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FINITE EXPONENTIAL SERIES APPROXIMATION
OF DATA CURVE
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When empirical data correspond to a simple decay or growth process, or to a combination of
these both processes, it is possible to approximate these data curve with a finite exponential
series by Prony’s method. This paper describes the numerical treatment of the Endochronic
constitutive theory for soils which is the hereditary integral in form, and the method of the
representation of finite exponential series of the integral kernel, Some examples of the approxima-
tion by finite exponential series for the error function and the normalized incomplete gamma
function are given by means of Prony’s method,

I. INTRODUCTION

The constitutive equation called the Endochronic theory in plasticity was introduced by
Valanis in 1971, and has been received increasing attention as an alternate approach for
describing the inelastic behavior of history-dependent materials. It is considered that the
Endochronic theory in plasticity is divided into two types, that is, the integral form
proposed by Valanis and the incremental form proposed by Bazant. The Endochronic
approach differs substantially from classical plasticity and has many features which make
attractive for modeling soil behavior.

This paper is devoted to the numerical treatment of the Endochronic theory for soils
which introduces the concept of critical state soil mechanics. The constitutive equations
have been expressed by the hereditary integral forms, therefore they are analytically complex
and present serious difficulties from the numerical standpoint. The numerical treatment of
the hereditary integral equations can be greatly simplified, if the kernel functions are
approximated by finite series of exponentials. Although the resulting approximate kernels
are no longer strictly singular from the mathematical standpoint, they can be made
sufficiently singular for computational purposes.

When empirical data correspond to a simple decay or growth process, or to a combination
of these both processes, and an approximation is desired for a semi-infinite range of the
independent variable, the real exponential functions are appropriate coordinate functions
from the point of view of representing the general data function by Dirichlet series. So
that, in order to consider the representation of finite exponential series of the integral
kernel in the Endochronic theory, some examples of the approximation by finite exponential
series for the error function and the normalized incomplete gamma function are shown by
Prony’s method.
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1)
II. PRONY’S METHOD

We suppose here that a function F(x) to be approximated is a data function, and in
certain situation it is desired to determine an approximation of the form

F(z)~ Cie@15+ Cpe®sx + oo oo 4 Cpednx @D)
=CiB," + CofBs™+evee+ Crf3n" (2
where Bk:eak(kzl; 2: ceeed 71), (3)

We assume that values of F(x) are specified on a set of N equally spaced points, and that
a linear change of variables has been introduced in such a way that the data points are
z=0,1,2,...., N-1,1i. e,

Ci+Coteeee+Ca=F,

CiB1+Coffzt v +CrfBn=F,

CiBi2+CofBe?+ oo s + CoFn®=F, 4)

CiB Y 1+ Gy 1t e e + CrBr 1=Fy_,.

If the constants (3,, e,...., B» were known, this set of equations would build up N
linear equations in the # unknowns Cy, C,,...., C. and could be solved exactly if N=# or
approximately by the least-squares method if N>n.

On the other hand, if the 3’s are also to be determined, at least 2z equations are needed
and the difficulty that the equations are nonlinear in the (8’s arises. To minimize this
difficulty, let 31, Bs,...., B» be the roots of the following algebraic equation.

B+ p1B 4 P37 R4 o v o+ Puy B+ P =0 (5)
In this case, the left hand side of Eq.(5) is identified with the product
(B=F1) (B—B2) (B—Fs)+++(B—Bn).
In order to determine the coefficients p;, p,...., P», we multiply the first equation in (4)
by pn, the second equation by pn_y, the third equation by pa_s,...., the 7n-th equation by
b1, and add the results. Using Eq.(5), the result is seen to be of the form
Frn+Fn_1p1+Fp_spa+ oo+ Fopp=0.
A set of N-n-1 additional equations is obtained in the same way by starting instead
successively with the second, third,...., (IN-2)th equations. In this way, we obtain the
N-n linear equations

Fn+Fn—1P1+Fn—2P2+""‘l‘FoPn:O

Fogy+Fapr+Fr _potecee+Fipp=0
Fn+2+Fn+1P1‘|‘FnP2+""+F2Pn:0 (6)
FN-]'I'Fx —2P1+FN-3P2+"“+FN..71_1P71:0. [

Since the values Fy (k=0, 1, 2,...., N—1) are known, the set of these equations generally
can be solved directly for the n p’s if N=2#r, or solved approximately by the least-squares
method if N>2n.

After the n p’s are determined, the n (@’s are found as the roots of Eq. (5). These roots
may be real or imaginary. Then Egs. (4) become linear equations in the n C’s with known
coefficients. The C’s can be determined, finally from the first 7z of these equations, or
preferably by applying the least-squares method to the whole equations. So that, the
nonlinearity of the system of Egs. (4) is reduced to the single algebraic equation (5).
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III. REDUCTION OF THE ENDOCHRONIC SOIL MODEL TO DIFFERENTIAL
EQUATIONS

The broadest statement of the Endochronic theory in plasticity is that the state of stress
of a material element in its present configuration is a function of the history of deformation
of the element with respect to the intrinsic time (internal time). This idea was introduced

by Valanis, and was recently modified by Read for describing the nonlinear, inelastic

behavior of soils. The constitutive equations which define the Endochronic soil model are
as follows,

Zy o1
o=Hw, wO)S_’ ¢(zHﬂz’)Z“;dz’ )
Z
s=F(o, 'U)S Dp(zD—z')-agjdz' ®)
~ 0 0z

where o =0u=hydrostatic stress, izdeviatoric stress tensor, e?=gunP?=plastic volumetric
strain, e?=plastic deviatoric strain tensor, zy and 2z, denote the hydrostatic intrinsic time
and the deviatoric intrinsic time respectively, H is a function of the current specific volume
v and the initial specific volume v, which describes the state on which the current hydro-
static state is located, and F is a function of o and v which describes the effect of the
state of the material on the deviatoric stress.

However the above equations for the Endochronic soil model are analytically complex
and involve difficulties in numerical treating due to the hereditary integral expression for
o and s.

If the kernel functions are approximated by finite exponential series, the numerical

treatment of the hereditary integrals can be simplified. It is indicated by Read2 )that for soils
an adequate representation can be achieved with several terms in a series, and that only
three terms in a series are used in most cases. In this case, the hereditary integrals can be
reduced to differential constitutive equations. We adopt the following finite exponential
series of the kernel functions ¢(z) and o(z2),

U =23P, et )

o(z)= éfa-e—w (10)
which satisfy the conditions

H0)=co, S:gb(z')dz’:l (11)

o0 =ce, § "oz =1 (12)

where P, 8:, R, and . are positive constants.
Now, when we use the forms of ¢(z) and o(z), given by Egs.(9) and (10), the hereditary
integrals of Egs. (7) and (8) can be reduced to the following differential equations.

m das, de?
=H Ty r =Ly 35—
o=H3S, T +3.8=P5 (13)
dQ,
=F% 0, % 1 0.0,-r% (14)
~ Jsa= dzp ~ dz

In case of the deviatoric response, for example, Eq.(14) describes the mechanical model
response of the parallel assembly model of endochronic elements shown in Fig. 1, when b,
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and R, are constants. An endochronic element modei), as shown in Fig.1, can be
constracted by connecting, in series, a linear elastic spring and a nonlinear endochronic slider.
In this figure, R, and b, denote the spring constant and the slider resistance respectively.
And also Qr denotes the stress of the r-th endochronic element. A similar mechanical model

can be constructed for the hydrostatic component of response given by Eq. (13).

S
| ¢ J R=_F"—
| ¥
1 ——
r=1
r=2 VVVV
Re br
l—oS

|
7277

dgr

s=F2Q. Q=b—= Q=Rde’—q)
= e dz,” =~ -~ = Zo
ar=Rr/be, Rrispring constant, b.:slider resistance 0
Fig. 1 A parallel assembly of endochronic Fig. 2 Normalized data curve from triaxial
elements, compression tests for various confin-

ing pressures,
IV. DETERMINATION OF THE KERNEL FUNCTIONS

To determine specific forms of the kernel functions, ¢(z) and o(z), we consider a conven-
tional triaxial compression test, in which the axial stress and the axial strain can be denoted
by o, and &, respectively. In this case, a soil element experiences a loading in which the
deviatoric stress tensor s and the deviatoric plastic strain tensor e? can be expressed as

follows,
_ _ /3
s=sp*t, sp= 55 (15)
_ _ /3
fp-—zu'z; Zp= 5611’ (16)
and ¢ is a constant direction unit tensor which can be expressed in the following matrix
form.
1 2 0 0
t=—=| 0 —1 0 an
~ 6
. 0 0 -1

We consider the deviatoric response especially, then Eq.(8) can be written in the form
for monotonic loading by using Eq. (15).

Zp
B={, o)z =Riz) (18)
And the integral function R(z,) must satisfy the condition,
Jim R(zp)=1. (19)
D00

The relation between s, and z, is shown as a curve for various lateral stress g; using
the triaxial compression data, and all of these curves of s,/F vs z, may be ideally rear-
ranged as a single curve having the general form shown in Fig. 2 by suitable choice of
the form of the function F and approximate representation of the kernel function o(z). To
obtain the approximate representation of o(z) by a finite exponential series, we use Egs. (10)
and (18), and obtain the following expression.
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n Zp 7 R
R(z) =3} R, "o’ de' =3 Tx(1—e-arts) (20)
r=1 0 r=10r
To satisfy the condition of Eq. (19), it is necessary to impose the condition,
% R
—I=1, 21
r=10r ( )
From Egs. (20) and (21), the exponential series representation of R(z,) is as follows. .
n
R(zp)=1-2} &e—arzu : 22)
r=10r

From Eq. (22), the representation of 1—R(z,) by a finite exponential series can be accom-
plished by Prony’s method described in Section II.

2)
It was shown by Read that the function R(z,) can be well represented for soils by the

normalized incomplete gamma function y(k z,, a), that is,
R(zp)=7(k zp, a)=171—SkNDe—t.ta—1 dt (0<a<1) (23)
(@) Jo

where £ and a are positive constants, ['(a) denotes the complete gamma function. Once the
constants # and a have been determined through the least-squares method by fitting to the
normalized data such as given in Fig. 2, the normalized incomplete gamma function y(kz2p,
a) is approximated by a finite exponential series through Eq. (22). That means, since 1-7
(kzp, a) is a completely monotonic function of z,, Prony’s method is guaranteed to yield
positive decay exponents @- and positive coefficients R,. Because Prony’s method consists of

interpolation of the finite exponential series at equidistance points, the choice z,=0, as one
of the interpolation points, guarantees that Eq. (21) will be satisfied.

And in much the same way as the deviatoric response, in case of the hydrostatic response,
2)
it was shown by Read that the following function P(zyz) can be represented by the error
function erf (/kzg).

Plen)=G={ " 8=) de' =erf (vEza) N

The error function is then represented by a finite exponential series in the manner of using

Egs. (9) and (24),
1—erf /Fza) =3

where the constants P, and [3r can be determined by Prony’s method.

g:-e—ﬂrzn (25)

V. EXAMPLES OF APPLICATION OF PRONY’S METHOD AND CONCLUSIONS

By using Prony’s method, we consider the following approximation by finite exponential

series,
n R,
1—y(kzp, a)=2) —Te-a?p (26)
r=1 Or
- m PT
l—erf(vk ZH)221E e~PreH, @27

that is, when the parameters k and a in the left hand side of Egs. (26) and (27) are prescribed,
let us determine positive constants R, &, Pr and 3, in the right hand side of Egs. (26) and(27).
Now for example, we assume the functions given in the left hand side of Egs. (26) and

(27), with k=25 and a=0.3, and fit the functions to the three or fewer terms decaying
exponential series of the forms of Egs.(26) and (27) by Prony’s method.
Firstly, in the case of the function given in the left hand side of Eq.(26), with k=25
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and a=0.3, the approximation by finite exponential series is shown in Fig. 3 for various
sampling intervals of equidiatant points. And the values of exponents and coefficients in the
series obtained in each case are shown in Table 1.

Secondly, in the case of the function given in the left hand side of Eq. (27), with £=25,
the approximation by finite exponential series is shown in Fig. 4 for various sampling
intervals of equidistant points and various numbers of terms in the series. And the values
of exponents and coefficients in the series obtained in each case are shown in Table 2.

The major conclusions that have come out of the present study are as follows :

(1) An adequate representation can be achieved with three or fewer terms in a series, and in
most cases, it is sufficient to use only three terms for such a completely monotonic function.
(2) With regard to sampling interval for equidistant points of the data function, it seems to
be necessary to take small sampling interval for interpolation of the exponential series in
the range of the steep slope of the function. However, it is not always necessary to take

many points of evaluation, and it is sufficient to take points about twice as many as
the number of terms in the series.

(3) The value of finite exponential series should be so large at zero point of intrinsic
time that it is effectively singular.
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Table 1 Values of exponent ar and coefficient R, for the normalized incomplete gamma function

n=3, h=0.05, N=10 n=3, h=0.01, N=10 n=3, h=0.005, N=10
Term (r)
RT Or Rr Or Ry ar
1 7.87x10 1.13x102 2.02x102 4.04 %102 3.16x 102 7.51x102
2 6.97 4.04x10 1.95x10 8.40x 10 3.10x10 1.31x102
3 3.48 2.69x%10 8.38 3.14x10 1.21x10 3.54x10

n : number of terms, % : sampling interval, N : number of points of evaluation
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Table 2 Values of exponent @r and coefficient Pr for the error function
m=3, h=0.05, N=10 m=3, h=0.01, N=10 m=5, h=0.01, N=10
Term (r)
P, Br Py Br P Gr
1 4.73x10 9.97x10 9.25x10 3.41x102 1.08 %102 5.92x102
2 9.41 3.88x10 1.99%x10 7.63x10 1.93x10 2.05x102
3 7.44 2.63x10 1.37x10 2.93x10 1.34x10 9.62x10
4 — — — — 1.09x10 4.68x10
5 — — — — 9.56 2.72x10

m : number of terms, A : sampling interval, N : number of points of evaluation
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