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On the Evaluation of the Internal Friction 

of Anisotropic, Viscoelastic Bars 

in Warping Torsion Theory. 

Tetsuya NAKAO* 
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The warping torsion theory considering not only shear force but bending moment 

in torsion was expanded to be able to describe the vibration of anisotropic, vis-

coelastic body. The viscoelastic, warping torsion theory is useful to predict the 

internal friction values of torsionally vibrating beams at higher modes. However, 

the analytically estimated values are inconsistent at the bar ends and nodal points 

of the bars. 

1 . Introduction 

It is well-known that the torsion of a bar is described by St. Venant theory in case 

that the cross section of the bar is small compared with the length. In our previous 
1
)
 

reports, the torsional vibration of wooden bars was analyzed under a both ends free 

condition. According to the results, warping torsion theory consideringnot only 

shear force in the St. Venant theory but bending moment in torsion must be applied 

to the analysis of the vibration of the bars at higher- modes 

In this paper, the warping torsion theory was expanded to be able to describe the 

vibration of anisotropic, viscoelastic body such as wood by the manner developed in 
2-4) 

recent years. 

2 . Vibration analysis of a bar by viscoelastic warping torsion theory 

When we consider the two different coefficients of viscous damping nE and nG 
2
)
 

associated with Young's modulus E and shear modulus G55, the following vibration 
1
)
 

equation can be derived from the warping torsion theory : 

Elw664ze ~G55K62e + ~Elw6-6zie6 t _VGK 68e 62e -O 
+pJ (1) 

Oz 6 t 6t 
where O, twrst angle ; z, Iongitudinal distance from the center of a bar ; t, time ; Iw, 

warping torsion constant ; K, St. Venant's torsion factor ; p, density ; J, moment of 

inertia. For the recutangular cross section of 2b x 2h, 

J= 4/3 ･ bh (b2 + h2) 
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K=16/3 bh3{1-192/~5.h/b VG55/G44' ~1/n5tanh(n7rb/2h VG44/G55) } 
n=1,3.5 

and the warping torsion constant lw is expressed as follows 

lw= (4bh-) 3lm 

where m is the emprrical constant. 

Now we use the following solution : 

e =X(z) ' Y(t) 

where X(z) is the normal function for a vibrating elastic bar and is expressed for 

antisymmetric modes as follows 

X (z) = Acosh//1z+ Ccosl/2z 

//12, //22= ~/s4+T4 d:~2 

2~2 = GK/ (EITV) , T4= pJ/ (Elw) ' co*2, (2) 
and (()~ is resonant angular frequency (=27rf~, f~ being the resonant frequency) . 

Substituting eq. (2) into eq. (1), we obtam 

co~2 Y + Elw ~E nGK~ pJ {A/~ 2 (l/ 
1 12 E ~ Elw) cosh IAIZ 

VE naK~ 1 1 dY d2Y + C/t22(/L22 E ~ Elw) cos /L2zr'X(z)' dt + dt2 = O 

d Y d2 Y 

or co~2 Y+2e + dt = O ' (3) dt 2 
By the definition of viscoelasticity, the internal frictions associated with E and G can 

be expressed as follows 

tan ~E=co~nE/E, tan ~G=o~nG/G 
5
)
 Analogous to the linear vibration systein with one degree of freedom, the equation 

to evaluate the internal friction of the bar is derived from eq. (3) : 

tan ~= 2e/(v~, 

= {(Al/14 cosh /liz+ C/x24 cos /L2z) tan o*E 

- 2p2 (A/L12 cosh /~1z- Cl/2g cos ~2z) tan ~G}/ (T4X (z)) (4) 
Also for symmetric modes, by using the following equation 

X (z) = A sinh //1z+ C sin IA2z 

the equation corresponding to eq. (4) is derived, that is, 

tan ~= 2ela)~ 

= {(A/L14 sinh ICLlz+ Cl/24 sin //2z) tan ~E 

- 2~2 (A/L12 sinh /hlz- C/L22 sin //2z) tan o~G}/ (T4X (z)) (5) 
The free-free edge condition is 

Elwd3eldz3 - G55Kde/dz = O 

and d2e/dz2=0 at z= :!:e/2. (6) The following frequency equation can be obtained from the condition 

antisymmetric mode (odd number mode) 
- //2//~1 ' tanh (/CLl~/2) = (/L22 + 2~2) / (l/12 ~ 2p2) . tan (/A2g/2) 

symmetric mode (even number mode) 

~2//L1 ' tanh (//lb/2) = (lA22 - 2p2) / (l/12 + 2~2) . tan (//2e/2) (7) 



Furthermore, the following relations between coefficients A and C in eqs. (4) and (5) 

can be obtained : 

antisymmetnc mode : 
A/C= {/h22 cos (//2b/2)}/{/L12 cosh (/L1e/2)} 

symmetric mode : 

A/C = {l/22 sin (/L2g/2)}/{/L12 sinh (/L1b/2)} (8) 
We can obtain the values of co, //, ~, and T in eqs. (4) and (5) by solving the super 

equation (7) numerically. The values of internal friction of the bar are estimated 

from the values and the relations in eqs.(8) 

3 . Evaluation of internal friction of a bar by viscoelastic, warping torsion theory 

The internal friction in eqs. (4) and (5) was calculated by using the referred values 
l
)
 of mechanical properties of wood specimens. The values are 

~=29.0cm, 2b=3.92cm, 2h=0.92cm, 

p=0.43, E=12.4 GPa, G55=0.823 GPa, 

G55/G44=1.152, m=440, 

tan ~E=0.008, and tan ~G=0.0145, 

and the resonant frequencies f~ from eqs. (7) and the above conditions were as 
follows : 

Ist mode : 1008.6 Hz, 

2nd mode : 2069.5 Hz, 

3rd mode : 3230.5 Hz, 

4th mode : 4531.2 Hz 

5th mode : 6031.1 Hz, 

and 

6th mode : 7700.2 Hz. 

The values of internal friction are shown in~ Fig. I for each mode and location on 

the bar. The values agree with the values of internal friction of Young's modulus E 

at the bar ends and the agreement is due to the end conditions in eqs. (6). The 

singular points appear at the nodal points of vibration modes besides the nodal point 

at the center of the bar. 

In the cases of elementary St. Venant theory, EITV=0 and tan ~E=0, and isotropic 

viscoelastic theory, tan ~E=tan ~G, we easily find that eqs. (4) and (5) become 

tan ~= tan ~G. 

Therefore, the results in Fig.1 are entirely peculiar to the anisotropic, viscoelastic 

body. 

On the otherhand, the value of internal friction can approximately be calculated 

by the energy method. Namely, in eq. (7), the viscous frequency f~/ is calculated by 

replacing the elastic constants E and G to viscoelastic constants, E x tan ~E and G x 

tan ~G, respectively, and then, the internal friction can be evaluated with the two 

different frequencies f~ and f~/ as follows 
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Fig. 1. Internal friction of an anisotropic, viscoelastic bar 

at each mode and location. 

Note :Arrows show nodal points. 

Resonant frequencies and internal friction' for an anisotropic, viscoelastic bar. 

Mode 
Resonant frequency (Hz) 

Elementary Present 

Internal 

Present 

friction ( x l0-3) 

Approximate 

Ist 

2nd 

3rd 

4th 

5th 

6th 

1, OOO 

2, OOO 

2, 999 

3, 999 

4, 999 

5, 999 

1, 009 

2, 070 

3, 231 

4, 531 

6, 013 

7, 700 

14. 36 

13. 98 

13. 45 

12. 86 

12. 27 

11. 72 

14. 40 

14. lO 

13. 67 

13. 17 

12. 62 

12. lO 

Table I shows the values of the internal friction by eq. (9) and the internal friction 

around the center of the bar in Fig. 1. The values of the resonant frequencies 

mentioned above and the frequencies by elementary St. Venant theory ignoring the 

bending moment are also listed in Fig. 1. The two types of internal friction values 

almost agree with each other, although the analytical values are somewhat smaller 

than the approximate values and this tendency is same as that for viscoelastic 
2,4,6) 

Timoshenko theory. Furthermore, at higher modes, the values approach to the value 

of tan ~E from tan ~G. This corresponds to the increase of the difference between the 

two types of resonant frequency values due to the occurance of bending moment 
ef f ect . 

Viscoelastic, warping torsion theory is useful to predict the internal friction values 

of torsionally vibrating bars at higher modes. However, the analytically estimated 

values are mconsistent at the bar ends and nodal points for the anisotropic, vrs-

coelastic beams. We should give further considerations when anisotropic viscousity 

are introduced into the authorized elastic vibration theory such as the above warping 
2
)
 

torsion theory and Timoshenko theory. 
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Appendix 

The energy method to evaluate internal friction is fundamentally depends on the following 
3,4,7) 

relations : 

tan ~ = ~D"･itan ~ii~ii4/~Diihii4 (a. 2) where Dii is the rigidity for elastic modulus aii ; tan~ii is the internal friction associated with 

aii, ; ~ii is the eigen value decided from the shape, vibration mode, and edge conditions of a 

vibrating body and has the dimension of length-1. The most simple method to evaluate the 

internal friction is to calculate independently the two types of frequencies o)~ and co~/ with the 

constants Dii and Dii tan ~ii, respectively. Then the internal friction is evaluated from eq. (a. 2) 

This method is approximately correct when the two types of independently evaluated parameters 

~ in the numerator and denominator in eq. (a. 2) are identical. This condition is satisfied in the 

case of the vibration of a bar or a beam, and also in the case of that of a plate of which 

vibration mode corresponds to a beam mode. By using this method and a finite element method, 
3
)
 the internal friction is evaluated for the specimen with an arbitrary shape. However, this 

simple method is not applicable to the complicated vibration mode of a plate, that is, interaction 
4
)
 

of two beam modes. Then the values of ~ decided for the denominator in eq. (a. 2) should be 

substituted into the numerator 




