Note on Self-Homotopy-Equivalences of the Twisted Principal Fibrations

Kouzou Tsukiyama*

Abstract: Let X be a connected CW-complex. The group $G_{\#}(X)$ of all based homotopy classes of self-homotopy-equivalences of (X, *) inducing the identity automorphisms of all homotopy groups is studied, and we obtain the following exact sequence concerning the twisted principal fibration $p: \overline{P_{\theta}} \longrightarrow B$ with fibre K(G, n)

 $H^n(B; G) \longrightarrow G\#(\overline{P_\theta}) \longrightarrow G\#(B),$

where $H^n(B;G)$ is the cohomology with the local coefficient induced by $q\partial:B\longrightarrow L$ = $L_{\phi}(G,n+1)\longrightarrow K=K(\pi_1(B),1)$.

Introduction

Let X be a connected CW-complex with base point *. Then, we have considered the group $G_{\#}(X)$ of all based homotopy classes of self-homotopy-equivalences of (X, *) inducing the identity automorphisms of all homotopy groups (cf. [1], [11]).

The purpose of this note is to establish the exact sequences of $G_{\#}(X)$ concerning the twisted principal fibrations which generalize the exact sequences of M. Arkowitz-C. R. Curjel [1] and Y. Nomura [6].

In $\S 1$, we review the twisted principal fibrations (of. [5, $\S \S 2-3$]), and in $\S 2$, we study the Postnikov-system by using the theorems of J. F. McClendon [4], and in $\S 3$, we prove the above exact sequences of $G_{\#}(X)$.

The author wishes to express his thanks to professors M. Sugawara and T. Kobayashi for his reading the manuscript and useful suggestions.

\$1. Twisted principal fibrations

Let Z be a given based space. A Z-space A = (A, f) is a based space A together with a based map $f: A \longrightarrow Z$. For two Z-spaces A = (A, f) and B = (B, g), the pull back

 $A \times_Z B = \{a, b\} \mid f(a) = g(b)\} \subset A \times B$

of A and B is a Z-space with a map $(f, g): A \times_Z B \longrightarrow Z$, (f, g)(a, b) = f(a) = g(b). A based map $h: (A, *) \longrightarrow (B, *)$ is a Z-map if gh = f, and a homotopy $h_t: (A, *) \longrightarrow (B, *)$ is a Z-homotopy if $gh_t = f$ for all t, and $[A, B]_Z$ denotes the set of Z-homotopy classes of Z-maps of A to B.

Now, let G be an abelian group, π be a group, and $\phi:\pi\longrightarrow \operatorname{Aut} G$ be a given homomorphism. Then, there is an associated homomorphism $\phi:\pi\longrightarrow \operatorname{Homco}(K(G,n+1),*)$, where K(G,n+1) is an Eilenberg-MacLane CW-complex. And considering the Eilenberg-MacLane CW-complex $K=K(\pi,1)$, the universal covering $\widetilde{K}\longrightarrow K$, and the usual action of π on \widetilde{K} , we have the fibre bundle

(1. 1) $K(G, n+1) \longrightarrow L_{\phi}(G, n+1) = \widetilde{K} \times_{\pi} K(G, n+1) \xrightarrow{q} K = K(\pi, 1)$ with structure group π . Since $\widetilde{K} \times_{\pi} * = K$, we have the canonical cross section $s: K \longrightarrow \widetilde{K} \times_{\pi} K(G, n+1)$ such that $s(K) = \widetilde{K} \times_{\pi} *$.

Let μ be the usual multiplication on K(G, n+1). Then, for the K-space $L_{\phi}(G, n+1)$ of (1, 1), we have the K-map

^{*} Department of Mathematics, Faculty of Education, Shimane University, Matsue, Japan

(1. 2)
$$\mu_{\phi}: L_{\phi}(G, n+1) \times_{K} L_{\phi}(G, n+1) \longrightarrow L_{\phi}(G, n+1)$$
 by
$$\mu_{\phi}([\widetilde{k}, x], [\widetilde{k}, x']) = [\widetilde{k}, \mu(x, x')]$$

and we have the following

LEMMA 1. 3. ([5, p. 7]) Let X have the based homotopy type of a CW-complex and X be a K-space with a map $u: X \longrightarrow K$. Then, the K-homotopy set $[X, L_{\phi}(G, n+1)]_K$ is an abelian group by the multiplication $[f]+[g]=[\mu_{\phi}(f\times g)\Delta]$, where $\Delta:X\longrightarrow X\times X$ is the diagonal map and $[X, L_{\phi}(G, n+1)]_K$ is isomorphic to $H^{n+1}(X; G)$, where $H^{n+1}(X; G)$ is the cohomology with the local coefficient induced by $u: X \longrightarrow K$.

Put
$$L = L_{\phi}(G, n+1)$$
. And consider the following path spaces

$$\overline{P}L = \{\lambda : I \longrightarrow L \mid \lambda(0) \in s(K), \ q\lambda(0) = q\lambda(t) \text{ for all } t \in I\}$$

$$\overline{\Omega}L = \{\lambda \in \overline{P}L \mid \lambda(0) = \lambda(1)\}$$

Then, we have the following

Lemma 1, 4. The projection

$$r: \overline{P}L \longrightarrow L, \ r(\lambda) = \lambda(1)$$

is a fibration with fibre QK(G, n+1) = K(G, n). Furthermore,

$$qr: \overline{P}L \longrightarrow K$$
 and $qr: \overline{\Omega}L \longrightarrow K$

are fibrations with fibre PK(G, n+1) and QK(G, n+1) = K(G, n), where PK(G, n+1)and $\Omega K(G, n+1)$ are the ordinary path space and loop space of K(G, n+1).

On the other hand, the given homomorphism $\phi: \pi \longrightarrow Homeo(K(G, n+1), *)$ induces the homomorphism

$$\phi': \pi \longrightarrow Homeo (\Omega K(G, n+1), *), \phi'(g)(\lambda)(t) = \phi(g)(\lambda(t)).$$

And we have the fibration

$$q': L_{\phi'}(G, n) \longrightarrow K$$

with fibre QK(G, n+1) = K(G, n) admitting the canonical cross section s' by (1, 1).

We have the natural K-homeomorphism

$$(1.5) \quad \psi: L_{\phi'}(G, n) \longrightarrow \overline{\Omega} L_{\phi}(G, n+1), \ \psi([\widetilde{k}, \lambda])(t) = [\widetilde{k}, \lambda(t)],$$
which satisfies $ax \psi = a' \quad \text{And let}$

which satisfies $qr\psi = q'$. And let

$$\chi: \overline{\Omega}L \times_K \overline{\Omega}L \longrightarrow \overline{\Omega}L$$

be given by the join of loops. Then, we have the following

LEMMA 1.6. The natural K-homeomorphism $\psi: L_{\phi'}(G, n) \longrightarrow \overline{\mathcal{Q}}L_{\phi}(G, n+1)$ induces an isomorphism

$$\psi_*: [X, L_{\phi'}(G, n)]_K \longrightarrow [X, \overline{\Omega}L_{\phi}(G, n+1)]_K$$

for any K-space X, where the domain is an abelian group of Lemma 1.3, and the multiplication in the range is induced by χ mensioned as above.

Now, let B be a CW-complex, and $\theta: B \longrightarrow L_{\phi}(G, n+1)$ be a given based map, where the base point of $L_{\phi}(G, n+1)$ is taken to be $* \in s(K) \subset L_{\phi}(G, n+1)$. Then, from the fibration $r: \overline{P}L \longrightarrow L(L = L_{\phi}(G, n+1)), \theta$ induces a fibration

$$p: \overline{P}_{\theta} = B \times_L \overline{P}L \longrightarrow B$$

with fibre $\Omega K(G, n+1) = K(G, n)$, which is called the twisted principal fibration with classifying map θ .

$$egin{array}{cccccc} \overline{P}_{ heta} & \longrightarrow \overline{P}L & \overline{\Omega}L \\ p & & & & & & qr \\ \downarrow & & & & & qr \\ & & & & & \downarrow & q \\ B & \longrightarrow & L & \longrightarrow & K \end{array}$$

We say that the based topological space X is homotopy-well-pointed if the inclusion

 $\{*\} \subset X$ is a homotopy-cofibration (cf. [3, p. 164 and § 2]).

LEMMA 1.7. \overline{P}_{θ} is homotopy-well-pointed.

PROOF. Since K(G, n+1) is a CW-complex, $\mathcal{Q}K(G, n+1) = K(G, n)$ has the based homotopy type of a CW-complex, and every point of a CW-complex is homotopy-well-pointed (cf. [8, p. 380]), $\{*\} \subset K(G, n+1)$ is a homotopy-cofibration (cf. [3, p. 46, Korollar (2. 7]), and by the theorem of A. Str ϕ m ([10, p. 141, Theorem 12]), $p^{-1}(*) = K(G, n+1) \subset \overline{P}_{\theta}$ is a cofibration, since $\{*\}$ is closed in B. By the fact that the composition of two homotopy-cofibrations is a homotopy-cofibration (cf. [3, p. 44, Satz (2. 4)], $\{*\} \subset \overline{P}_{\theta}$ is a homotopy-cofibration, that is, \overline{P}_{θ} is homotopy-well-pointed. q. e. d.

We define the K-map $\nu: \overline{\Omega}L \times_K \overline{P}_{\theta} \longrightarrow \overline{P}_{\theta}$ by the relation $\nu(m, (b, n)) = (b, m \vee n)$, where $m \vee n$ is the ordinary path addition in L, where the base point of $\overline{\Omega}L$ is the constant loop at $* \in L$. Then, ν defines the following action for any K-space X.

 $(1. 8) \quad \nu_* : [X, \ \overline{\mathcal{Q}}L]_K \times [X, \ \overline{P}_{\theta}]_K \longrightarrow [X, \ \overline{P}_{\theta}]_K.$

Let $p_*: [X, \overline{P}_{\theta}]_K \longrightarrow [X, B]_K$, then we have the following

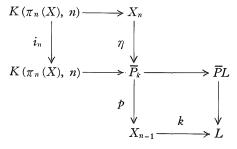
PROPOSITION 1. 9. (cf. [5, p. 6, Lemma]) $p_*(\alpha) = p_*(\beta)$ $(\alpha, \beta \in [X, \overline{P}_{\theta}]_K)$ if and only if there exists $\delta \in [X, \overline{\Omega}L]_K$ such that $\iota_*(\delta, \beta) = \alpha$.

§2. Postnikov-system

Let X be a connected CW-complex, and $\{X_n\}$ be the Postnikov-system of X (cf. [11, pp. 218-219]). And let $\phi: \pi_1(X) \longrightarrow \operatorname{Aut} \pi_n(X)$ be the local coefficient system associated with $p_n: X_n \longrightarrow X_{n-1}$ (this becomes an usual action of $\pi_1(X)$ on $\pi_n(X)$), and let the associated homomorphism $\phi: \pi_1(X) \longrightarrow \operatorname{Homeo}(K(\pi_n(X), n+1), *)$. Put $L = L_{\phi}(\pi_n(X), n+1)$ and $K = K(\pi_1(X), 1)$, then we have the following

PROPOSITION 2. 1. For the fibration $p_n: X_n \longrightarrow X_{n-1}$ there exist maps $k: (X_{n-1}, *) \longrightarrow (L, *)$, and $\eta: (X_n, *) \longrightarrow (\overline{P}_k, *)$ such that η is a based homotopy-equivalence. Therefore, $G_{\#}(X_n) = G_{\#}(\overline{P}_k)$.

PROOF. Let $i_n \in H^n(K(\pi_n(X), n), \pi_n(X))$ be the fundamental cohomology class of $K(\pi_n(X), n)$. Then, by J. F. McClendon ([4, Theorem 4. 1 and §§ 2-3]), there exist maps $k: (X_{n-1}, *) \longrightarrow (L, *)$ such that $[k] \in [X_{n-1}, L]_K = H^{n+1}(X_{n-1}, \pi_n(X))$ is the transgression image of i_n , where X_{n-1} is considered as a K-space by $p_2 \circ \cdots \circ p_{n-2} p_{n-1} : X_{n-1} \longrightarrow X_1 = K(\pi_1(X), 1) = K$, and $\eta: (X_n, *) \longrightarrow (\overline{P}_k, *)$ such that $p\eta = p_n$ and $\eta \mid K(\pi_n(X), n) \cong i_n$ rel *, where p is the twisted principal fibration induced by k.



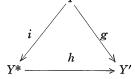
Now, since $i_{n*}: \pi_n(K(\pi_n(X), n)) \longrightarrow \pi_n(K(\pi_n(X), n))$ is an isomorphism, $\eta_*: \pi_i(X_n) \longrightarrow \pi_i(\overline{P_k})$ is an isomorphism for every $i \ge 1$. Since $\overline{P_k}$ has the free homotopy type of a CW-complex (cf. [9, Prop. (0) and [7, Theorem 2]), η is a free homotopy-equivalence

by the theorem of J. H. C. Whitehead. Since \overline{P}_k is homotopy-well-pointed by lemma 1. 7 and X_n is homotopy-well-pointed (cf. [3, p. 46, Korollar (2, 7) and [8, p. 380]), η is a based homotopy-equivalence (cf. [3, p. 54, Satz (2, 18)]).

Therefore, $G_{\#}(X_n) = G_{\#}(\overline{P}_k)$.

q. e. d.

PROPOSITION 2.2. Let Y be a topological space which has the free homotopy type of a connected CW-complex, whose base point is homotopy-well-pointed, and let Y* be a topological space obtained by attaching (i+1)-cells $(i \ge n)$ to Y, so that Y* kills the homotopy groups $\pi_i(Y)$ for every $i \geq n$. Then, for any CW-complex Y' with $\pi_i(Y') = 0$ for every $i \ge n$, and for any map $g: (Y, *) \longrightarrow (Y', *)$, there exists a map $h: (Y^*, *) \longrightarrow (Y', *)$ such that $hi \simeq g$ rel * (i is the inclusion of Y to Y*). Such two maps are homotopic rel *, and h does not depend on the based homotopy class of g.



PROOF. Since (Y^*, Y) is a relative CW-complex with dimension $(Y^*, Y) \ge n+1$, and $\pi_i(Y') = 0$ for every $i \geq n$, there is an extension h_0 of g to Y*, and such extensions are homotopic rel Y by the elementary homotopy theory. Also, for any map h: $(Y^*, *) \longrightarrow (Y', *)$ such that $hi \simeq g$ rel *, there exists $h': (Y^*, *) \longrightarrow (Y', *)$ such that $h \cong h'$ rel *, and h' i = g by the homotopy extension theorem.

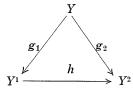
Therefore, $h' \simeq h_0$ rel Y, and consequently, $h \simeq h_0$ rel *. It is trivial that h does not depend on the based homotopy class of g. Furthermore, if $g_*: \pi_i(Y) \longrightarrow \pi_i(Y')$ is an isomorphism for every i < n, then, $h_* : \pi_i(Y^*) \longrightarrow \pi_i(Y')$ is an isomorphism for every $i \ge 1$, since $\pi_i(Y^*) = \pi_i(Y') = 0$ for every $i \ge n$.

By assumption, Y* has the free homotopy type of a connected CW-complex. Therefore, h is a free homotopy-equivalence by the theorem of J. H. C. Whitehead. Since Y is homotopy-well-pointed and $Y \subseteq Y^*$ is a cofibration, Y* is homotopy-wellpointed (cf. [3, p. 44, Satz (2, 4)]). Y' is homotopy-well-pointed (cf. [8, p. 380])

Therefore, h is a based homotopy-equivalence (cf. [3, p. 54, Satz (2. 18)]).

PROPOSITION 2. 3. Let Y be as in Proposition 2. 2, Y1 and Y2 be connected CW-complexes such that $\pi_i(Y^1) = \pi_i(Y^2) = 0$ for every $i \ge n$, and g_i be a map of (Y, *) to $(Y^j, *)$ such that $g_{j*}: \pi_i(Y) \longrightarrow$ $\pi_i(Y^j)$ is an isomorphism for every $i < n \ (j = 1, 2)$. Then, there exists a based homotopy-equivalence $h: (Y^1, *) \longrightarrow$ $(Y^2, *)$ such that $hg_1 \simeq g_2$ rel *, and such two homotopyequivalences are homotopic rel *.

Furthermore, if $g_*: \pi_i(Y) \longrightarrow \pi_i(Y')$ is an isomorphism for every i < n, then, h is a based homotopy-equivalence.

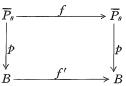


PROOF. By Proposition 2. 2, there exists a based homotopy-equivalence $h_j: (Y^*, *) \longrightarrow$ $(Y^j, *)$ such that $h_j i \simeq g_j$ rel * (j = 1, 2), since $g_j * : \pi_i(Y) \longrightarrow \pi_i(Y^j)$ is an isomorphism for every i < n (j = 1, 2). Now, let h'_1 be the based homotopy-inverse of h_1 . Then, $h_2h_1': (Y^1, *) \longrightarrow (Y^2, *)$ satisfies $(h_2h_1') \simeq g_2$ rel *. Also, if $h: (Y^1, *) \longrightarrow (Y^2, *)$ satisfies $hg_1 \simeq g_2$ rel *, then, $hh_1: (Y^*, *) \longrightarrow (Y^2, *)$ satisfies $(hh_1)i \simeq g_2$ rel *. Hence, by Proposition 2. 2, $hh_1 \simeq h_2$ rel *, that is, $h \simeq h_2 h_1'$ rel *. Now, $h_2 h_1'$ is a based homotopy-equivalence, so is tha map h. q. e. d.

Now, assuming $\pi_i(B) = 0$ for every $i \ge n$, then, $p_* : \pi_i(\overline{P}_\theta) \longrightarrow \pi_i(B)$ is an isomor-

phism for every i < n, $\pi_n(\overline{P}_\theta) = \pi_n(K(G, n)) = G$, and $\pi_i(\overline{P}_\theta) = 0$ for every $i \ge n+1$.

By Propositions 2.2 and 2.3, given a based self-homotopy-equivalence $f:(\overline{P}_{\theta}, *) \longrightarrow (\overline{P}_{\theta}, *)$ there exists a unique based self-homotopy-equivalence up to based homotopy f':



 $(B, *) \longrightarrow (B, *)$ such that $pf \simeq f'p$ rel *, and f' does not depend on the based homotopy class of f. Therefore, we can define the natural homomorphism $J: G_{\#}(\overline{P}_{\theta}) \longrightarrow G_{\#}(B)$.

§3. Proof of the theorems

Let $\phi: \pi_1(B) \longrightarrow Aut$ G be the local coefficient system on B. Put $L = L_{\phi}(G, n+1)$ and $K = K(\pi_1(B), 1)$. By J. F. McClendon ([5, pp. 3-4, Theorem]), Lemma 1.3 and Lemma 1.6, we have the following exact sequence of the local coefficient cohomology.

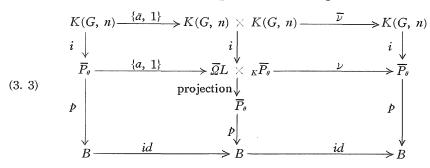
$$(3. 1) \qquad H^{n}(F; G) \longleftarrow i^{*} \qquad H^{n}(\overline{P}_{\theta}; G) \longleftarrow P^{*} \qquad H^{n}(B; G) \longleftarrow 0 \quad (F = K(G, n))$$

$$\parallel \qquad \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$[F, F] \longleftarrow i^{*} \qquad [\overline{P}_{\theta}, \Omega L]_{K} \longleftarrow [F, \overline{\Omega} L]_{K} \longleftarrow 0$$

We define a map $\Delta: Ker\ [i^*: [\overline{P}_{\theta},\ \overline{\mathcal{Q}}L]_K \longrightarrow [F,\ F]] \longrightarrow G_{\#}(\overline{P}_{\theta})$. By (1.8), take $X = \overline{P}_{\theta}$ and let $\Delta(a) = \nu_* \{a,\ 1\overline{P}_{\theta}\}$, that is, $\Delta(a): \overline{P}_{\theta} \xrightarrow{\{a,\ 1\}} \longrightarrow \overline{\mathcal{Q}}L \times_K \overline{P}_{\theta} \xrightarrow{\nu} \longrightarrow \overline{P}_{\theta}$.

Note that the restriction $\overline{\nu} = \nu \mid_{F \times F}$ is the ordinary multiplication on $\Omega K(G, n+1) = K(G, n) = F$. We have the following commutative diagram.



By the above commutative diagram, $(\nu_*\{a, 1\})_* : \pi_i(\overline{P}_{\theta}, *) \longrightarrow \pi_i(\overline{P}_{\theta}, *)$ is the identity automorphism for every $i \ge 1$ if $a \in Ker$ $[i^* : [\overline{P}_{\theta}, \overline{\Omega}L]_K \longrightarrow [F, F]]$. Since \overline{P}_{θ} is homotopy-well-pointed by Lemma 1.7, $\nu_*\{a, 1\}$ is a based homotopy-equivalence (cf. [3, p. 54, Satz (2.18)]), so the map Δ is defined. Thus we have the following sequence of groups and maps.

$$(3.3) H^n(B;G) \xrightarrow{\Delta} G_\#(\overline{P}_{\theta}) \xrightarrow{J} G_\#(B),$$

where the action of $\pi_1(B)$ on G is induced by $q\theta: B \longrightarrow L \longrightarrow K$.

Theorem 3.4. Im $\Delta = Ker$ J.

PROOF. Im $\Delta \subset Ker$ J is evident by the diagram (3, 2), and we will show that $Im \Delta \supset Ker$ J. We assume that J(g) = 1, that is, $pg \simeq p1\overline{p}_{\theta}$ rel *. By Proposition 1.9, there exists $\delta \in [\overline{P}_{\theta}, \overline{\Omega}L]_K$ such that $\nu_*\{\delta, 1\overline{P}_{\theta}\} = g$, that is, $\Delta(\delta) = g$.

Then, $\nu\{\delta i,\ i\} = \nu\{\delta,\ 1\}i \simeq gi \simeq il_F = i \text{ rel *, and on } \pi_n(F) = G,\ \nu_*(a,\ b) = a+b\ (a,\ b \in G), \text{ so } \nu_*\{\delta i,\ i\}_*(a) = (\delta i)_*(a) + i_*(a) = i_*(a). \text{ Hence } (\delta i)_* = 0, \text{ that is, } \delta \in Ker\ i^* = Im\ p^* = H^n(B;G).$ $q.\ e.\ d.$

THEOREM 3.5. Δ is a homomorphism of groups.

PROOF. Let
$$\mu_{\phi'}: L_{\phi'} \times_K L_{\phi'} \longrightarrow L_{\phi'}$$
 be the K-map as in (1, 2), and define $\Delta(\omega_1) \perp \omega_2 = \omega_2 \Delta(\omega_1)^{-1} \in [\overline{P}_{\theta}, \overline{\Omega}L]_K$ ($\omega_1, \omega_2 \in Ker \ i^* \subset [\overline{P}_{\theta}, \overline{\Omega}L]_K$). Since $\mu_{\phi'}((\Delta(\omega_1) \perp \omega_2)\Delta(\omega_1), \omega_1) = \mu_{\phi'}(\omega_2\Delta(\omega_1)^{-1}\Delta(\omega_1), \omega_1) = \mu_{\phi'}(\omega_2, \omega_1)$

We have

$$\begin{split} \varDelta(\omega_{2}+\omega_{1}) &= \nu_{*}\{\omega_{2}+\omega_{1},\ 1\overline{P}_{\theta}\} \\ &= \nu_{*}\{\mu_{\phi'}((\varDelta(\omega_{1}) \perp \omega_{2})\varDelta(\omega_{1}),\ \omega_{1}),\ 1\overline{P}_{\theta}\} \\ &= \nu_{*}\{(\varDelta(\omega_{1}) \perp \omega_{2})\varDelta(\omega_{1}),\ \nu_{*}\{\omega_{1},\ 1\overline{P}_{\theta}\}\} \quad \text{(by Lemma 1. 6)} \\ &= \nu_{*}\{(\varDelta(\omega_{1}) \perp \omega_{2})\varDelta(\omega_{1}),\ \varDelta(\omega_{1})\} \\ &= \nu_{*}\{\varDelta(\omega_{1}) \perp \omega_{2},\ 1\overline{P}_{\theta}\}\varDelta(\omega_{1}) \\ &= 2(\varDelta(\omega_{1}) \perp \omega_{2})\varDelta(\omega_{1}). \end{split}$$
 Now, $\omega_{2} = \omega_{2}'p$ for some $\omega_{2}' \in [B,\ \overline{\varOmega}L]_{K}$ by (3. 1), we have $\varDelta(\omega_{1}) \perp \omega_{2} = \omega_{2}'p\varDelta(\omega_{1})^{-1} \\ &= \omega_{2}'J(\varDelta(\omega_{1})^{-1})p \end{split}$

 $=\omega_2+\omega_1$

$$2J(\omega_1) \perp \omega_2 = \omega_2 \ p \Delta_1(\omega_1)^{-1}$$

$$= \omega_2' J(\Delta(\omega_1)^{-1}) p$$

$$= \omega_2' p$$

$$= \omega_2.$$

Therefore, $\Delta(\omega_2 + \omega_1) = \Delta(\omega_2)\Delta(\omega_1)$.

q. e. d.

By (1, 8) take $X = \overline{P}_{\theta}$ and let $I(1\overline{P}_{\theta})$ be the isotropy group of $1\overline{P}_{\theta} : \overline{P}_{\theta} \longrightarrow \overline{P}_{\theta}$ under the action of $[\overline{P}_{\theta}, \overline{Q}L]_K$ on $[\overline{P}_{\theta}, \overline{P}_{\theta}]_K$.

Trivially $I(1\overline{P}_{\theta})$ is contained in $Ker\ [i^*: [\overline{P}_{\theta}, \ \overline{\Omega}L] \longrightarrow [F, F]]$, and we have the following theorem.

THEOREM 3. 6. Assume that a connected CW-complex B satisfies $\pi_i(B) = 0$ for every $i \ge n$, let $\phi: \pi_1(B) \longrightarrow Aut$ G be the local coefficient system on B, and let $p: \overline{P}_{\theta} \longrightarrow B$ be the twisted principal fibration with fibre K(G, n). Then, the following sequence of groups and homomorphism is exact.

$$1 \longrightarrow I(1\overline{P}_{\theta}) \stackrel{\square}{\longrightarrow} H^{n}(B;G) \stackrel{\underline{\mathcal{A}}}{\longrightarrow} G_{\#}(\overline{P}_{\theta}) \stackrel{\underline{J}}{\longrightarrow} G_{\#}(B),$$

where $H^n(B; G)$ is the cohomology with the local coefficient induced by $q\theta: B \longrightarrow L = L_{\phi}$ $(G, n+1) \longrightarrow K = K(\pi_1(B), 1)$.

By Propositions 2. 1, 2. 2 and 2. 3, the following is obtained.

COROLLARY 3. 7. Let X be a connected CW-complex and $\{X_n\}$ be a Postnikov-system of X. Then, the following sequence of groups and homomorphisms is exact for every $n \ge 1$.

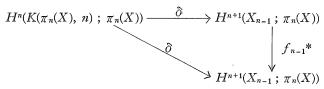
$$1 \longrightarrow I(1X_n) \xrightarrow{\subset} H^n(X_{n-1}; \pi_n(X)) \xrightarrow{\Delta} G_\#(X_n) \xrightarrow{J} G_\#(X_{n-1}),$$

where $H^n(X_{n-1}; \pi_n(X))$ is the cohomology with the local coefficient $\{\pi_n(X)\}$, where $\pi_1(X_{n-1}) = \pi_1(X)$ acts on $\pi_n(X)$ as usual, and $I(1_{X_n})$ is the isotropy group of $1_{X_n}: X_n \longrightarrow X_n$ under the action of $[X_n, \overline{\Omega}L]_K$ on $[X_n, X_n]_K$ which is defined in the following diagram.

where ξ is the based homotopy-inverse of $\eta: X_n \longrightarrow \overline{P}_k$ by Proposition 2.1.

Furthermore, Im $J = \{[f_{n-1}] \in G_{\#}(X_{n-1}) \mid [k] = f_{n-1} * [k]\}$, where $[k] \in H^{n+1}(X_{n-1}; \pi_n(X))$ by Proposition 2, 1.

PROOF. (cf. [4, p. 4]) By Proposition 2.1 $[k] = \delta(i_n)$, and the following diagram commutes.



Hence, if $[f_{n-1}]$ is an image under J, it belongs to the right hand side. On the other hand, Suppose that $[f_{n-1}]$ belongs to the right hand side. Then, the following diagram is based homotopy commutative,

$$\begin{array}{ccc} X_{n-1} & \xrightarrow{f_{n-1}} & X_{n-1} \\ \downarrow k & & \downarrow k \\ \downarrow L & \xrightarrow{id} & \downarrow L \end{array}$$

and we may construct a based self-homotopy-equivalence $f_n: X_n \longrightarrow X_n$ such that $p_n f_n \simeq f_{n-1} p_n$ rel * which induces the identity automorphism of $\pi_i(X_n)$ for any $i \ge 1$.

q. e. d.

COROLLARY 3. 8. (cf. [11, Theorem 1. 3]) Assume that the connected CW-complex X satisfies $\pi_i(X) = 0$ (i > N) or dim X = N, for some integer N, and that the cohomology groups of local coefficient are $H^n(X_{n-1}; \pi_n(X)) = 0$ $(1 < n \le N)$. Then, $G_{\#}(X) = 1$.

PROOF. Note that $G_{\#}(X_1) = G_{\#}(K(\pi_1(X), 1) = 1$. Then, we have $G_{\#}(X_n) = 1$ for every n > 1 by induction using Corollary 3. 7. q. e. d.

COROLLARY 3. 9. Let $\{X_n \mid n > 1\}$ be as in Corollary 3. 7. If $H^n(X_{n-1} : \pi_n(X))$ $(1 < n \le N)$ are finite (finitely generated) groups. Then, $G_{\#}(X_N)$ is a finite (finitely generated) group.

COROLLARY 3. 10. Let X be as in Corollary 3. 8. If Aut $\pi_n(X)$ $(1 \le n \le N)$, and $H^n(X_{n-1}; \pi_n(X))$ $(1 < n \le N)$ are finite (finitely generated) groups. Then, G(X) (=the group of all based homotopy classes of self-homotopy-equivalences of (X, *)) is a finite (finitely generated) group.

PROOF. Consider the following exact sequence (cf. [1, p. 30, (*)]).

$$1 \longrightarrow G_{\#}(X) \longrightarrow G(X) \longrightarrow \sum_{1 \leq n \leq N} Aut \pi_{n}(X)$$

and use Corollary 3, 9.

q. e. d.

Especially we obtain the following theorem.

Theorem 3.11. (cf. [4, Theorem 3.1]) Let X be as in Corollary 3.8. If $\pi_n(X)$ $(1 \le n \le N)$ are finite groups.

Then, G(X) is a finite group.

Proof. By ([2. p. 44, 15. 6]) we see that $H^2(\pi_1(X); \pi_2(X))$ with the local coefficient is finite. And by induction using the local coefficient Serre spectral sequence (cf. [5, § 1]), $H^n(X_{n-1}; \pi_n(X))$ ($1 < n \le N$) are finite groups. Hence by the above corollary G(X) is a finite group.

q. e. d.

References

- [1] M. Arkowitz and C. R. Curjel: Groups of homotopy classes, Lecture Notes in Math. 4, Springer-Verlag, 1967.
- [2] Babakhanian: Cohomological methods in group theory, Marcel Dekker, Inc., 1972.
- [3] T. tom Dieck, K. H. Kamps and D. Puppe: Homotopietheorie, Lecture Notes in Math. 517, Springer-Verlag, 1970.
- [4] D. W. Kahn: The group of homotopy equivalence, Math. Z. 84 (1964), 1-8.
- [5] J. F. McClendon: Obstruction theory in a principal fibre space, Math. Z. 92 (1966), 239-246.
- [6] Y. Nomura: Homotopy equivalences in a principal fibre space, Math. Z. 92 (1966), 380-388.
- [7] R. Schön: Fibrations over a CWh-base, Proc. Amer. Math. Soc. 62 (1977), 165-196.
- [8] E. H. Spanier: Algebraic topology, McGraw-Hill Book Co., 1966.
- [9] J. Stasheff: A classification theorem for fibre spaces, Topology 2(1963), 239-246.
- $\lceil 10 \rceil$ A. Strøm: Note on cofibrations II, Math. Scand. 22 (1968), 130-142.
- [11] K. Tsukiyama: Note on self-maps inducing the identity automorphisms of homotopy groups, Hiroshima Math. J. 5 (1975), 215-222.