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INTRODUCTION

Let X be a Banach space over the field C of all complex numbers and consider the Volterra

difference equation on X

xðn þ 1Þ ¼
Xn

j¼21

Qðn 2 jÞ xð jÞ; n [ Zþ U {0; 1; 2; . . .}; ð1Þ

where Q(n), n [ Zþ, are bounded linear operators on X such that
P1

n¼0kQðnÞk , 1:

Equation (1) is derived in a natural manner from certain abstract differential equations

with piecewise continuous delays as we show in section “Examples and Some Remarks”

(see also Refs. [6–8,11]). So the study for the asymptotic behavior of solutions of such

differential equations is reduced to that for those of the Volterra difference equation (1).

When X is of finite dimension, stability properties for Eq. (1) have been discussed in

Refs. [3,4], and characterized in connection with the invertibility of the characteristic

operator, zI 2
P1

n¼0 QðnÞz2n, assosiated with Eq. (1).

In this paper, we study the uniform asymptotic stability and the exponential stability of the

zero solution of Eq. (1), and extend specifically the results in Refs. [3,4] for the case of finite
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dimensional X to the case of infinite dimensional X. We note that in Ref. [4] Wiener’s lemma

on the Banach algebra, the ‘
1-space of sequences of matrices, played quite an important role

in order to establish the uniform asymptotic stability for Eq. (1).

In the second section, we generalize Wiener’s lemma to the Banach algebra which

consists of sequences of bounded linear operators on infinite dimensional X. Applying this

infinite-dimensional version of Wiener’s lemma, we prove the summability of the

fundamental solution of Eq. (1) under some conditions on the characteristic operator. In third

section we give necessary and sufficient conditions for the zero solution to be uniformly

asymptotically stable. In fourth section we discuss the exponential stability of the zero

solution and show that the uniform asymptotic stability need not imply the exponential

stability for the Volterra difference equation. More precisely, we prove that if the zero

solution is uniformly asymptotically stable, it is exponentially stable if and only if the

coefficients {Q(n)} decays exponentially. Finally, analyzing the spectrum of the

characteristic operator, we show applications of our results to some special differential

equations with piecewise continuous delays.

A GENERALIZATION OF WIENER’S LEMMA AND SUMMABILITY OF THE

FUNDAMENTAL SOLUTION

For a Banach space X (with norm j·j) over the field C, we denote by L(X) the space of all

bounded linear operators on X, and define the norm of any T belonging to L(X) by

kTk ¼ sup {jTxj : x [ X; jxj ¼ 1}:

Let L 1(Zþ) be the space of all sequences Q U {QðnÞ} ¼ ðQð0Þ;Qð1Þ;Qð2Þ; . . .Þ with

Qð jÞ [ LðXÞ, j [ Zþ, satisfying X1
n¼0

kQðnÞk , 1:

For any Q and W in L 1(Zþ), we define the product Q *W by

ðQ *WÞðnÞ ¼
Xn

k¼0

Qðn 2 kÞWðkÞ; n [ Zþ:

One can easily see that the space L 1(Zþ) with the product defined above is a

(non-commutative) Banach algebra equipped with norm

kQk ¼
X1
n¼0

kQðnÞk:

In fact, L 1(Zþ) possesses the element e0 V e defined by

e0ð0Þ ¼ I; e0ðnÞ ¼ 0 ðn ¼ 1; 2; . . .Þ

as the unit, where I denotes the identity operator on X.

For each j [ Zþ, let us consider an element ej defined by the relation

ejð jÞ ¼ I; ejðnÞ ¼ 0 ðn – jÞ:

Then it follows that ej*ei ¼ ejþi, ð;i; j [ ZþÞ: Moreover, any element a ¼ {an} in L 1(Zþ) is

expressed as

a ¼
X1
n¼0

anen ¼
X1
n¼0

anE n;

where E U e1 and E n U E * E * · · · *E (the product of n copies of E).
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Wiener’s lemma is generalized as follows.

Theorem 1 Assume that Q ¼ {QðnÞ} [ L1ðZþÞ satisfies the following two conditions:

(i) QðiÞQð jÞ ¼ Qð jÞQðiÞ for i; j [ Zþ;

(ii) for any jzj # 1, the operator
P1

k¼0 QðkÞzk is invertible in L(X).

Then Q is invertible in L 1(Zþ); in other words, there exists an R ¼ {RðnÞ} [ L1ðZþÞ

such that

Q*R ¼ R*Q ¼ e0:

Proof Fix any z such that jzj # 1: By the condition ðiiÞ, the operator T U
P1

k¼0 QðkÞzk

has a bounded inverse T 21 in LðXÞ. It follows that

ðT ; 0; 0; . . .Þ*ðT
21; 0; 0; . . .Þ ¼ ðT 21; 0; 0; . . .Þ*ðT; 0; 0; . . .Þ ¼ e0;

and hence (T,0,0,. . .) is invertible in L 1(Zþ).

Now, let us consider the subset V of L 1(Zþ) which consists of all the elements of the form

(0,. . . ,0,Q(·),0,0,. . .), and set

Y ¼ GðGðVÞÞ;

where G(C ) denotes the centralizer of the set C, that is

GðCÞ ¼
n

W [ L1ðZþÞ : W*P ¼ P*W for any P [ C
o
:

Since the set V commutes by the condition (i), it follows from Ref. ½10, p. 280, Theorem 11:22�

that Y ¼ GðGðVÞÞ is a commutative Banach subalgebra containing V. Let x be any character

of Y, and set z0 ¼ xðe1Þ: Then z0 [ C with jz0j # 1: By virtue of the condition (ii), the

element
P1

k¼0 QðkÞzk
0 is invertible in L(X), and hence ð

P1
k¼0 QðkÞzk

0; 0; 0; . . .Þ is invertible in

L 1(Zþ) by the fact mentioned in the first paragraph of this proof; consequently, from Ref. ½10,

p. 280, Theorem 11:22� it follows that ð
P1

k¼0 QðkÞzk
0; 0; 0; . . .Þ is invertible in Y. In particular,

we get

x
X1
k¼0

QðkÞzk
0; 0; 0; . . .

 !
– 0:

Hence

xðQÞ ¼ x Qð0Þ;Qð1Þ;Qð2Þ; . . .
� �

¼ x ððQð0Þ; 0; 0; . . .Þ*e0 þ ðQð1Þ; 0; 0; . . .Þ*e1 þ ðQð2Þ; 0; 0; . . .Þ*e1*e1 þ · · ·Þ

¼
X1
k¼0

x ððQðkÞ; 0; 0; . . .ÞÞ{xðe1Þ}
k

¼ x
X1
k¼0

QðkÞzk
0; 0; 0; . . .

 !
– 0;

which shows that Q ¼ {QðnÞ} does not belong to any maximal ideal of Y. Then Ref. ½10, p. 265,

Theorem 11:5� yields that Q is invertible in Y, and so is it in L 1(Zþ). This completes the proof

of the theorem. A
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We now consider the Volterra difference equation (1) on X with QðnÞ [ LðXÞ, n [ Zþ:

We assume the following condition on Eq. (1):

’ l $ 1 :
X1
n¼0

kQðnÞk # l , 1:

For Eq. (1) we define R(n), n [ Zþ, in L(X) by the relation

Rðn þ 1Þ ¼
Xn

j¼0

Qðn 2 jÞRð jÞ; n ¼ 0; 1; 2; . . .; ð2Þ

and Rð0Þ ¼ I: The sequence R(n), n [ Zþ, is called the fundamental solution of Eq. (1).

By the virtue of the inequality

kRðn þ 1Þk ¼ kQðnÞRð0Þ þ Qðn 2 1ÞRð1Þ þ · · · þ Qð0ÞRðnÞk # l
0#s#n
max kRðsÞk;

we get the following estimate on kR(n)k:

kRðnÞk # l n; n [ Zþ:

Therefore, the Z-transform

~RðzÞ ¼
X1
n¼0

RðnÞz2n

of R(n), n [ Zþ, exists in the domain jzj . l of the complex plane C, and it is analytic in

the domain.

We say that R(n), n [ Zþ, is summable, if R ¼ {RðnÞ} [ L1ðZþÞ, that is,P1
n¼0kRðnÞk , 1: For the summability of the fundamental solution of Eq. (1) we get:

Corollary 1 Assume that the coefficients Q ¼ {QðnÞ} [ L1ðZþÞ in Eq. ð1Þ satisfies the

condition ðiÞ in Theorem 1, together with the following condition:

(ii0) for any jzj $ 1, the characteristic operator of Eq. ð1Þ z I 2
P1

n¼0 QðnÞz2n is invertible

in L(X).

Then the fundamental solution {RðnÞ} of Eq. ð1Þ is summable.

Proof By considering the Z-transform of both hand sides of Eq. ð2Þ, we get

z ~RðzÞ2 zI ¼ ~QðzÞ ~RðzÞ; jzj . l;

or

I 2
1

z
~QðzÞ

	 

~RðzÞ ¼ I; jzj . l:

Hence it follows from the condition ðii0Þ that

I 2
1

z
~QðzÞ

	 
21

¼ ~RðzÞ; jzj . l:

Now we define S ¼ {SðnÞ} by the relation

Sð0Þ ¼ I; SðnÞ ¼ 2Qðn 2 1Þ n ¼ 1; 2; . . .:
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Observe that ~SðzÞ ¼
�
I 2 1

z
~QðzÞ

�
for jzj $ 1, and consequently, the conditions ðiÞ and ðiiÞ in

Theorem 1 are satisfied for S ¼ {SðnÞ}: Thus there exists an H ¼ {HðnÞ} [ L1ðZþÞ such that

H*S ¼ S*H ¼ e0, and hence

~HðzÞ~SðzÞ ¼ ~SðzÞ ~HðzÞ ¼ I; jzj $ 1:

Consequently, we get

~RðzÞ ¼ ~HðzÞ; jzj . l;

which implies that RðnÞ ; HðnÞ by the uniqueness of the Laurent expansion.

Hence R ¼ {RðnÞ} belongs to L 1(Zþ), or it is summable. This completes the proof of

the corollary. A

UNIFORM ASYMPTOTIC STABILITY

Let Z2 be the set of all nonpositive integers and consider the Banach space B defined by

B ¼ f : Z2 7! X

����
u[Z2
sup
��f ðuÞ

�� , 1

( )
equipped with the norm

kfk ¼
u[Z2
sup jf ðuÞj; f [ B:

Since

X21

j¼21

kQðn 2 jÞf ð jÞk #
X1

j¼nþ1

kQð jÞk

 !
kfk # kQk kfk for f [ B;

we see that

pðnÞ U
X21

j¼21

Qðn 2 jÞf ð jÞ; n [ Zþ

is well-defined for f [ B and that for any t [ Zþ, Eq. (1) has a unique solution x(n) for

n $ t satisfying the initial condition xðtþ uÞ ; f ðuÞ, u [ Z2: We denote this solution by

x(n;t,f). Since

xðn þ tþ 1; t;fÞ ¼
Xnþt

j¼21

Qðn þ t2 jÞ xð j; t;fÞ

¼
Xn

j¼0

Qðn 2 jÞ xð j þ t;fÞ þ
Xt21

j¼21

Qðn þ t2 jÞf ð j 2 tÞ;

yðnÞ U xðn þ t; t;fÞ satisfies the equation

yðn þ 1Þ ¼
Xn

j¼0

Qðn 2 jÞyð jÞ þ pðnÞ; n [ Zþ:

Then the variation-of-constants formula gives

yðnÞ ¼ RðnÞyð0Þ þ
Xn21

j¼0

Rðn 2 j 2 1Þ pð jÞ; n [ Zþ:
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Thus we get

xðn; t;fÞ ¼ Rðn 2 tÞf ð0Þ þ
Xn21

j¼t

Rðn 2 j 2 1Þ
X21

s¼21

Qð j 2 t2 sÞf ðsÞ

 !
ð3Þ

for n $ t, where we promise that
Pt21

j¼t ¼ 0 for t $ 0:

For stabilities of the zero solution we follow the standard definitions below:

Definition 1 (i) The zero solution of Eq. ð1Þ is said to be uniformly asymptotically stable if

the following two properties are satisfied:

(Uniform stability) For any 1 . 0 there exists a d ¼ dð1Þ . 0 such that if t $ 0 and

f [ B satisfies kfk , d, then jxðn; t;fÞj , 1 for n $ t:

(Uniform attractivity) There exists a k . 0 such that for any 1 . 0 there exists an

N ¼ Nð1Þ [ Zþ such that if t $ 0 and f [ B satisfies kfk , k, then jxðn; t;fÞj , 1

for n $ tþ N:

(ii) The zero solution of Eq. ð1Þ is said to be (globally) exponentially stable if there exist

constants M . 0 and n [ ð0; 1Þ such that

jxðn; t;fÞj # Mnn2tkfk for n $ t and f [ B:

We are now in a position to state our results for the uniform asymptotic stability of Eq. (1).

Theorem 2 Assume that the coefficients Q ¼ {QðnÞ} [ L1ðZþÞ in Eq. ð1Þ satisfy the

condition ðiÞ in Theorem 1 and that Q(n), n [ Zþ, are all compact. Then, for Eq. ð1Þ

the following statements are equivalent.

(i) ðzI 2 ~QðzÞÞ21 [ LðXÞ for jzj $ 1.

(ii) {RðnÞ} [ L1ðZþÞ:

(iii) The zero solution of Eq. ð1Þ is uniformly asymptotically stable.

Proof ðiÞ ) ðiiÞ. This is an immediate consequence of Corollary 1.

ðiiÞ ) ðiiiÞ. Assume that {RðnÞ} [ L1ðZþÞ: It follows from Eq. ð3Þ that

jxðn þ t ; t;fÞj ¼ RðnÞf ð0Þ þ
Xnþt21

j¼t

Rðn þ t2 j 2 1Þ
X21

s¼21

Qð j 2 t2 sÞf ðsÞ

 !�����
�����

# kfk kRðnÞk þ
Xn21

j¼0

kRðn 2 j 2 1Þk
X21

s¼21

kQð j 2 sÞk

" #

for any n $ 0, t $ 0 and f [ B: The term kRðnÞk þ
Pn21

j¼0 kRðn 2 j 2 1Þk
P21

s¼21

kQð j 2 sÞk is dominated by kRkð1 þ kQkÞ: Moreover, the term
Pn21

j¼0 kRðn 2 j 2 1Þk
P21

s¼21

kQð j 2 sÞk tends to 0 as n !1, because it is the convolution of an ‘
1-function with one which

tends to 0 as n !1: These observations lead to the uniform asymptotic stability of the zero

solution of Eq. ð1Þ.

ðiiiÞ ) ðiÞ. Assume that the zero solution of Eq. ð1Þ is uniformly asymptotically stable, and

that (i) is not true. Then there exists some z0 with jz0j $ 1 such that ðz0I 2 ~Qðz0ÞÞ
21 � LðXÞ:

We note that ~Qðz0Þ ¼
P1

j¼0 Qð jÞz
2j
0 is a compact operator, because it is the limit of

a sequence of compact operators {
Pn

j¼0 Qð jÞz
2j
0 } in the operator norm as n !1:
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It follows from the Riesz-Schauder theorem on compact operators that z0 is an eigenvalue

of ~Qðz0Þ: Hence there exists a nonzero element x0 [ X with jx0j ¼ 1 such that

ðz0I 2 ~Qðz0ÞÞx0 ¼ 0, or equivalently

z0x0 ¼
X1
n¼0

QðnÞx0z2n
0 : ð4Þ

Put xðnÞ U ðk=2Þzn
0x0, where k is the constant in the uniform attractivity of the zero solution

of Eq. ð1Þ. Using Eq. ð4Þ we get

xðn þ 1Þ ¼ ðk=2Þznþ1
0 x0 ¼ ðk=2Þzn

0

X1
j¼0

Qð jÞ x0z
2j
0 ¼

X1
j¼0

Qð jÞ xðn 2 jÞ;

and hence xðnÞ is a solution of Eq. ð1Þ. Notice that jxðnÞj # k=2 , k for n [ Z2: Since the

zero solution of Eq. (1) is uniformly asymptotically stable, we get that jxðNÞj , k=2, where

N U Nðk=2Þ: This is a contradiction, because jxðnÞj $ k=2 for n [ Zþ: The proof is now

complete. A

Remark 1 The implication (i) ) (ii) in Theorem 2 holds true under a weaker assumption.

Indeed, following the proof of the part in Theorem 2 one can see that the implication holds

true without the compactness condition on Q(n), n [ Zþ: Also, the implication (iii) ) (i)

holds true without the condition (i) in Theorem 1.

EXPONENTIAL STABILITY

In this section we discuss the exponential stability of the zero solution of Eq. (1) to get an

extension of Ref. [4, Theorems 4 and 5] to the case of infinite dimensional X.

An element {RðnÞ} [ L1ðZþÞ is said to decay exponentially, if there exist positive

constants M and n with 0 , n , 1 such that kRðnÞk # Mnn for n [ Zþ:

Theorem 3 Let Q(n), n [ Zþ, be compact operators, and assume that kR(n)k tends to zero

as n !1: Then R(n) decays exponentially if and only if so does Q(n).

Proof Suppose that kRðnÞk # Mnn holds for n [ Zþ with some constants M . 0 and

n [ ð0; 1Þ: Then ~RðzÞ ¼
P1

n¼0 RðnÞz2n is absolutely convergent for jzj . n: Let us consider

the Z-transform of Eq. ð2Þ to obtain

ðzI 2 ~QðzÞÞ ~RðzÞ ¼ zI for jzj $ 1:

It follows that zI 2 ~QðzÞ is surjective. Recall that Q̃(z) is compact. Then the Riesz–Schauder

theory implies that zI 2 ~QðzÞ is also injective. Therefore, R̃(z) is invertible in L(X) for

jzj $ 1, and consequently, ~RðzÞ has its inverse in L(X) for each z in some open neighborhood

of the set jzj ¼ 1: Hence there is a positive constant d with d , 1 2 n such that ~RðzÞ is

invertible in L(X) for any z with jzj $ 1 2 d: Since ~RðzÞ is analytic on the

domain jzj . 1 2 d, so is ~RðzÞ21: Let us consider an analytic function F(z) defined by

FðzÞ ¼ zI 2 z ~RðzÞ21 on the domain jzj . 1 2 d, and denote the Laurent expansion of F(z) by

FðzÞ ¼
n[Z

X
bðnÞzn; jzj . 1 2 d;
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where

bðnÞ ¼
1

2pi

ð
jzj¼L

FðzÞ

znþ1
dz; L . 1 2 d:

Since FðzÞ ¼ ~QðzÞ for jzj $ 1, it follows that

jzj$1

sup kFðzÞk ¼
jzj$1

sup
X1
n¼0

QðnÞz2n

�����
����� #X1

n¼0

kQðnÞk ¼ kQk:

Therefore, we have

kbðnÞk ¼
1

2pi

ð
jzj¼L

FðzÞ

znþ1
dz

���� ���� #
1

2p

1

Lnþ1
jzj¼L

sup kFðzÞk

 !
£ 2pL #

kQk

Ln

for L $ 1: Letting L !1, we get that bðnÞ ¼ 0 ðn ¼ 1; 2; . . .Þ, and hence

FðzÞ ¼
X1
n¼0

bð2nÞz2n; jzj . 1 2 d:

In particular, the series
P1

n¼0 bð2nÞð1 2 d=2Þ2n is convergent. Hence we have

kbð2nÞk # M1 1 2
d

2

	 
n

; n [ Zþ ð5Þ

for some constant M1 . 0: SinceX1
n¼0

QðnÞz2n ¼ ~QðzÞ ¼ FðzÞ ¼
X1
n¼0

bð2nÞz2n for jzj $ 1;

the uniqueness of the Laurent expansion yields that QðnÞ ¼ bð2nÞ, n [ Zþ: This, together

with Eq. (5), implies

kQðnÞk # M1 1 2
d

2

	 
n

; n [ Zþ;

which shows that Q(n) decays exponentially.

Conversely, suppose that kQðnÞk # M2n
n
1 for n [ Zþ with some constants M2 . 0 and

n1 [ ð0; 1Þ: It follows from Eq. ð3Þ that

xðn þ t ; t;fÞ ¼ RðnÞf ð0Þ þ
Xn21

j¼0

Rðn 2 j 2 1Þ
X21

s¼21

Qð j 2 sÞf ðsÞ;

and hence

jxðn þ t ; t;fÞ2 RðnÞf ð0Þj # M2kfk
Xn21

j¼0

kRðn 2 j 2 1Þk
X21

s¼21

n
j2s

1

¼
M2kfk

1 2 n1

Xn21

j¼0

kRðn 2 j 2 1Þkn
jþ1

1

for n $ 0, t $ 0 and f [ B: Since kRðnÞk! 0 as n !1, we see by the above

inequality that the zero solution of Eq. ð1Þ is uniformly asymptotically stable. Hence it follows
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from Theorem 2 and Remark 1 that ðzI 2 ~QðzÞÞ21 [ LðXÞ for jzj $ 1: By the same reasoning

as in the proof of the former part, we can conclude that ðzI 2 ~QðzÞÞ21 [ LðXÞ for jzj .

1 2 d1 with some constant d1 [ ð0; 1 2 n1Þ and is analytic there. Now consider a function

GðzÞ U zðzI 2 ~QðzÞÞ21 on the domain jzj . 1 2 d1, and let GðzÞ ¼
P

n[ZcðnÞzn,

jzj . 1 2 d1, be its Laurent expansion. As seen in the paragraph preceding Corollary 1, it

follows that supn[Zþ kRðnÞkl2n ¼ 1: In particular, ~RðzÞ ¼
P1

n¼0RðnÞz2n absolutely

converges on the domain jzj . l, and it satisfies the relation

ðzI 2 ~QðzÞÞ ~RðzÞ ¼ zI; jzj . l:

Hence we get that ~RðzÞ ¼ GðzÞ for jzj . l, and

jzj$2l

sup kGðzÞk #
jzj$2l

sup
X1
n¼0

kRðnÞz2nk

#
X1
n¼0

kRðnÞkð2lÞ2n

#
X1
n¼0

22n ¼ 2:

The same argument as for F(z) gives cðnÞ ¼ 0 for n ¼ 1; 2; . . ., and

kcð2nÞk # M3ð1 2 d1=2Þn, n [ Zþ for some M3 . 0: SinceX1
n¼0

RðnÞz2n ¼ ~RðzÞ ¼ GðzÞ ¼
X1
n¼0

cð2nÞz2n for jzj . l;

it follows from the uniqueness of the Laurent expansion that RðnÞ ¼ cð2nÞ for n [ Zþ:

In particular, we obtain kRðnÞk # M3ð1 2 d1=2Þn, n [ Zþ, which proves that R(n) decays

exponentially. A

Theorem 4 Let Q(n), n [ Zþ, be compact operators, and assume that the zero solution of

Eq. ð1Þ is uniformly asymptotically stable. Then the zero solution of Eq. ð1Þ is exponentially

stable if and only if QðnÞ decays exponentially.

Proof The “only if” part follows directly from Theorems 2 and 3. We will prove the “if”

part. Suppose that kQðnÞk # M1n
n
1 for n [ Zþ with constants M1 and n1 [ ð0; 1Þ: As an easy

consequence of the uniform asymptotic stability of the zero solution of Eq. ð1Þ, one can see

that limn!1 kRðnÞk ¼ 0, and hence it follows from Theorem 3 that R(n) decays

exponentially, that is, there are constants M2 . 0 and n2 [ ðn1; 1Þ such that kRðnÞk #

M2n
n
2 for n [ Zþ: Then, by Eq. ð3Þ we have

jxðn; t;fÞj # M2kfk nn2t
2 þ

Xn21

j¼t

n
n2j21
2

X21

s¼21

M1n
j2t2s
1

 !

# M2kfk 1 þ
M1n1

ð1 2 n1Þðn2 2 n1Þ

	 

nn2t

2 :

Thus, the zero solution of Eq. ð1Þ is exponentially stable. A
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EXAMPLES AND SOME REMARKS

In this section, following the idea in Ref. [11], we explain how Volterra difference equations

on a Banach space are canonically derived from some abstract differential equations with

piecewise continuous delays, also refer to Ref. [5]. Moreover, we analyze the spectrum of the

characteristic operator for the induced Volterra difference equations to obtain a condition

under which some results established in the previous section are applicable.

In what follows, we employ the notation [·] to denote the Gaussian symbol, and consider

the differential equation

_uðtÞ ¼ AuðtÞ þ
X1
k¼0

BðkÞuð½t 2 k �Þ; t $ 0 ð6Þ

on a Banach space X, which contains piecewise continuous delays t 2 ½t 2 k �,

k ¼ 0; 1; 2; . . .: Here and hereafter, we assume that A is the inifinitesimal generator of a

strongly continuous semigroup T(t), t $ 0, of bounded linear operators on X, and B(k),

k ¼ 0; 1; 2; . . ., are bounded linear operators on X such thatX1
k¼0

kBðkÞk , 1: ð7Þ

A function u : ðZ2 < ½0;1ÞÞ 7! X such that u0 [ B (that is, supu[Z2 juðuÞj , 1Þ is called a

(mild)solution of Eq. (6) on [0,1), if u is continuous on [0,1), and it satisfies the following

relation

uðtÞ ¼ Tðt 2 sÞuðsÞ þ

ðt

s

Tðt 2 sÞ
X1

k¼0
BðkÞuð½s 2 k �

� �
ds; t $ s $ 0:

In case of n # t , n þ 1 for some nonnegative integer n, the above relation yields that

uðtÞ ¼ Tðt 2 nÞuðnÞ þ

ðt

n

Tðt 2 sÞ
X1
k¼0

BðkÞuð½s 2 k �Þ

 !
ds

¼ Tðt 2 nÞuðnÞ þ
X1
k¼0

ðt

n

Tðt 2 sÞBðkÞuðn 2 kÞ ds

	 

:

Letting t ! n þ 1 in this equation, we get Volterra difference equation

uðn þ 1Þ ¼
X1
k¼0

QðkÞuðn 2 kÞ; n [ Zþ; ð8Þ

where Q(k), k [ Zþ, are bounded linear operators on X defined by

Qð0Þx ¼ Tð1Þx þ

ð1

0

TðtÞBð0Þx dt; QðkÞx ¼

ð1

0

TðtÞBðkÞx dt; k ¼ 1; 2; . . . ð9Þ

for x [ X:

Conversely, if u satisfies Eq. (8) with supu[Z2 juðuÞj , 1, then the function u extended to

non-integers t by the relation

uðtÞ ¼ Tðt 2 nÞuðnÞ þ
X1
k¼0

ðt

n

Tðt 2 sÞBðkÞuðn 2 kÞ ds

	 

; n , t , n þ 1; n [ Zþ;
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is a (mild) solution of Eq. (6). Thus, some abstract differential equations such as Eq. (6) lead

to Volterra difference equations on X. Sometimes, we call Eq. (8) the induced Volterra

difference equation of Eq. (6).

A strongly continuous semigroup T(t) on X is said to be compact whenever T(t) is a

compact operator on X for t . 0: It is known [9] that if the semigroup T(t) is compact, then

T(t) is continuous in t . 0 with respect to the operator norm.

It is known ([5, Proposition 1]) that Q(k), k [ Zþ, defined by the relation (9) are compact

operators on X whenever T(t) is a compact semigroup on X. Moreover, it follows from Eq. (7)

that Q [ L1ðZþÞ:

Under the restricted case where B(k), k [ Zþ are scalar, that is, BðkÞ ; bðkÞI, k [ Zþ, for

some bðkÞ [ C, we can determine the spectrum of the characteristic operator zI 2 ~QðzÞ U

zI 2
P1

k¼0 QðkÞz2k of Eq. (8).

Proposition 1 Let T(t) be a compact semigroup on X, and assume that BðkÞ ; bðkÞI,

k [ Zþ, where b(k) is a scalar function satisfying
P1

k¼0jbðkÞj , 1: Then the spectrum of

the characteristic operator zI 2 ~QðzÞ with jzj $ 1 of Eq. ð8Þ is given by

s ðzI 2 ~QðzÞÞ ¼ {z} < z 2 en 2 ~bðzÞ

ð1

0

ent dt j n [ s ðAÞ

� �	 

: ð10Þ

Proof We will give an outline of the proof of the proposition; see Ref. ½5, Theorem 3� for

the complete proof.

By using the continuity of T(t) in t . 0 with respect to the operator norm, one can see that

n!1
lim

1

n

Xn

k¼1

{Tð1=nÞ}k 2

ð1

0

TðtÞ dt

�����
����� ¼ 0: ð11Þ

Now, set S ¼ {TðtÞ : 0 # t # 1}: Since S commutes, A U GðGðSÞÞ is a commutative

Banach algebra containing S, see Ref. ½10, p. 280, Theorem 11:22�. Here, for any subset V of

LðXÞ, GðVÞ denotes the centralizer of V that is,

GðVÞ ¼ {v [ LðXÞ : vw ¼ wv for every w [ V}:

Let D be the maximal ideal space of A. Let us denote by â the Gelfand transform of a [ A:

It is known [10, pp. 268–270] that â is a function from D (which is equipped with the Gelfand

topology) into C with the properties that the range of â coincides with the spectrum s (a) of a

and that

kâk1 # kak; a [ A;

where kâk1 is the maximum of jâðjÞj on D. Moreover, the Gelfand transform is a

homomorphism mapping A into a subspace of C(D;C), the space of all the complex valued

continuous functions on D. Let jzj $ 1, and put

a ¼ zI 2 ~QðzÞ ¼ zI 2 Tð1Þ2

ð1

0

TðtÞ dt

	 

b̂ðzÞ

and

an ¼ zI 2 W n 2
1

n

Xn

k¼1

W k

 !
b̂ðzÞ
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for each n ¼ 1; 2; . . ., where W U Tð1=nÞ: Then {a; a1; a2; . . .} , A, and by Eq. ð11Þ we get

kðanbÞ2 âk1 # kan 2 ak ¼
1

n

Xn

k¼1

{Tð1=nÞ}k 2

ð1

0

TðtÞ dt

�����
�����jb̂ðzÞj! 0

as n !1: Thus

n!1
lim ðanbÞ ðjÞ ¼ âðjÞ; j [ D: ð12Þ

Observe that

ðanbÞðjÞ ¼ z 2 ðŴðjÞÞn 2
1

n

Xn

k¼1

ðŴðjÞÞk ~bðzÞ:

Since the operator Tð1=nÞ is compact, the Riesz-Schauder theorem implies that s ðTð1=nÞÞ ¼

Ps ðTð1=nÞÞ< {0}: Also, it follows from Ref. ½9, Theorems 2:2:3–2:2:4� that

exp ð1=nÞs ðAÞ
� �

, s ðTð1=nÞÞ; Ps ðTð1=nÞÞ< {0} ¼ exp ð1=nÞPs ðAÞ
� �

< {0}:

Therefore we get s ðWÞ ¼ s ðTð1=nÞÞ ¼ expðð1=nÞPs ðAÞÞ< {0}: By virtue of these

observations, we see that the range of ðânÞ is identical with the set

{z} < {z 2 en 2
1

n

Xn

k¼1

e ðk=nÞn ~bðzÞjn [ s ðAÞ}

 !
:

Note that limn!1(1/n)
Pn

k¼1e ðk=nÞn ¼
Ð 1

0
ent dt: Therefore, combining this fact with Eq. ð12Þ

we conclude that the set in the right hand side of Eq. (10) is identical with the range of â

which is equal to s ðaÞ ¼ s ðzI 2 ~QðzÞÞ: This completes the proof. A

Observe that in the restricted case that BðkÞ ; bðkÞI, the coefficients Q ¼ {QðnÞ} in Eq. (8)

satisfy the condition (i) in Theorem 1. Therefore, the following corollaries immediately

follow from Theorems 2–4 and Proposition 1.

Corollary 2 Let T(t) be a compact semigroup on X, and assume that BðkÞ ; bðkÞI,

k [ Zþ, where b(k) is a scalar function satisfying
P1

k¼0jbðkÞj , 1: Then the following two

statements are equivalent:

(i) The zero solution of Eq. ð8Þ is uniformly asymptotically stable;

(ii) z – en þ ~bðzÞ
Ð 1

0
ent dt; ð; jzj $ 1; n [ s ðAÞÞ:

Corollary 3 Let all the conditions in Corollary 2 hold true, and assume that

z – en þ ~bðzÞ

ð1

0

ent dt; ð; jzj $ 1; n [ s ðAÞÞ:

Then the zero solution of Eq. ð8Þ is exponentially stable if and only if bðnÞ decays

exponentially.

In the case where the dimension of X is finite, Theorem 2 and Corollary 1 remain valid

without the condition (i) in Theorem 1, that is, the commutative condition on Q(n) (cf. Ref. [4,

Theorem 2]). On the one hand, in the case where the dimension of X is infinite, the result

corresponding to those results can be established by imposing the condition that Q(n) decays
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exponentially, instead of the commutative condition; see Ref. [5, Theorem 2]. In the case

where the dimension of X is infinite, it is natural to ask if Theorem 2 and Corollary 1 in this

paper remain valid without the commutative condition. Although the authors have not

succeeded in answering the question generally, we can partly answer the question. Before

concluding this paper, we will refer to this question in the following.

Let A be a commutative Banach algebra (containing the identity operator) in L(Y), where

Y is a Banach space, and let us consider all of matrices whose components belong to A.

In what follows, we treat the space M(A) of all 2 £ 2 matrices, for simplicity. Each

T ¼
a b

c d

 !
in M(A) may be considered as a bounded linear operator on the Banach space X U Y%Y:

We define the determinant det T of T by

det T ¼ ad 2 bc:

Of course, we get det T [ LðYÞ: It is easy to see that if det T is invertible in L(Y), then T is

invertible in L(X), and the inverse T 21 is given by

T 21 ¼
dðdet TÞ21 2bðdet TÞ21

2cðdet TÞ21 aðdet TÞ21

 !
:

Now, we consider Eq. (1) whose coefficients Q(n) belong to M(A). Notice that the

condition (i) in Theorem 1 is not always satisfied. Let R ¼ {RðnÞ} be the fundamental

solution of Eq. (1). It is easy to see that R(n) belongs to M(A). Assume that R is summable.

Then, for any jzj $ 1 we get ðzI 2 ~QðzÞ ~RðzÞ ¼ zI, which yields that

det ðzI 2 ~QðzÞÞ·det ~RðzÞ ¼ z2I:

Thus, if R is summable, then the following condition is satisfied;

(ii*) for any jzj $ 1, det ðzI 2 ~QðzÞÞ is invertible in L(Y).

Conversely, assume that the condition (ii*) is satisfied. Define S ¼ {SðnÞ} by the relation

Sð0Þ ¼ I; SðnÞ ¼ 2Qðn 2 1Þ n ¼ 1; 2; . . .;

as in the proof of Corollary 1. We claim that det ð
P1

k¼0SðkÞwkÞ is invertible in L(Y) for each

jwj # 1: This claim follows from the condition (ii*), because of z~SðzÞ ¼ zI 2 ~QðzÞ for

jzj $ 1: Observe that f ðwÞ U det ð
P1

k¼0SðkÞwkÞ satisfies f ð0Þ ¼ I and

f ðwÞ ¼ ~að1=wÞ~dð1=wÞ2 ~bð1=wÞ~dð1=wÞ ¼ ða* gd 2 bd 2 b*cÞð1=wÞ

for 0 , jwj # 1, where

SðnÞ ¼
aðnÞ bðnÞ

cðnÞ dðnÞ

 !
;

and a ¼ {aðnÞ}, b ¼ {bðnÞ}, c ¼ {cðnÞ} and d ¼ {dðnÞ}: Combining the claim and

Theorem 1, we see that a*d 2 b*c [ L1ðZþÞ is invertible in L 1(Zþ); that is, there exists an

r [ L1ðZþÞ such that

~rðzÞ ¼ ½ða* gd 2 bd 2 b *cÞðzÞ�21 ¼ ½det ~SðzÞ�21
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for jzj $ 1: Therefore it follows that

I 2
1

z
~QðzÞ

	 
21

¼ ð~SðzÞÞ21 ¼

~dðzÞ ~rðzÞ 2~bðzÞ ~rðzÞ

2~cðzÞ ~rðzÞ ~aðzÞ ~rðzÞ

 !

for jzj $ 1, which yields that

RðnÞ ¼
ðd*rÞðnÞ 2ðb*rÞðnÞ

2ðc*rÞðnÞ ða*rÞðnÞ

 !

for n [ Zþ: Consequently, R ¼ {RðnÞ} is summable.

Summarizing the above facts, we see that Corollary 1 remains valid (under the restricted

situation) without the commutative condition if we replace the condition (ii0) by the condition

(ii*). Similarly, we can remove the commutative condition in Theorem 2 if the condition (i)

in Theorem 2 is replaced by the condition (ii*). We omit the details.
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