{*} 島根大学教育学部理科教育研究室

^{**} 島根大学教育学部技術科研究室

図 1.実験装置:右下にあるデジタルストロボ装置の前 にあるハンドルを握ると,ゴムひもは挾みから離 れる。ゴムひもの上部にキセノンランプハウス, 下部に白熱燈用フードを設置した。

にある。

ゴムひもを摘み上げる仕掛は,5mm×10mm×290mm の真鍮棒2本からなる。それらは一端から70mmの位 置に支点をもつヤットコ状の挾みを構成し,他端から60 mmの位置にバネを持つ。この復元力で支点側の先端ど うしは,ゴムひもが摘めるように閉じている。これを離 すのは,バネ側の端を,自転車のブレーキと同様に,こ れに付けたワイヤーロープを通して手動の遠隔操作で, 互の間隔を縮めて行う。この仕掛は,先の柱の梁に固定 する。ドリルチャックの間隔は 292mm,これに張った ゴムひもから摘みの先端までの距離は 90mm である。

後者の背景は,横 350mm×縦 550mm の長方形前面 が開いた,高さ 950mm の二等辺三角形を水平断面にも つ箱である。この内部は,大匙1の木工ボンドを 300ml の水で溶かし,これと大匙5の炭素粉末を混合したもの を塗布した。これで箱の前面から入射する光が内部で反 射・吸収を繰り返すため前面に戻らず,背景は暗黒とな っている。

ゴムひもの全体照明は,500w の白熱燈二つ,あるい はキセノンストロボ光で行った。前者はフードを通し帯 状の光束にしてゴムひもの下方から,後者は発散光のま ま上方からあてた。

Ⅲ 撮影結果:中央を鉛直上方に摘み上げた 場合

弦として使用したゴムひもは、白色のナイロン布が被 覆してある直径 1.3mm¢,線密度 11.3mg/cm のもの である。また、その長さ 1cm あたりの伸びは、図2に 示すように、荷重と非線型の関係にある。しかし、荷重 が 30~80gw の範囲でグラフは直線となり、そこでの単 位長さあたりのバネ定数は 1.36gw/cm となる。ただ し、この値は使用経緯、温度、湿度により数%~10数% も変る。

ある張力で水平に張ったゴムひもは、その中央を鉛直 上方に摘み上げると、さらにその張力を増す。したがっ て、振動中のゴムひものバネ定数が一定の値を保つため には、図2のグラフが直線部分を示す範囲の原点に近い 荷重で、ゴムひもを初めに張ればよい。ここでは、特に 断らない限り、張力を 45gw とした。

図 2.実験で使用したゴムひもの荷重と伸びの関係。

Ⅲ-A 長時間露光とユニフラッシュ撮影

白熱燈でゴムひもを照明し,カメラのシャッターを開 放にして,振動の初めから終りまでを1枚のフィルム上 に露出した。結果を図3に示す。

この写真の白い部分は,運動が一たん停止して他より 露出時間が長くなる振動の折り返し点である。これによ ると,振動の初期ではその領域が菱形に近く,時間の経

図 3. 中央を摘み上げて,離したゴムひもの振動。白熱 電球による照明のもとで,長時間露光して撮影した。

図 4. 中央を摘み上げて,離した直後のゴムひもの形。 シャッターを開いて,単発光フラッシュにより撮 影した。

過とともに角がとれ紡錘形へと移り、そのふくらみも減 衰していくことが分る。また縦の黒線は、ゴムひもに描 いた黒点の軌跡で、ゴムひもの各点が鉛直線上を運動し ていることも分る。しかし、折り返し点から折り返し点 の間に於ける運動中のゴムひもの形は何も分らない。

これを観察するために,照明にユニフラッシュを用い た。振動を開始した直後の一瞬におけるゴムひもの形を とらえた写真を図4に示す。

これによると、運動中のゴムひもは、初めに摘み上げ たときに形成する二等辺三角形の二つの等辺上にのる二 つの斜線と、この間にある一つの水平線分で構成される 折れ線になっている。しかも、二つの斜線は明瞭に、水 平線分はぼけて撮影されている。このことは、斜線が静 止しており、水平線分が運動していることを意味しよ う。しかし、この写真からは、この折れ線がどんな運動 をしているのか不明である。

Ⅲ一B レンズシャッターとフォーカルプレーンシャ ッター撮影

白熱燈に加え, 12ms 間隔 (5,000R.P.M.) のストロ

図 5. 左の列は、白熱燈と12ms 間隔のストロボ光で照明した振動中のゴムひもを、20ms 間だけレンズシャッターを開いて撮影した。上段は初めの1周期、中段は2~4周期、下段は4周期以後のものである。右の列は、白熱燈のみで照明し、フォーカルプレーンシャッターカメラで1/60s 間露光した。上段は初めの半周期、中段は1/8~7/8、下段は4周期目を撮影した。

ボ光でゴムひもを照明し、これを適当な時に 20ms だけ レンズシャッターを開いて撮影した。結果を図5の左列 に示す。上段は初めの1周期,中段は2~3周期,下段 は4周期以後の形を表している。これらより、1~2周 期ではゴムひもは水平線分をもつ折れ線で、3周期以後 にその角がとれると共に、全体が正弦波形へと変形して いくことが分る。

次に、ゴムひもを白熱燈だけで照明し、これを適当な 時に1/60秒間の露出で、フォーカルプレーンシャッタ ーカメラにより撮影した。このシャッターは、一定の速 さで動く2枚の膜をもち、その一方の膜が開いて、他方 が閉じる時間間隔で露出時間を調節している。この開閉 とゴムひもの運動が連動し、図5の右列に示すような明 暗をもつ写真を得た。

上段は振動の初め3/8周期分で、ゴムひもの水平線 分が鉛直下方へ下がるとき、左から右へシャッター膜が 閉じるために明暗の境界線が右下がりにできた。しか も、この境界線が直線であることは、水平線分が等速で 下がることを物語っている。このことは、水平線分上の 微小部分が受ける力がその両側の水平部分から及ぼされ る釣合った張力であることから当然といえよう。

中段は1/8~7/8周期における場合で、明暗の右下 がりの境界線は水平部分が下がるときにシャッター膜が 開き,右上がりの境界線は水平部分が上がるときにシャ ッター膜が閉じることによりできた。いずれも直線であ るから,水平線分は等速で上下運動をしている。しかし 4周期目の下段では,境界線も角がとれて正弦的にな り,水平線分の運動も正弦的になっていよう。

Ⅲ一C 流し写真

これまでの写真は、一齣のフィルム上にゴムひもの運 動を、ある短時間だけ撮影していた。次に運動を振動の 初めから終りまで撮影し、全容を明らかにするために、 フィルムをゴムひもの振動方向に流すことにした。

結果は図6のようである。上はゴムひもの張力が45 gwのとき、下は80gwのときのもので、ストロボの発 光は30,000R.P.M. である。また、左側にある白点の列 はLEDの点滅による1/60s間隔のタイムマーカーを 示す。いずれも、振動の初期におけるゴムひもの形は、 折れ線であることが再確認できた。さらに、その折れ曲 り点の速さが、初めに摘み上げたゴムひもの二辺を横波 が伝わる速さに等しいことも検証できた。すなわち、図 2をもとに、張力と線密度から算出した速さの理論値 と、図6や張力を変えて同様に撮影した写真から読み取 った実験値がよい一致を示す。このことを表1にまとめ ておいた。

Ⅳ 結果の理論的説明

写真撮影により判明したゴムひもの運動を,三つの理 論的手法で,簡単に説明することを試みる。

Ⅳ—A 力学的説明

両端 A, B を固定し, 張力 T₀ で水平に張ったゴムひ もを, その中央 H を 摘み上げて, 図7に示すような二 等辺三角形 AMB にしたとする。ゴムひもは軽いので, 重力の効果は無視する。

さて, 摘みから離された瞬間において, ゴムひもはこの形 AMB を保持しよう。このとき,

- (1) 等辺 AM, BM 上の部分は動き得ない。
- (2) 頂点 M の近傍にある部分は,張力 T を A, B の 向きに受け,その合力は点 H に向うため,その点は H の方向に加速される。

これらはすでに述べた。この議論を続けると、次のようになろう。

(3) この加速された部分は、左右の等辺の部分が止っているので、AB にあったときの状態と同じ状態に 戻る。すなわち、張力 T₀ で水平 PQ に張られ、

図 6. ストロボ光500Hz で照明したゴムひもの振動を撮 影した,流し写真。時間の経過は上から下へ進 み,ゴムひもの張力は上が 45gw,下が 80gw で ある。

水平に張 るときの 荷重 W(gw)	水平に張っ たときの伸 び率 δ	張る前の 自 然 長 $\frac{\ell_0}{1+\delta}$ (cm)	摘み上げた ときの伸び 率 $\frac{\ell}{\ell_0}(1+\delta)-1$	摘み上げ 張力 T(gw)	たときの T(dyn)	摘み上げたと きの線密度 $ ho = ho_0 rac{\ell_0}{\ell} (1+\delta) \left(rac{g}{\mathrm{cm}} ight)$	摘み上げたゴ ムひもを伝わ る波の速さ $u=\sqrt{\frac{T}{\rho}}(cm/s)$	摘み上げた ボン かって が が す す 、 実) (cm/s)
20	0.067	27.4	0.25	34.0	3.33×10 ⁴	9.04×10 ⁻³	$1.92\! imes\!10^3$	2.00×10 ³
30	0.187	24.6	0.39	39.5	3.87	8.13	2.18	2.33
45	0.520	19.2	0.78	55.8	5.47	6.35	2.93	2.92
50	0.647	17.7	0.93	64.0	6.27	5.86	3.27	3.19
60	0.863	15.7	1.18	73.8	7.23	5.18	3.74	3.75
70	1.11	13.8	1.49	89.0	8.72	4.57	4.37	4.28
80	1.31	12.6	1.71	100.0	9.80	4.18	4.84	4.81

表1 摘み上げたゴムひもを伝わる波の速さ(計算値)と折れ曲り点が移動する速さ(実測値)

ゴムひもは,自然長における線密度 $ho_0=0.0113(g/cm)$,水平に張ったときの長さ $\ell_0=29.2(cm)$,摘み上げたときの長さ $\ell=34.2cm$ である。

ゴムひもの形は折れ線 APQB になる。

- (4) 水平線分 PQ 上の任意の部分が受ける力は、その両側からの張力 T₀ であり、合力が0となる。したがって PQ はHに向う等速度運動を続ける。
- (5) 点 P, Q の近傍にあるゴムひもの微小部分は, AP, BQ の張力TによりMの近傍が行ったと同様 の運動を開始する。すなわち, AP, BQ 上に静止し ていた部分が加速されて水平になり,鉛直方向の等 速度運動に乗り移る。
- (6) 以後ゴムひもの慣性と復元力により振動は繰り返すが、そのエネルギーを空気などに与えて消耗し、 減衰していく。

Ⅳ一B 図形的説明

両端A,Bを固定したゴムひもの振動は,波の伝播す る速さが一定であると見做せるならば,固定端を節とし た半波長分の定常波と考えられる。定常波は同じ波形の 進行波と後退波が重なり合ったものであり,その位相が 一致したとき合成波の振幅は最大となる。このときの合 成波形は,図8に示す最初のゴムひもの形 AMB であ る。したがって,定常波を構成する進行波,後退波の半 波長分は,この半分の高さをもつ二等辺三角形 ANB と なる*。

この二つの波が 左右に等速で 伝播して A'N'B', A" N"B" になったとする。しかし固定端 A の 左側の部分 A'C' は A で反射され, A と点対称の C"A" となる。 同様に固定端 B により, B"D" は B'D' となる。すな わち, AB 間には C'N'D' と C"N"D" の進行波と後退 波が存在する。したがって, 観測される波形は, それら の合成波形 APQB となる。

このような波の合成により、A、Bを固定端にする定 常波が形成されるが、その過程を1/24周期ごとに半周 期分だけ作図すると図9のようになる。まさに撮影され た、振動の初期におけるゴムひもの形・運動と同様であ る。

^{*} 数学的には1次元波動方程式のコーシー問題におけるダランベールの 公式^{2),3)}に相当する。

図 8. 中央を摘み上げて離したゴムひもの振動は,前進 波と後退波の重ね合せである。

Ⅳ-C 解析的説明

(1) 空気抵抗を考えない場合

簡単のために、ゴムひもの張力と線密度はともに一定 であると仮定し、波の伝播速度を v とする。また、ゴム ひもの傾角 θ について Sin $\theta \sim \theta$ とし、減衰もないとす る。これらの仮定はゴムひもを摘み上げる変位が小さい 場合には問題がないが、実験で扱ったゴムひもの振動に 対する解を求めるうえではかなり荒い近以となる。しか しこの解をもって、変位が大きい場合の解を推し量るこ

図 9. ゴムひもの振動を,定常波で説明した図。上から 順に,1/24周期ずつ時間経過したときの状態を示 す。

とにする。

二つの固定端 x=0 と $x=\ell_0$ の間に張ったしなやかな 弦を伝わる波の,位置 x,時刻 t における変位 y(x, t)は,波動方程式

$$\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2} \tag{1}$$

で表わされる。 境界条件

2017411

$$y(0,t) = y(\ell_0,t) = 0$$
 (2)

のもとで,この方程式の一般解は

$$\mathbf{y}(\mathbf{x},t) = \sum_{n=1}^{\infty} C_n \operatorname{Sin} \frac{n\pi}{\ell_0} \mathbf{x} \operatorname{Cos} \left(\frac{n\pi}{\ell_0} \mathbf{v} t + \varphi_n \right)$$
(3)

である。初期条件

$$\left(\frac{\partial y}{\partial t}\right)_{t=0} = 0$$
 (4)

より �。=0 となるから

$$\mathbf{y}(\mathbf{x},0) = \sum_{n=1}^{\infty} C_n \operatorname{Sin} \frac{n\pi}{\ell_0} \mathbf{x}$$
 (5)

となる。

初めのゴムひもの形を,図10に示すように高さaの二 等辺三角形の二つの等辺とすれば,この初期条件は

$$y(x,0) = \begin{cases} \frac{2a}{\ell_0} x & : 0 \le x \le \frac{\ell_0}{2} \\ \frac{2a}{\ell_0} (\ell_0 - x) & : \frac{\ell_0}{2} \le x \le \ell_0 \end{cases}$$
(6)

であるから

$$C_{n} = \frac{2}{\ell_{0}} \int_{0}^{\ell_{0}} y(x,0) \operatorname{Sin} \frac{n\pi}{\ell_{0}} x \, dx = \frac{8a}{n^{2}\pi^{2}} \operatorname{Sin} \frac{n\pi}{2}$$
(7)

となる。ゆえに, 波動方程式の解は,

図10. 中央を摘み上げたゴムひも(細線)と離してt秒 後の形(太線)。

$$y(\mathbf{x}, \mathbf{t}) = \sum_{n=1}^{\infty} \frac{8a}{n^2 \pi^2} \operatorname{Sin} \frac{n\pi}{2} \operatorname{Sin} \frac{n\pi}{\ell_0} \operatorname{x} \operatorname{Cos} \frac{n\pi}{\ell_0} \operatorname{vt}$$
$$= \frac{8a}{\pi^2} \left(\operatorname{Sin} \frac{\pi}{\ell_0} \operatorname{x} \operatorname{Cos} \frac{\pi}{\ell_0} \operatorname{vt} - \frac{1}{9} \operatorname{Sin} \frac{3\pi}{\ell_0} \operatorname{x} \operatorname{Cos} \frac{3\pi}{\ell_0} \operatorname{vt} \right)$$
$$+ \frac{1}{25} \operatorname{Sin} \frac{5\pi}{\ell_0} \operatorname{x} \operatorname{Cos} \frac{5\pi}{\ell_0} \operatorname{vt} - \cdots \right) \qquad (8)$$

である4)。

この解を、パーソナルコンピューターにより数値計算 すると、図11の結果を得る。ただし、 ℓ_0 =30cm, a=9cm, v=3×10³cm/s とし、半周期分を10等分して描いた。 また、n=1~29の倍振動までを合成した場合が上段で、 n=1と3の3倍振動までが中段、基本振動のみが下段で ある。図6の流し写真を見ると、この中段に相当する形

図11. 波動方程式の解。上段は29倍振動までを合成し、 中段は3倍振動までを、下段は基本振動のみを考 慮した解の形。

をゴムひもがとるときが見られる。その後,振幅は小さいが,下段の場合のようになる。これは、空気抵抗などにより,高い倍振動が速く減衰するためと考えられよう。

一方,図10に太線で示したように,高さaの二等辺三 角形の頂点が速さVでおりてきてできる,時刻tにおけ る二つの等辺と水平の線分とが形作る折れ線は,

$$y(x,t) = \begin{cases} \frac{2a}{\ell_0}x & : 0 \leq x \leq \frac{\ell_0(a - Vt)}{2a} \\ a - Vt & : \frac{\ell_0(a - Vt)}{2a} \leq x \leq \frac{\ell_0(a + Vt)}{2a} \\ \frac{2a}{\ell_0}(\ell_0 - x) & : \frac{\ell_0(a + Vt)}{2a} \leq x \leq \ell_0 \end{cases}$$
(9)

であり、これをフーリェ級数5,60 に展開すると

$$y(\mathbf{x},t) = \sum_{n=1}^{\infty} b_n \operatorname{Sin} \frac{n\pi}{\ell_0} \mathbf{x}$$
(10)

である。ただし

$$b_{n} = \frac{2}{\ell_{0}} \int_{0}^{\ell_{0}} y(\mathbf{x}, t) \operatorname{Sin} \frac{n\pi}{\ell_{0}} \mathbf{x} \, \mathrm{dx}$$
$$= \frac{8a}{n^{2}\pi^{2}} \operatorname{Sin} \frac{n\pi}{2} \operatorname{Cos} \frac{n\pi V}{2a} t \tag{11}$$

とおいた。

これと, 波動方程式の解は

$$v/V = \frac{\ell_0}{2} / a \tag{12}$$

のもとで一致する。

(2) 速度に比例する空気抵抗を考慮する場合

上記の解は、ゴムひもの初期における形を与えるが、 時間とともに変位が減衰する項がなく、実験との一致を みない。そこで、速度に比例する空気抵抗がゴムひもに 働らくとした波動方程式の解を求めてみる。

ゴムひもの単位長さあたりに働らく抵抗力の比例定数 を c とし、これを線密度 ρ で割った値を k=c/ ρ とおけ ば、波動方程式は電信方程式に変り

$$\frac{\partial^2 y}{\partial t^2} + k \frac{\partial y}{\partial t} = v^2 \frac{\partial^2 y}{\partial x^2}$$
(13)

となる。境界条件(2)式を満す関数として

$$\mathbf{y}(\mathbf{x},t) = \mathbf{e}^{\alpha t} \operatorname{Sin} \frac{n\pi}{\ell_0} \mathbf{x} \quad (\underline{\mathbf{H}} \ \boldsymbol{\cup} \mathbf{n} = 1, 2, \cdots, \infty$$
 (14)

をとると"

$$\alpha = -\frac{k}{2} \pm i \sqrt{\xi}, \quad \xi = v^2 \frac{n^2 \pi^2}{\ell_0} - \frac{k^2}{4}$$
 (15)

となる。だから

$$y(\mathbf{x},t) = e^{-\frac{k}{2}t} \{ A_n \exp(+i\sqrt{\xi} t) + B_n \exp(-i\sqrt{\xi} t) \} \\ \times \operatorname{Sin} \frac{n\pi}{\ell_0} \mathbf{x}$$
 (16)

としてみると、初期条件(4)式より

$$A_{n} = \frac{k}{2} B_{n} / \sqrt{\xi}$$
(17)

となる。ゆえに一般解は

$$y(\mathbf{x},t) = e^{-\frac{k}{2}t} \sum_{n=1}^{\infty} B_n \left\{ \frac{k}{\sqrt{\xi}} \operatorname{Sin}\sqrt{\xi} t + \operatorname{Cos}\sqrt{\xi} t \right\} \\ \times \operatorname{Sin}\frac{n\pi}{\ell_0} \mathbf{x}$$
(18)

である。ここで初期条件(6)より

$$B_{n} = \frac{2}{\ell_{0}} \int_{0}^{\ell_{0}} y(\mathbf{x}, 0) \operatorname{Sin} \frac{n\pi}{\ell_{0}} \mathbf{x} \cdot d\mathbf{x}$$
$$= \frac{8a}{n^{2}\pi^{2}} \operatorname{Sin} \frac{n\pi}{2}$$
(19)

となる。

この解を n=1~30 の倍振動まで合成した数値計算の

図12. 速度に比例した抵抗を受ける振動弦の形を表す電 信方程式の解。 各段は上から下へ K=0.005, 0.01, 0.05, 0.1 のときを, 左右の列は初めと次 の半周期ずつを表す。

結果を図12に示す。ただし条件は図10と同じであるが、 左の列は初めの半周期分を、右の列はこれに続く半周期 分を示し,各行は上から下の段へK=k/v=0.005.0.01. 0.05, 0.1 (1/cm)の場合を示す。実験によると, 45gw で張ったゴムひもについては k=21 (1/s) となり、v= 3×10³(cm/s) であるから K=0.007(1/cm) の場合とな る。

これを図6の結果と比較すると、ゴムひもの波打ちか たなどが一致しない。また,振動を繰り返すとともに振 幅が小さくなり、その形も変形しているが、(14)式の解を 数周期に亘って数値計算してみても,振幅が小さくなる だけで,その形の変形は認められない程であった。この ことは(18)式の減衰項 $exp(-\frac{k}{2}t)$ が和の前にかかってい ることからもうかがえる。

さらに、抵抗の効果が大きく現われる場合を実験的に。 設定して, 上記のことを検討してみる。

V 撮影結果:水中に張った場合

アクリル製の水槽(40cm×25cm×6cm)の中にゴム ひもを張り、その運動の様子を撮影した。暗室中で、シ ャッターを開放にして、5,000R.P.M. のストロボ光を点 滅させ、振動の初めから終りまでを一齣のフィルムに収 めた。これを図13に示す。

抵抗の効果が顕著に現われ、この結果は図12とかなり 類以しているが、細部に亘っては満足のいく---致を見な かった。

この理由を追究するにしても、より明細にゴムひもの 運動を実験的に整理しておきたい。このためには、写真 撮影のさいにストロボ光の発光をゴムひもの運動と連動 させ,自由に制御できることが要求される。そこで,ス トロボスコープ制御用発振器を開発することにした。

図13. 水中に張ったゴムひもが振動するときの形。5,000 R.P.M のストロボ光を点滅させ、振動の初めから 終りまでを撮影した。

VI ストロボスコープ制御用発振器

この発振器は 次の ような 機能を 備えなければならない。

- プリセットしたパルス数だけストロボ光を発光させる。
- (2) プリセット置数は、スタート時からの待機パルス A(時間)と、動作パルスBを持ち、そのA、B は可変でき、かつ自由に組合せが可能なこと。
- (3) 発振器を制御する入力回路は ON, OFF いずれの モードでも動作すること。
- (4) 既有のストロボスコープの外部トリガー条件より,発振周波数は1Hz~1KHz,出力パルス幅100
 µs 出力電圧 6~30V (P-P) である。

このような発振器を製作する場合, 各種の回路構成⁸⁰ が考えられるが,ここでは,プリセット置数をデジタル 表示させる回路構成とし.入力は BCD コードを採用し た。

図14に ブロック ダイヤグラムを,図15に 配線図を示す。

図15の IC₁ は入力切換用インバータで、S₁ が①のときは入力回路を短絡させておく。この状態から解放にすると IC₁ の出力は H(high) から L(low) に変化する。この L 信号で IC₂, IC₃ の RS フリップフロップ回路 (RS-F.F.) はセット状態になるため、RS-F.F. 出力が H となり、次の IC₄, IC₅ よりなるマルチバイブレータ

発振回路を駆動する。S₁ が ②に入っている場合は入力 回路が解放状態から短絡状態になった瞬間, RS-F.F. 回路はセット状態になる。 すなわち,入力信号で直接 RS-F.F. 回路を起動する。

手動スィッチのような機械的な接点の開閉では、常に チャタリングを起している。その最初のL状態(次つぎ に起る H, L には応答しない)で RS-F.F. は起動され るから、このわずかな時間誤差を問題にしないような場 合は①, ②のいずれを使用してもよい。

マルチバイブレータの発振周波数は電源電圧やスレッ シホールド電圧によって変化するため簡単な数値計算で 決めることは難かしい¹¹⁰。ここでは可変抵抗器を500KΩ とし、1レンジにおける比を1:5とし、4レンジで約 1.3Hz~1KHz を発振させた。

IC₆ は、発振周波数とゲート信号を混合させ、ゲート 期間中だけ発振周波数を通過させる。その信号を $R_p =$ 18K Ω , $C_p = 0.001 \mu$ F でパルス幅を狭くし、ストロボス コープのトリガ信号とする。その波形を図16に示す。

IC₆, IC₉ は出力信号のバッファである。IC に余分が あったので並列に使った。

 $MSI_1 \sim MSI_{10}$ の IC はプリセット置数部とカウンタ 表示部である。 $MSI_1 \sim MSI_3$ で待期パルス(時間)を表 示する。3桁目は2進,2位までとしたので最大置数は 399となる。不使用回路はショートし、単純化した。

動作パルス部の置数は,10進・2桁(10⁰,10¹) であ る。

IC13~IC19 より構成される OR 回路は、上記パルスの

図14. ストロボスコープ制御用発振器のブロックダイヤグラム。

 図15. ストロボスコープ制御用発振器の配線図。指定なき抵抗値,容量値は 100KΩ-1/4w, 0.001 ~0.0022µF である。IC₁~IC₁₂: TC4011BP, IC₁₃: TC4023BP, IC₁₄~IC₁₉: TC4002BP, MSI₁~MSI₅: TC4511, MSI₆~MSI₁₀: TC4510。
 *バッファを通し LED を点燈させれば,動作が確認できる。

零検出をする。

 IC_{11} , IC_{12} の RS-F.F. は動作時間のゲート間隔を作 成する。S₇ スイッチでリセット状態にし,次に IC_{13} よ り検出された L 信号でセット状態におく。 このとき IC_{12} の出力は H から L に変化するため, この信号で動 作パルス部 (MSI₉) のラッチを解き,計数を開始させ る。この動作部の零信号を IC_{17} で検出し,リセット状 態にする。この信号を入力回路の RS-F.F. に帰還させ 発振回路を OFF 状態にすれば,これで一動作が完結す る。

発振周波数を校正する場合は、S₆ によって IC₁₁ の出 力を常に H にし、連続発振状態で行う。

S4 は プリセット置数の場合の リセットスイッチである。

プリセット置数は, デップスイッチを使用し, 入力方 式は BCD コードとした。なお10進入力の場合は, TTL ・IC の SN 7414NN でエンコードできた⁹⁹。(CMOS・ IC でこれに相当する製品がない。)

この装置では待期パルスが終了した場合、ランダムな カウンタ表示をする。零表示させるには、その終了時の 信号でラッチ動作をさせればよい。すなわち、MSI。の LOAD 端子に ラッチ信号を印加すれば 可能であるが、 そこまで必要がないので構成から外した。

図16. 発振波形(上:1KHz)とストロボトリガー 用出 力信号(下:100µs)。

Ⅵ撮影結果

₩一A 中央を摘み上げた場合

摘みからゴムひもが離れた直後に,摘みの極く近くに 張った厚さ 0.015mm,幅 0.5mm,長さ 2mm のアル ミ箔を,そのゴムひもが通過・切断することにより,ス トロボスコープ制御発振器のトリガーを作動させる。こ の方法で,初めから6周期までのゴムひもの形を1/20 周期ごとに撮影した。結果を図17に示す。このストロボ

図17. 中央を 真上に 摘み上げて 離した後の ゴムひもの 形。 700Hz のストロボ光で照明し、半周期ずつ 順に撮影した。各写真の下に記した数字は、最初 を0とした発光の回数を示す。 光の発光回数は 4,200R.P.M. (700Hz) で, 各写真は半 周期分ずつを示し,太線で示されている形は,そこでの 最初のものである。

これらの写真と図12を比較すると、ゴムひもが示す凹 凸の関係が逆になる部分もある。すなわち、空気抵抗に より、下方に凹であるべき部分が下方に凸になっていた りする。これは、高次の倍振動における振幅の減衰率が 大で、図11の中段の写真のように、3倍振動程度が残る ためであろうか。あるいは、ゴムひもの曲げ弾性の効果 が現れているとも受け取れる。

振動の初期における左上の写真には、この半周期の間 に9間隔の発光分があり、その振動の周期は 9×2/700 =1/39(s) であることが分る。また、折れ曲り点がゴム ひもに沿って走る速さは 30m/s であった。

図17はゴムひもの波形を間欠的に示しているが、その 振動の様子を連続的に示していない。そこで、鉛直線上 に沿ったレーザー光の帯を作り、この帯をゴムひもに直 交させる。この中でゴムひもの一点は照らし出され、輝 点となる。ゴムひもの振動とともに、この輝点は鉛直線 上を振動する。この振動の変位に対して垂直な方向に、 すなわちゴムひもに沿って、フィルムを流して輝点を撮 影する。これでゴムひもの輝点の位置における振動の様 子が記録できる。

図18. 中央を真上に摘み上げて離した後のゴムひもの振動。左の列の図は観測した点を○印で示し,その時間的変位を右の列の写真に示す。各写真の中央,水平に沿ってある白点は1/60s間隔のタイムマーカーである。

ゴムひもの 中央と 左の固定端を 4 等分した 位置につ いての 結果を 図18に示す。 中央にある 白い点の列は, LED の点滅を写し込んだ 1/60秒間隔のタイムマーカー である。

中央の位置を撮影した上段の写真を見ると,初めの2 周期程は三角振動で,中央の点が等速で変位しているこ とが分る。4周期目以後から,次第に正弦振動に移って いく。その周期は,14周期の間に21間隔のタイムマーカ ーがあることにより,21/14×60=1/40(s) と読みとれ る。また,振幅の減衰からk=21(1/s)が求められる。

固定端から1/4の位置を示す下段の写真では、その 振動波形が初期において台形である。これは、折れ線に なったゴムひもの水平線分がこの位置に到着するまで、 この部分が止っていることによる。到着した後は、水平 部分に乗り移り同じ速さになる。このことは、上記の三 角波形の上に台形波形の斜線の部分が一致して重なるこ とからも確認できた。

₩-- B 種々の条件のもとで摘み上げた場合

これまでは、ゴムひもの中央を鉛直上方に摘み上げて 離す場合を扱った。ここでは、二つの固定端の間を4等 分した鉛直線上 90mm の点へ、水平に張ったゴムひも を

- (1) 96:196に分つ点, すなわち左右のゴムひもの張 力が等しくなるように,
- (2) 79:213に分つ点, すなわち進行波と後退波の速 さが等しくなるように,
- (3) 4等分した点をそのまま上方へ

摘み上げた。

写真撮影の結果を図19~21に示す。ストロボ光の発光 周期は、それぞれ 695、750、715Hz である。どの場合 も、振動の初期には、摘み上げたときに構成するゴムひ もの二つの折れ線を二辺とする平行四辺形の辺上を、折 れ曲り点が走っている。時間経過とともに、この平行四 辺形の頂点は中央へと移動し、ゴムひもの折れ曲りとと もに角がとれる。

Μ おわりに

両端固定で摘み上げ,静かに離したゴムひもの形と運動を,写真撮影の手法で追求した。振動の初期において ゴムひもの形は,三つの線分で構成される折れ線であっ た。その二つの折れ曲り点は,摘み上げた点を出発点と し,それぞれ一定の速さで,摘み上げたときにできる二 つの折れ線を2辺とする菱形や平行四辺形の周上を逆向

図19.二つの固定端の間を4等分した鉛直線上に、左右のゴムひもの張力が等しくなるように摘み上げた場合。ストロボ発光周期は695Hz。

きに走る。しかる後、出発点と反対の頂点で擦れ違い, 再び出発点で出合う。この走る速さは、各辺を構成する ゴムひもの張力と線密度で定まる横波の伝播速度に等し い。この運動を繰り返す時間経過の中で、振幅の減衰と ともに、この折れ曲り点の角がとれ、振動・波形は次第 に正弦的になった。

これらの 過程を 詳細に 亘り理論的に 説明するために は、減衰の振動数依存や、ゴムひもの曲げ弾性などの考 慮が 必要であろう。 このことは 今後の 課題として残る が、しかし本論文で考察した内容は、大筋において、写

真で提示した観察事項を説明できていよう。

本研究は,小学校第5学年の理科教材に端を発してい た。この論文の内容が,児童を指導する上で直接的なか かわりを持つことはなかろう。しかし,少くともその学 習指導において過ちを犯さないために,指導者は教材の 自然科学的内容を正しく認識しておくことが不可欠であ るに違いない。このことでも本論文が,多大な貢献をす ることに期得したい。

終りに,本研究において島根大学教育学部助教授神志 那良雄博士には,多くの議論と有益な助言をいただい た。ここに厚くお礼を申し述べたい。

図21. ゴムひもの4等分点を真上に摘み上げた場合。ストロボ発光周期は715Hz。

また,写真撮影には卒業生の長見牧子さん,四回生の 足立博子さん,吉川由希子さんの協力を得た。このこと に感謝する。

なお,振動中のゴムひもの形に関する調査にあたって は,松江市立内中原小学校,松江市立川津小学校ならび に島根大学教育学部附属小学校の先生がたの協力をいた だいた。ここに記してお礼にかえさせていただく。

参考文献

- 大木 道則ほか:改訂 理科 5 年下,新興 出版社啓林 館,54,1983.
- 2) 草野 尚:微分方程式,朝倉書店,123,1980.
- 3)藤田 宏ほか:数理物理に 現われる 偏微分 方程式I,岩波書店,44,1977.
- 4) 有山正孝:振動·波動,裳華房,131,1983.
- 5) 高木貞治: 解析概論, 岩波書店, 319, 1956.

- 6) DEN HARTOG: MECHANICAL VIBRATION, MCGRAW -HILL Book Co., 17, 1956.
- 7) 小平吉男:物理数学第一卷,岩波書店, 202, 1931.
- 8) 中込八郎:物理教育, 29, 5, 1981.
- 9) 横井与次郎: デジタル IC 実用マニアル, ラジオ技 術社, 138, 1976.
- 10) 横井与次郎: CMOS デジタル回路マニュアル, ラ ジオ技術社, 1976.
- 11) 北川一郎: デジタル IC 実験と工作マニュアル,オ - ム社, 1977.