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A TRACE IDENTITY FOR PARABOLIC ELEMENTS OF SL(2,C)*

TOSHIHIRO NAKANISHI"

Dedicated to the memory of Professor Nobuyuki Suita

Introduction

The objective of this paper is to establish a trace identity for four parabolic
elements in SL(2,C). Let F,,, denote the orientable closed surface of genus g
with m points removed. We assume that m > 0. The fundamental group G,
of F,, is generated by 2g +m elements

a,bi,... a4, by, c1,...,0m

satisfying a single relation

g
(Haibiailbil>cl sy = 1.
i=1

In [3] R. C. Penner introduced A length coordinates to the decorated Teichmiiller
spaces of punctured surfaces and proved the “ideal Ptolemy theorem”. This
theorem played an essential role in obtaining a faithful representation of the
mapping class group .#%, ., as a group of rational transformations. Let R,
denote the space of all conjugacy classes of faithful representations p of G, ,, in
SL(2,C) such that p(c;) is parabolic and tr p(¢;) = =2 for i =1,2,...,m. In [2]
the A length is complexified so as to parametrize the space R, ,, and the “ideal
Ptolemy theorem™ is proved for a special case. The complexified 4 length is a
kind of trace function and hence the “ideal Ptolemy theorem” proved in [2] is a
trace identity (see Lemma 1.2 below). In this paper we establish another version
of the “ideal Ptolemy theorem”. Our main theorem is

THEOREM 0.1. Let Py, P,, P3, Py be matrices in SL(2,C) satisfying the
following conditions:
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l.trPy=tr Py =tr Py=1tr Py = -2, and
2. Any two of them generate an irreducile group.
Let Q1, 02, 03,04,0s5,06 € SL(2,C) be matrices with the following properties:

PPy =—-Qf, PP3y=-03, P3Py=-0;,
PyPy = —Qi, P3Py =-0Q%, PsP,=-0;

(The existence and the uniqueness up to a multiple factor in {—1,1} of these
matrices are shown in Lemma 2.4). If

tr 010,05 =tr 020306 = tr Q10,0304 = -2,

then the following equation holds:
(0.1) tr Q1 tr O3 +tr O tr Q4 = tr Qs tr Q.

Similar results hold for the cases where some pairs of Py, P, P3, P4 generate
reducible groups, see Section 4. In Section 5 we show an application of the trace
identity (0.1) to the mapping class group .#%o 4 acting on Ry 4.

Acknowledgments. We would like to thank the referees for pointing out
errors in the earlier version of this paper and for many helpful suggestions.

1. Trace functions

1.1. We shall use the following basic properties of traces of matrices
without mentioning them:
tr Y'XY =tr X.
tr X1 Xy X, = tr Xy Xg2) - Xo(ny for any cyclic permutation o on
{1,2,...,n}.
The group SL(2,C) consists of matrices of the form:

(a b), a,b,c,deC,ad —bc=1
c d

Each matrix of SL(2,C) acts on the extended complex plane C = CU {0} by a
linear fractional transformation. We denote by 7 the unit matrix in SL(2,C).
A matrix 4 of SL(2,C) other than +7 is called parabolic if tr A € {—2,2}; elliptic
if —2<trd<2. 1If in particular, tr 4 =0, then 4> = —J and A4 is called
elliptic of order 2. We list some trace identities for SL(2,C).

Lemma 1.1 ([1, 3.4]). Matrices in SL(2,C) satisfy the following equations.

trd=trd"!

(1.1) tr Atr B=tr AB+tr AB™!
(1.2) trABC=tr Atr BC+tr BtrCA+tr Ctr AB—tr Atr Btr C —tr BAC
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(1.3)  2tr ABCD =tr Atr BCD +tr Btr ACD +tr C tr ABD + tr D tr ABC
+tr ABtr CD —tr AC tr BD +tr BC tr DA
—trAtr BtrCD—tr Btr Ctr DA —tr Ctr D tr AB
—trDtrAtr BC+trAtrBtr Ctr D

The following equation is obtained by a repeated use of (1.1).

(1.4) At Ay tr A tr Ay Ay Ay = Y A APATE A
&€{0,1}

LemmA 1.2 ([2, Proposition 1.1]). Let A,B,C,D e SL(2,C) and x =tr A+
tr BCD, y=trB4+tr CDA, z=tr C+tr DAB, w=tr D+ tr ABC, u=1tr AB+
tr CD, v=tr BC+tr AD. If tr ABCD = -2, then

XZ + yw = uv.

LemmA 1.3. Let X,Yy,...,Y,11 € SL(2,C), where n>1. Iftr Y, =---=
tr Y1, then

(_1)6|+"'+6n tr XY]S] Y2€1+82 . Kfn—l‘H)n Y6n+1

n+1
&1, 8p€{0,1}
_ Z (_1)61+---+8n tr XYISHrl Y261+sz . Y&,,,l-'r&” yeén |
n n+l1°
&1, 80 €{0,1}
Proof. leta=trY),=---=trY,. If n=1, then

tr XY; —tr XYY, =tr XY, +tr XY, —atr XY Yy = tr XY, — tr XY, Y3

For n > 1 we have

(_1)£1+,4.+8,, tr XYlel stwrez . Yngn,l+g,, Y;rlr]

= D (DT XYRZY - w(Yn X)) Y, TRZY )
£,...,6,€{0,1}

where Z stands the matrix Y;>™® ... Y& 1t& By induction and (1.1), the last
term equals

(=12t XY ZY o — (Y XY YR Z Y
&,...,6,€{0,1}

= ) (=) XY, R ZY )

wip —atr(XY) Yzezzye,,ﬂ
82,..A,g,lg{0, 1}

n+1

FU XY Y ZY )
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= Y (=) XY, R ZY —atr(XY) YR ZY )

n+1
&,...,6,€{0,1}
XY YRZY )
b1t 1+l yaite on—1+én Y En
= ) (=D)TTaxyptlypte . ypeteyn O
el 60 €{0,1}

Lemma 1.4, Let {P, Q;}iL, = SL(2,C), where n > 2, be such that
PP, = -0}, P,Ps=-03,...,P,P, = -0
and tr Py =tr P, =---=tr P,. Then
tr OQotr Qz---tr Oy tr 0203+ 0Oy
=1tr Qs2) tr Qu3) "t Qo) I Q52)Qu(3) - o)

for any cyclic permutation o on {1,2,... n}.
Proof. 1If we show
tr Qrtr Qs tr Qutr Q103+ Qp=1tr Qatr Q3---tr O tr 0203+~ O,

then cyclic permutations of indices yield the desired result. By using (1.4) we
rewrite the above equation as

281 2¢ 26, 23 263 2¢,
PO RN A D DI XN
&1y en€{0,1} &,.,6n€{0,1}
By deleting terms common to the both sides of this equation we obtain
212 2e, __ 22 2e,
tr Ql 383 o in - Z tr Q2 Q383 e Qn{ )
&,...,6,€{0,1} &,...,6,€{0,1}
which equals

(_1)63+...+sn tr P2P§3Pﬁ3+84 . P;rzfl‘anP‘lanrl

&3,..,8n€{0,1}
_ Z (_1)£3+...+€n tr PZP;+£3P23+£4 . Pz:",1+z:,,P18,,
& .
&3,...,6,.€{0,1}
The last equation is valid by the previous lemma. O

2. Parabolic abelian group

2.1. For a point z of C we define
I.={A4eSL(2,C):trAde{2,-2} and A(z) =z},
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which is an abelian group and conjugate in SL(2,C) to

rm={<; ‘:) :ee{—l,l},weC}.

There is a group homomorphism y : I, — {—1,1} defined by
x(A)=(1/2)trA for AeT..

Verifying them for the case of z= oo we obtain the following lemmas and
identities.
If A,BeT., then

(2.1) (4 —x(A))(B—x(B)I) = O,

where O is the zero matrix.

LemmA 2.1. Let Ael'.—{+I} and Be SL(2,C). If A and B are com-
mutative, then BeT ..

LEMMA 2.2. Let A and Be SL(2,C) be such that ABe T, with tr AB=2.
Suppose that A¢T. and tr A=tr B. Then A= B~

LemMA 2.3. Let A and Be SL(2,C) be such that AB is parabolic with
tr AB=—-2. Then tr A+tr B=0 if and only if A, B and AB have a common
fixed point.

Let A,Be SL(2,C) be such that tr AB= —2. Then from (1.1) we have
(2.2) trA+tr B=—tr(4(AB+1)) = —tr(B(AB+I)).

LemMmA 2.4. Let P, A and Be SL(2,C) and assume that both A~'P and
B~'P are elliptic of order 2, then for any Q commutative with P it holds that

(2.3) tr A'BQ —tr AB"'Q =0.
Proof. Since B-'P=—P'B and AP™' = —PA~' we have
tr ABB'P)P7'Q = —tr(AP"")BQP~! = tr PA"'BQP!. O

2.2. Let P, and P, be two matrices in SL(2,C). We call the pair {P;, P>}
reducible if Py and P, generate a reducible group and irreducible otherwise. The
pair {P;, P,} is reducible if and only if P and P, have a common fixed point
(see [1, Definition 1.2.1]). If tr Py =tr P, = —2, then the fact that {P;, P>} is
reducible is equivalent to each of the following conditions:

(i) P; and P, are commutative.

(11) tr P1P, = 2.

We can verify this easily by considering the case where P; fixes oo.
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LEMMmA 2.5. Let P;,Py e SL(2,C) with tr Py = tr P, = —2. If {P],Pz} is
irreducible, then there exists a unique Q€ SL(2,C) up to a multiple factor in
{=1,1} such that

(2.4) PP, = —0°.
This matrix Q satisfies tr Q # 0 and
(2.5) P,=0"'P0.

Moreover, Q~'P; and Q~'P, are elliptic of order 2.

Proof. By a simultaneous conjugation we can assume that P; and P, are of
the following forms:

P -1 -1 P, — -1 0
1= 0 1 ; 2= L -1 )
where p#0. Then we can find a Qe SL(2,C) such that P;P,=—0Q>
Actually, Q or —Q equals

NSV
N/ 0
With this matrix we can easily verify the other properties of Q. O

LEMMA 2.6. Let P1,P;,P3,01,0,,03€ SL(2,C) be such that tr Py =
tr Py = tr Py = —2 and that P\P, = —Q3?, P,Py=—Q3, P3P, = —Q3. Then

1
(2.6) tr PLPyPs =5 tr Q1 tr Oy tr Qs tr Q10205 + (tr 01)°

+(tr 02)° + (tr 03) -2
and
(2.7) tr Q1 tr Qrtr Q10, =tr Qr tr Qs tr 0,03 = tr O3 tr Oy tr Q304
=—tr Q1 tr Q> tr Qs tr 010,05 — (tr 0y)°
— (tr @)% — (tr 03)*.
Proof. By (1.1) and (1.4) we have
tr Q1 tr O tr Qs tr Q10203 = tr Q{0303 + tr 0705 + tr 0303
+tr Q307 +tr Qf +tr Q3 +tr Q5 +tr [
= —tr P{P3P; +tr P\P3P; + tr PyPiP) + tr PiP,Ps
—tr P{Py —tr P,P3 —tr P3Py +2
=2tr PyP,P3+2tr P{P, +2tr P,P3+ 2 tr P3P — 8.
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Since tr 0 = (tr 0;)> — 2 we obtain (2.6).

tr Qi tr Qytr 01Qs =tr Q{03 + tr Of +tr Q3 +2
= 2t PLPyPs + (tr Q1) + (tr Qo) + (tr 03)° — 4.
This, together with (2.6) and Lemma 1.4, yields (2.7). O

3. Proof of the main theorem

31. Let 01,0,,...,0,€SL(2,C) be such that 0,0 --- Q, is commutative
with a parabolic matrix in SL(2,C). Then by Lemma 2.1 we have

tr 010>---Q, € {-2,2}.

DeriNITION 3.1, The ordered tuple (Q1, Qa,...,0,) is called a (—)-sytem if
tr 0102--Qn=-2 and a (+)-system if tr Q1Qs--- 0, =2.

Let Py,P,,...,P, be parabolic matrices in SL(2,C) such that tr P, =
trPp=---=tr P,=-2. Since tr P, =tr P, fori=1,2,...n, where P,.; = P,
and since P; # +1, there exist a matrix Q; such that P;; = Q;'P.Q;. It holds
that

Pl = Q;anQn

= (anlQn)ilpnfl(anlQn) == (Ql ce Qn)ilPI(Ql co Qn)~

Thus 0105 ---Q, and P; are commutative and hence (Q1, Q,...,Q,) is either a
(—)-system or a (+)-system.

Let Py, Py, P3, Py € SL(2,C) be such that tr Py =tr Py =tr P3 =tr Py = —2.
We assume that any two of P;, P, P3, P4 generate an irreducible group. Then
by Lemma 2.5 we can find Qi,Q>,...,06 € SL(2,C) satisfying the following
conditions.

P\Py=—QF, PyPy=-03, PyPy=-03,

(3.1) 5 5 5
PyPy = -0y, P3Py =-05, PyPr=-0;

and

(3.2) Py=07'Pi01, Py=05'P,0:, Pi=0;'P30s,

Py = 0;'PsQs, Py =05'P;0s, Pr=Q5'Ps0s

These Q; are uniquely determined up to a multiple factor in {—1,4+1}. Let
Qs = P1QsP7! and Qg = P,Q¢P;'. Then trQs=trQs and tr Q¢ = tr Q.
Since Q~§ = —P;P3; and Q~§ = —P,P;, Lemma 2.5 yields

0;'P1Qs=P; and Qg'PrQs =Py



8 TOSHIHIRO NAKANISHI

LemMmA 3.1, Assume that (Q1,0>,Q0s) and (Qa, 03, Q) are (—)-systems.

Then each of (Q3,Q4,0s5) and (Q4,01,Q06) is a (—)-system if and only if
(Q1,01,03,04) is a (—)-system.

Proof. Since Q5'030Q4 commutes with Py and since P;!Qs is elliptic of
order 2, we obtain
2(050304) = x(P}(P;' 05)° 05" 0304)
= 2(P1)’2(=Dx(05' 0304) = —2(05' 0304).
Therefore, tr Q5Q3Q4 = —2 if and only if tr 05'Q304 = 2. Since

tr 0100304 = 27(010:05)7(05' 03 04),

tr 010,0304 = —2 if and only if tr Q5'Q304 = 2. The proof for (Q4, 01, Qé) is
similar. O

3.2. Now we prove Theorem 0.1. Let 4; =tr Q;, Ay =tr Qs, 43 =tr Qs,
Ay =1tr Q4, As=1tr Qs and A¢ =tr Q. By Lemma 3.1 we need to show the
equation

(33) MA3 + Aods = A5l
when (01,02, 05), (03,04,05), (02,03,06) and (Qs,0Q1,0Q4) are all (—)-

systems.
Our proof proceeds as in the following way: In 3.3 we prove (3.5) below,
which is the same equation as

(M3 + Aada — Asde) (A1d3 + Aada + Asde) = 0.

In 3.4, we introduce a value A defined by 4, + tr 0,0304 = 4;A and prove (3.3)
provided A # 0. The proof is an application of Lemma 1.2. In 3.5 we obtain
an explicit expression of A by using the facts that (Qi, 0>, Qs), (03,04, 0s),
(02, 03,06) and (Qu, 01, Q) are (—)-systems. Finally, in 3.6 we show that two
equations A4z + 4244 + AsA¢ = 0 and A =0 are not compatible. In the calcu-
lations of trace identities, as illustrated in the proof, one often encounters surplus
and cumbersome equations such as 443 + A4 + 4546 = 0.

3.3. From (1.3) we obtain

(3.4) 2tr Py\P,P3Py = =2 tr PyP3Py — 2 tr P{P3P4y — 2 tr P{P,Py — 2 tr PP, P3
+tr Py Py tr P3Py — tr P\ P53 tr PPy + tr P4P; tr P, P35
— 4 tr P3Py — 4 tr P4Py —4tr P1Py, —4tr P,P3 + 16
From (1.4), (3.1) and (3.4) we obtain
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tr Qrtr Qs tr Qs tr Oy tr 01020304
— Z 12{11 g:’,‘z Q§£3 il}4

e1,e2, 3,24 € {0, 1}
=2 tr PyP, P3Py + 2(tr Py PyP3 + tr P\ P,Py + tr P P3P4 + tr P, P3Py)
+2(tr PyPy +tr PyP3 +tr P1Py+ tr PyP3 + tr PPy + tr P3Py) — 12
=tr PP tr P3Py — tr P{P3 tr P, Py +tr PPy tr P, P;
+2(tr P1P3 + tr PyPy — tr P1Py — tr PyP3 — tr P3Py — tr P4Py) + 4.
Since tr Q10,0304 = —2, this equation, together with (3.1), yields
(3.5) 2302 = (ks + dada)’

34. By Lemma 14
tr Qi tr Qytr Qs tr Qg +tr Qs tr Q3 tr Qg tr 020304

is invariant under any cyclic permutation of the indices {1,2,3,4}. Therefore
there exists a A such that

tr Q1 +tr 020304 = LA, tr O +tr 010304 = A,
tr Q3 +tr Q10204 = A3A,  tr Qg +tr Q10203 = A4A.

Next we shall show the following identities

(3.6)

(37) tr 010, +tr 0304 = AsA, tr 0,03+ tr Q401 = A
By the proof of Lemma 3.1 we know that tr Q5'Q3Q4 = 2. Then from (2.1)
(3.8) 0 =(010:05 +I)(—I + 05' 0:04)

=—010:05 + 010:0:04 — I + 05" 03 0s.

Since tr 010,05 = =2, 21 + 010,05 = — (0 Q2Q5)71 by the Cayley-Hamilton
theorem. Then (1.1), (2.2) and (3.8) yield

—tr Qs(tr Q1 +tr 020304)

=tr Qs tr 0Q1(Q1020304 + 1)

=1tr Os tr 01(01020s +2I — 05" 0304)

= —tr Qs tr 01((Q10:05)" + 051 0:04)

= —tr Qs tr Q) tr(010205 + 05" 0304)
+r Os tr(Q5' 0,1 077 + 01 05 0:04)

= —tr Qi(tr Q102 + tr Q304) — tr Q) tr(Q10,03 + 057 0304)
+r Qs (070205 + 07" 05" 03 04)
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= —tr Qi(tr 010y + tr Q304) + (tr Qs tr 070205 — tr Oy tr 010203)
+(tr Qs tr 071051 0304 — tr Q1 tr 0570304)
= —tr O1(tr Q10> +tr 0304) — (tr Os tr 0205 — tr Oy tr 010>)
+(tr 0710304 — tr 0105205 04)
We treat the last two terms. Since P; = Q5'P20,, (1.1) yields
tr Os tr 0,05 —tr Oy tr 10>
=tr 0,05 —tr 010> = —tr O, P3Py +tr P{P,0> =0
From Lemma 2.4 we have

tr 07'05(05'0304) — tr 0105 (05'0504) =0,

for 01 P;! and Q5! Py are elliptic of order 2 and P and Q5'Q;Q4 are commuta-

tive. So we conclude that tr Qs(tr Q) + tr 020304) = tr O (tr Q10> + tr 0304)
and also the first equation in (3.7). The same calculation(or permuting the
indices in the calculation above) yields the second one. By using Lemma 1.2 and
(3.6) and (3.7) we can conclude (3.3) provided that A is not zero.

3.5. In this subsection we find the explicit expressions of A.  Applying (2.7)
in Lemma 2.6 to the (—)-system (Qi, 02, Qs) and (Qs, Q4, Qs), we obtain
22 22 22 22 22 52
A+ A5 45 , At Ap+ S
AT T Sy P B

Th r Q304 =245 s
Thus, by using the first equation of (3.7) we obtain
M3+ Iala)(Falds + Jda) + 23 (Ao + Aaha)

MArA3Aalds

Since (03,03, Qs) and (Q4, Q1, Q) are also (—)-systems, by repeating the same
argument and using the second equation of (3.7) we obtain also

(Mils + 2aha)(Jada + 230a) + A2 (Jads + Aiia)
M al3hals

tr 010> =245 —

(3.9) Aog_!

(3.10) A=4-—

3.6. The difference of the expressions (3.9) and (3.10) of A yields
(25}-6 — WAz — /lzl4)[(}~1).2 + }.3/14)).5 — (12/13 + /11;~4>/16] =0.

So, if (3.3) does not hold, by the results in 3.3 and 3.4 we obtain the following
three equations.

(3.11) Ashs + (s + daka) =0
(3.12) (M2 + A3d4)As — (Aads + A1da) A6 =0
(3.13) A=0
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From (3.11) and (3.12) we have
(123 + 2aa)(Fals + Jada) + 22(Jada + J3la)
= (Aads + A1Aa)[(A1ds + A2 ha) + A5s] = 0.

Then (3.9) yields A = 4, which contradicts (3.13). Now we complete the proof of
(3.3) and hence Theorem 0.1.

4. Degenerate cases

In this section we extend Theorem 0.1 to the full generality so that it is valid
for the case where P;, P, P; and P4 include reducible pairs.

4.1. Let P;,P, e SL(2,C) be such that tr Py =tr P, = —=2. If {P},P,} is
an irreducible pair, Lemma 2.5 yields a matrix Q; satisfying PP, = —Q?. Then
(1.1) yields (tr Q1)2 =2—tr PiP,. If {P;,P,>} is reducible, then tr P\ P, = 2.
So it seems natural to define the value corresponding tr Q; to be zero for this
case.

42. Let P,P,eSL(2,C) be parabolic with tr Py =tr P, = —2. Even
for the case where {P;,P,} is reducible, we can find matrices Q; satisfying
P, =Q7'P10; (but not PiP,=—Q?}). Such matrices form essentially a one-
parameter family: If

-1 -1 -1 —u
P = P, =
(% 0) ()
where u is a nonzero complex number, then
NI
4.1 =4 ,
(4.1) 0 _< 0 Ui

with an arbitrary complex number ¢.

43. Let P, P, P; and Pse SL(2,C) be parabolic with tr P, = —2 for
i=1,2,3,4 We choose matrices Q = Qyp, p| € SL(2,C) satisfying P; = 0 'PO.
If {P,,P;} is irreducible, we impose the condition PP;=—Q% on Q too. Let

O1=0p,.pr);, Q2=0p.r), O3=0p.py

Os=0Qp,r), O5=0p,.prs, Q6= 0p, py-

If the indices i, j, k are such that Or = Qip pj, then we define 4, = tr Oy if
{P;, P;} is irreducible and 4, =0 otherwise.

THEOREM 4.1. Under the assumption that

(01,02,05), (02,035,06) and (01,02, 03,04)

are (—)-systems, the same equation as in (3.3) holds.



12 TOSHIHIRO NAKANISHI

4.4. We prove Theorem 4.1 for the case where there are distinct indices
i,j€{1,2,3,4} such that {P, P;} is reducible but {P;, P} is irreducible for any
k #1i,j. We consider subcases.

4.4.1. We give a proof for the case {i,j} = {2,3}. Since P; = Q;'PsQ4
and P; = 0;'P,0,, we obtain
tr Q3 tr 020304 = tr 020304 + tr 0204
= —tr Q2 P3P4Q4 +tr Q204
= —tr P01 Q4P +tr 0204
=tr Q1 tr Q401 0>.

Thus there exists A such that

(4.2) tr Q1 +tr 020304 =LA, tr Qs +tr 010,04 = A,
We can show
(4.3) tr 010>+ 0304 = AsA, tr 0205 +tr Q401 = AA

by the same calculation as in Subsection 3.4. With the facts that Q;P;!' and
Q5! P, are elliptic of order 2 and that P; = Q;'P,0,, we obtain

tr Os(tr Q1 + tr 020304) = tr Q1 (tr Q102 + 0304),

and hence the first equation in (4.3). Likewise, since Q4P;' and Qg 'p, are
elliptic of order 2, where Oy = P,Q¢P;!, and since P, = Q7' P1Q;, we obtain

tr Qg(tr Q4 + tr 010:03) = tr Qu(tr 0401 + 0203),

and also the second one in (4.3).

Since P3 = 0;'P20> and P, = (030401) ' P3(030401), Q> and 03040 fix

the common fixed point of P, and P;. Hence by Lemma 2.3,

(44) tr Qz +tr Q3Q4Q1 =0.

We suppose that Q, is of the form in (4.1). Since P = Q7'P1Q;, Q) sends
the fixed point oo of P, to that of P;. Hence Q;(o0) # co (that is, the (2,1)-
entry of Q) is nonzero). Thus tr Q;Q, is of the form aé+ b with complex
constants a # 0,b. We can choose & so that tr Q10, + tr 0304 # 0 and hence
A #0. Now Lemma 1.2, together with (4.2), (4.3) and (4.4), yields (3.3), which
is

Aske = AiA3
for the present case.

4.4.2. Next we treat the case where {P;, P3} is reducible. We consider the
ordered tuple (P, P3, P, P4) instead of (Py, P2, P3,Ps). We note that
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Py=0y'P0s, Pi=05'Ps0s Py=(—P1QsP;) ' PI(~P1Q4P]")
Py=Qg'PsQs, Pr=0['P1Q1 Py = (PsQsP;")  Pa(PsQsP;")

and
PPy =—Q3, P\Py=—(—PQsP["),
PPy = =0}, PyPs=—(PsQsP;y')’,

(It may holds that P4P, = —Q2.) The reason for the choice of —P;Q4P;!
is that, as shown below, (Q», Qs, —P1Q4P;!, Q) is a (—)-system. Then, since

(Q67 Q27 Q3) is a (_)_SyStema so is (Q57 _Pl Q4P1_1;P4Q3PZI)‘ Since <Q27 QS» Ql)
is also a (—)-system, from the result of 4.4.1 we obtain

tr Q1 tr(PaQsP;") = tr Qa(—tr P1Q4PY),
which is the desired equation
Az + 224 = 0.

To show that (Qs, Qs,—P1Q4P7', Q¢) is a (—)-system, note that Q4P! is
elliptic of order 2 and that P; and Q;'Q¢0>Qs commute. Then

tr 0205(—P1Q4P; ") 06 = 27(0;' 0602 05) - 1(P) = tr 03 060> 0s.

Moreover Qs0>Q5 and Q3'QsQ;' commute Ps. As shown in the proof of
Lemma 3.1, tr 05'Q3Q4 = 2. Therefore we have

tr 03" 060205 = tr(Q60203)(05' 0505
= 21(Q20:06)2(05" 0504
=2-(=1)-(+1)=-2.
Now we conclude the proof. (Other cases can be proved in a similar way after a

cyclic permutation of indices {1,2,3,4}.)

4.5. Let three of P}, P, P3 and P4 generate a reducible group. By a cyclic
permutation of indices, we can assume that those three are P;, P, and P;. Then
A1 = Ay = 45 = 0 and so (3.3) is trivial. Now we complete the proof of Theorem
4.1.

5. An example

5.1. The four-times puntured sphere. Let F be a two-dimensional sphere
and P = {x;,x, x3, x4} a set of four distinct points of F. Let F'=F — P. The
fundamental group of F’ is isomorphic to the group G with the presentation

{er,e,03,¢4 1 c1e203¢4 = 1),



14 TOSHIHIRO NAKANISHI

We define # to be the set of all faithful representations p of G into SL(2,C)
satisfying tr p(¢;) = —2 for i = 1,2,3,4 and #(= Ry 4) to be the set of conjugacy
classes [p] of p in #. Since pe# is determined by the matrices P; = p(c;),
i=1,2,3, we shall identify p with (P, P, P3) and [p] with the (simultaneous)
conjugacy class of (P, Ps, P3).

5.2. Our first purpose of this section is to introduce a coordinate-system
for #. Let p = (Py, P2, P3) € Z. Since p is faithful, all pairs in Py, P, P; and
P4 = (P, P,P3)"" are irreducible. We choose O, ..., Q¢ € SL(2,C) so that (3.1)
holds. Since PP,P3;P4 =1, we have

03 =-PPy=—(P1P))"' =07% and Q}=-PyP=—(P2P3) ' = 0%

Thus, from Lemma 2.5, O3 = Q7! or O3 = —Q;! and Qs = 05! or Qs = - Q5.
It holds that

(5.1) tr 010,07'05' = 2.

For, if tr 010,070, = 2, then Q) and Q> generate a reducible group and hence
Q1 and Q> have a common fixed point ([1, lemma 1.2.3]). Since 010,07'05!
and P, commute, this fixed point is also fixed by Py and then by P, = Q7' P, 0.
This contradicts that {P;,P,} is an irreducible pair. Now (5.1) holds and it
implies that (Qy, 02,071, 05!) is a (—)-system. We redefine Qs, Q4 so that
0= 07! and Q4= 0Oy

Suppose that (Q1, 02, Qs) and (Q2, Q7' Q) are (—)-systems. (Otherwise
we need only to replace Qs by —Qs and/or Qs by —Qs.) From (3.6) we have

tr Q1 +tr 0207105 = (tr 01)A. Thus A=2. Then (3.7) yields

(5.2) trQs=tr0;'0;' and trQs=trQ,' Q.

Both 010,05 and 0,0,07'Q;! are commutative with P; and
r 0510110 = 21((210:05) N1(210:010;") = 2.

Likewise 0,07'0¢ and 0,07'0;'0Q; commute with P, and tr O;'05'0) = 2.
So Lemma 2.2, together with (5.2), yields

0s=0'0,' and Qs=0,'0:.

Let 2; =tr Q;, L, =tr Q> and A3 =tr Qs. Since tr P{P,P3; =tr P, = —2 and
tr 010,05 = —2, (2.6) yields the following identity.

(5.3) 24234 2F =2l =0
5.3. Let 2 be the set of all pairs (Q;,Q>) of matrices of SL(2,C) such

that (Q1,0,,07'07') is a (—)-system and such that there exist P, P> and
P;3 e SL(2,C) with tr Py =tr P, = tr Py = tr (P, P,P3) = —2 satistying

(5.4) PiPy= -0}, PPy=-03, P:Pi=-(07'0;")%
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Letn:2 — @Nbe the mapping sending (01, Q) to (P, P>, P3). If n(Q1,05) =
(P],Pz,P3) Eﬂ, then

(55) @ '(P1, Py, P3) ={(01,02),(—01,02),(01,-02), (—01,—02)}.

Let V denote the set of all triples (41,42,43) of non-zero complex numbers
satisfying (5.3) and ®: 2 — V denote the mapping defined by ®(Q;, Q) =
(tI' Qlatr Q27tr QIQZ)' -

We like to employ (41,42,43) = ®(Q1,0>) as the coordinates for [p] =
[(P1,P2,P3)] € # when n(Q1, Q) = (P1,P2,P3). However, due to (5.5) ® does
not induce a well-defined mapping from £ to V. So we introduce the
equivalence relation on V by (41,42, 43) ~ (41,45, 43) if and only if (1], 23,45) is
identical with one of the following points.

(;L17}“27)~3)7 (117_127_13)7 (_117127_13)7 (_;“17_/12713)

Then, @ induces a mapping ® from 2 to the set V of all equivalence classes.

The mapping ® : # — V' gives a global coordinate-system of %, for each
point [(41, 42, 43)] restores the conjugacy class of (Py, P2, P3) uniquely. First it is
known that 4} =tr Q; and 4; =tr @, and 43 = tr Q;Q, determine uniquely the
conjugacy class of (Qi, Q,) satisfying (5.1) (See, e.g. [1, Exercise 4.6]). Then by
using (5.4) we can find Py, P,, P; uniquely under some normalization condition.
Actually, under the condition that

-1 1
—1 _
(P1PyP3) —( 0 _1>,
and P; fixes 0, we find

,1+12,@ ilz
-1 0 ok 2
P1: _;2 -1 ) P2: 2 )
? (s =R —l— 2B
PN
, 2
Py = ? 2
A7 —1—%
A2

and in the process of finding them we obtain

Az A
L 0o L
0= ’ ,12 , Q= o |-
A /1—2 VRS

Note that P;, P>, P3 depend only on the equivalence class of (11,42, 43).
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5.4. The mapping class group. We identify the mapping class group .#%
of F’ with a subgroup of the outer automorphism group of G. Let ¢, ¢, € 4%
be the automorphisms of G which act on £ by

¢y : (P1, Py, P3) — (P1, P,P3P;', Py),
¢y ¢ (P1, P2, P3) — (P3, P1, P).

In order to describe the transformations on V" induced by ¢, for each i = 1,2, we
let (P}, P35, P}) = ¢,(P1, P>, P3) and find matrices Qj, Q) satisfying

PiPy=-0F, PiPi=-0f, PiP=—(0]'0")’

and such that (Qy, 05, leé’l) is a (—)-system. Let again Qs = Q;ngl and
Os = 0,'01. For ¢, note that

Pi(PyP3PyY) = (PyPy) ' = —(P2Qg ' Py")?,  (PaPsPy' )Py = —03
PyP; = —(P,01P; 1)
Since Q»P;! is elliptic of order 2, (5.2) yields
tr(P20g ' Py ) 02(P2 Q1 Py') = tr Qs P3' 0o P
= —tr P% = -2.

Thus (P2Qg'P5Y, 02, PO P;!) is (—)-system. So we can let Q] = P,Qg'P;!
and Q) = 0,. For ¢,, it holds that

P3Py =—-Q% PP,=-07, P,Ps=-03
Since (Qs, Q1, 0») is a (—)-system, we can let Q] = Qs and Q) = Q;. We define
0;: P — P for i=1,2 by
011 (01,Q) = (P05 Py, 00),
9> (01,02) = (Qs, OQ1)-
Then ¢,, @, induce the following transformations on V:
01.(21, 72, 73) = ©(§1(Q1, Q) = (A2 — A3, 42, ),

05, (21,72,73) = D(§,(Q1, ) = (A3, 21, /2)

Here we used Theorem 0.1 to deduce tr PyQ;'Py! = tr Qs = (4] + 23)/43, which
equals 2;4, — A3 by (5.3). (We can deduce (5.6) directly from (5.3) as well.)
Note that ¢, and ¢,, preserve equivalence classes [4;, 42, 43].

We consider the mapping class ¢ = (¢5'0,0,) 0 (p5°0,03) 0 ;. Let
(A1,A2,A3) = 9,(21,42,43). Then Ay =1,. We solve the equations

(A1 — A1, Ap — A2, Az — 43) = (0,0,0)

to find the fixed points of ¢,. Since A; = Ay, we let 4; = A,. Then we find that
the last two entries of ¢, (11, 41,43) — (41,41, 43) have the unique common factor

(5.6)
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A =303 = 20 + 2.
By solving /1;‘ — 3/112 — /112)»3 +273 =0 and (5.3) we see that ¢, fixes the points
1= (Vz,Vz,2z —4), where z = (5+V7i)/2,

(—v/z,—V/z,2z — 4) and their complex conjugates. The fixed point 7 corresponds
to (4,B,C) e # defined by

-1 0 3—z 1 542z —6+2z
A= B= C= .
(—z —1)7 (—8+32 —5—|—z>7 ( -z 3—22)
Since z?> =5z—8, the group generated by 4, B and C is a subgroup of
SL(2,Z][z]) and hence discrete. Since ¢, fixes 7, (p(A4),¢(B),p(C)) and (A4, B, C)
differ only by a simultaneous conjugation by an element of SL(2,C). Actually
@(A), o(B), ¢(C) are sent to
P=BCBCB'C'B', 9=BCBC'B!, R=C"'B'4BC,

respectively, by an inner automorphim of G. Let

T ((1) (z —13)/2).

Then we have P=TAT~', Q=TBT"' and R=TCT~'. The group I' gen-
erated by 4, B, C and T acts on the upper-half space model of the hyperbolic
3-space H® and H?/T fibers over the circle with fibre the four-times punctured

2-sphere. Let
-1 1
D= (4BC)™" = :
ey =( 1)

Then we have DAD ' =TCT~' and DT =TD. Hence C=B'4"'D!=
T'DAD™'T and B=A"'T'47'D"'T. From Q = TBT~' we see that B and
DAT are commutative. Hence I' has the following presentation:

L =<A4,D,T:DTD'T' = DATA'T'A'D'47'T7'4TA = 1.

Let L be the link in the 3-sphere S° as depicted in Figure 1. The arrows a, b
and ¢ are the Wirtinger generators. Then the link group 7;(S® — L) has the
Wirtinger presentation:

FIGURE 1
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La,b,c¢:bab™" = ¢ ac,ca cab a7 ' aba ¢ la = 1).

The mapping sending 4, T and D to ¢, a~' and ab~'¢™!, respectively, defines
a group isomorphism from T to 7;(S® — L). Therefore, by Mostow’s rigidity
theorem H?/I" is homeomorphic to S* — L. See also [, Section 9.2].

REFERENCES

[1] C. MacrLAcHLAN AND A. W. RED, The arithmetic of hyperbolic 3-manifolds, Graduate texts
in math. 219, Springer-Verlag, 2003.

[2] T. NakanisHI AND M. NAATANEN, Complexification of lambda length as parameter for
SL(2,C) representation space of punctured surface groups, J. London Math. Soc. 70 (2004),
383-404.

[3] R. C. Penner, The decorated Teichmiiller space of punctured surfaces, Commun. Math.
Phys. 113 (1987), 299-339.

Toshihiro Nakanishi

DEPARTMENT OF MATHEMATICS
SHIMANE UNIVERSITY

MATSUE, 690-8504

JAPAN

E-mail: tosihiro@riko.shimane-u.ac.jp



