シロオビアゲハ幼虫の頭幅の令期間成長

"近木英哉·長澤純夫·山野忠清·曾田泰弘"

Hideya CHIKAKI, Sumio NAGASAWA, Tadakiyo YAMANO and Yasuhiro SOTA The Growth of Head Capsule in the Successive Instars in *Papilio polytes* LINNAEUS (Lepidoptera : Papilionidae)

緒言

日本産アゲハチョウ科 Family Papilionidae の Papilio 属10種のうち, Papilio polytes Linnaeus シロ オビアゲハは奄美諸島から南の沖縄・先島・八重山各諸 島にのみ分布し,この地に野生するミカン科植物や栽培 ミカンの葉を食べて育ち,年数回の世代を繰り返す.

本土においては分布はしていないが,食餌さえあれば 実験室での1世代だけの飼育はさほど困難ではない.

われわれは1978年の初夏,松江市において、ミカンの 葉による1世代の個体別飼育を行い、幼虫の頭幅の令期 間における成長様式を考察し、あわせて卵、幼虫各令及 び蛹の期間を調べた。その結果をここに報告する。

本文に先立ち,実験材料の取得に御配慮を戴いた,鹿 児島県沖永良部島上城小学校の新里元達氏に感謝の意を 表する.

実験材料及び方法

この実験のため飼育された材料は、1978年5月30日に 鹿児島県大島郡知名町上城(沖永良部島)において採集 された赤斑型雌1頭が6月5日に松江市にて産下した76 個の卵から出発したものである。これらをふ化と同時に 直径9.0cm,高さ4.5cmのポリエチレンカップに1個 体ずつ移し,*Citrus*属植物の葉をあたえ,成虫羽化の 日まで個体別に飼育した。幼虫期の脱皮が行われると同 時に、その脱皮殻の頭蓋をNikon profile projector (Model 6CT2)によって、4令までは50倍に、5令の ものは20倍に拡大し、それの最大幅を測定した。なお産 卵,脱皮、蛹化、羽化の行われた日を記録して、それぞ

** 生物汚染化学研究室

れの期間を算定すると同時に雌雄を羽化成虫によって決 定した.飼育は照明や温度,湿度などの調節を行わな い.実験室の環境条件下で行った.

結果と考察

シロオビアゲハは雌と雄の大きさの差が著しく,色彩 の違いも明瞭である.また雌には遺伝的に,雄に似た白 帯型(f.mandanaまたは第I型)と,前翅縁に白斑列 がなく,後翅外縁から肛角附近にかけて赤斑のあらわれ る赤斑型(f.pammonまたは第II型)との2型がある.

この実験では、飼育をはじめた76個体のうち、第3, 4,5の各令期において,それぞれ1,3,8個体が死 亡, さらに蛹期に10個体が斃死し, 成虫への羽化は54個 体であった、このうち7個体において,一部頭幅の測定 を欠いていた. そこで羽化した成虫によって雌雄を決め ることのできた、測定値の完全な47個体について、幼虫 期における頭幅の成長様式を考察することとする。これ らの各令(X)における測定値は、まず雌雄に、さらに 雌においては前述の2型に分けた. つぎに測定値の対数 を求め、これに1を加える事によって負数をなくし(y =log mm+1),計算の過程における 煩わしさを取り除 く措置を取った.その結果を示したのが第1,2表であ る. それぞれに直交多項係数 x1, x2 を用いて放物線を あてはめ,分散分析を行って,1,2次回帰項の有意性 を検定し,実験値が Dyar の法則にあてはまるか Gaines & Campbell の2次式によって近似しうるか否か 1,2) を決めた、第3,4表がその結果である。

雄の測定結果を解析した第3表を見ると、平均の第1 次回帰項 B_{c^2} , 第2次回帰項 Q_{c^2} 共に有意で(第2, 2'行),その成長様式は Gaines & Campbell の式によ り、高い近似がえられることを示している。それぞれの

^{*} 昆虫管理学研究室

- 140 -

		Log-w	idth, y, for	Total	T ()	.		
No. Larva	I	II	III	IV	v	T_g	$2(x_1 \ y)$	$\Sigma(x_2 \ y)$
1	0.914	1.100	1.297	1.465	1.633	6.409	1.803	- 0.065
2	0,892	1.086	1.274	1.474	1.628	6.354	1.860	- 0.068
3	0.869	1.072	1.255	1.462	1.658	6.316	1.968	0.010
4	0.881	1,100	1.292	1.477	1.653	6.403	1.921	- 0.093
5	0.869	1.079	1.270	1.477	1.648	6.343	1.956	- 0.062
6	0.869	1.086	1.292	1.489	1.648	6.384	1.961	- 0.125
7	0.881	1.079	1.279	1.471	1,633	6.343	1.896	- 0.080
8	0.881	1.086	1.270	1.465	1.643	6.345	1.903	- 0.043
9	0.881	1.079	1.279	1.474	1.648	6.361	1.929	- 0.053
11	0.881	1.064	1,255	1.462	1.643	6.305	1.922	0.012
12	0.892	1.093	1.301	1.474	1.648	6.408	1.893	- 0.089
13	0.903	1.100	1.297	1.486	1.643	6.429	1.866	- 0.088
14	0.881	1.079	1.260	1.462	1.623	6.305	1.867	- 0.053
15	0.881	1.079	1.270	1.471	1.638	6.339	1.906	- 0.052
16	0.881	1.086	1.265	1.471	1.633	6.336	1.889	- 0.059
17	0.903	1.100	1.283	1.471	1,658	6.415	1.881	- 0.015
18	0.881	1.072	1.274	1.456	1.643	6.326	1.908	- 0.028
19	0.881	1.079	1.270	1.465	1,633	6.328	1.890	- 0.056
20	0.881	1.093	1.270	1.474	1,638	6.356	1.895	- 0.069
21	0.881	1.093	1.292	1.480	1.643	6.389	1.911	- 0.109
22	0,892	1.121	1.322	1.489	1.653	6.477	1.890	- 0.164
23	0.892	1.114	1.301	1.494	1.648	6.449	1.892	- 0.130
24	0.914	1.107	1.322	1.497	1.653	6.493	1.868	- 0.114
T_t	20.381	25.047	29.490	33,906	37,789	146.613	43.675	- 1.593
\bar{y}_t	0.886	1.089	1,282	1.474	1.643		0.18989	$=B_1$
Y	0.8483	1.0445	1.2313	1.4085	1.5763		$B_2 = -$	-0.00049

Table 1. Mean log width, $y=\log mm+1$, of the head capsule in successive instars of male larvae of *Papilio polytes* Linnaeus

Table 2. Mean log width, $y=\log mm+1$, of the head capsule in successive instars of female larvae of *Papilio polytes* Linnaeus

Eaure	Larva		Log-wie	dth, y, for	Tota1		$\Sigma(\dots)$			
FOrm	No.	I	II	III	IV	V	T_g	$2(x_1 \ y)$	$\mathcal{L}(\mathcal{L}_2,\mathcal{Y})$	
	1	0.903	1.093	1.297	1.489	1.663	6.445	1.916	- 0.044	
	2	0.881	1.093	1.283	1.468	1.623	6.348	1.859	- 0.119	
	3	0.869	1.093	1.288	1.480	1.638	6.368	1.925	- 0.135	
	4	0.881	1.086	1.279	1.483	1.633	6.362	1.901	- 0.099	
	5	0.881	1.086	1.274	1.477	1.648	6.366	1.925	- 0.053	
mandane	6	0.881	1.079	1.260	1.462	1.633	6.315	1.887	- 0.033	
	7	0.869	1.079	1.314	1.491	1.667	6.420	2,008	- 0.126	
	8	0.869	1.086	1.283	1.459	1,633	6,330	1.901	- 0.107	
	$\overline{T_t}$	7.034	8.695	10.278	11.809	13,138	50,954	15.322	- 0.716	
	\bar{y}_t	0.879	1.087	1.285	1.476	1.642	6.369	0.1915	$B_{1} = B_{1}$	
	Y	0.8780	1.0887	1.2866	1.4718	1.6441		$B_2 =$	-0.00064	

近木英哉·	長澤純夫	・山野忠清・	・曽田泰弘:	: シロオビ	アゲハ幼虫	の頭幅の	令期間成長	-141 -

pammon	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ \hline T_t \end{array} $	0.881 0.892 0.892 0.881 0.892 0.881 0.892 0.881 0.869 0.892 0.881 0.892 0.881 0.892 0.881 0.892 0.881 0.892 0.881 0.892	$\begin{array}{c} 1.100\\ 1.107\\ 1.00\\ 1.079\\ 1.086\\ 1.093\\ 1.079\\ 1.057\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.093\\ 1.007\\ 1.1$	$\begin{array}{c} 1.270\\ 1.301\\ 1.297\\ 1.265\\ 1.274\\ 1.288\\ 1.260\\ 1.255\\ 1.283\\ 1.297\\ 1.310\\ 1.283\\ 1.305\\ 1.274\\ 1.241\\ 1.305\\ 1.274\\ 1.241\\ 1.305\\ \end{array}$	$\begin{array}{c} 1.459\\ 1.480\\ 1.486\\ 1.465\\ 1.477\\ 1.486\\ 1.480\\ 1.477\\ 1.465\\ 1.483\\ 1.497\\ 1.477\\ 1.477\\ 1.477\\ 1.477\\ 1.453\\ 1.486\\ \hline 23.625 \end{array}$	$\begin{array}{c} 1.658\\ 1.638\\ 1.643\\ 1.633\\ 1.643\\ 1.653\\ 1.638\\ 1.638\\ 1.633\\ 1.663\\ 1.663\\ 1.643\\ 1.653\\ 1.643\\ 1.643\\ 1.638\\ 1.623\\ 1.643\\ 1.643\\ 1.643\\ 1.643\\ 1.623\\ 1.643\\ 1.$	$\begin{array}{c} 6.368\\ 6.418\\ 6.418\\ 6.323\\ 6.377\\ 6.401\\ 6.338\\ 6.296\\ 6.366\\ 6.417\\ 6.442\\ 6.380\\ 6.436\\ 6.356\\ 6.243\\ 6.434\\ 6.434\\ 102.023\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 90 66 11 7 10 42 7 11 38 81 2
	$\frac{\bar{y}_t}{Y}$	$0.885 \\ 0.8842$	$1.090 \\ 1.0902$	1.282 1.2858	$1.477 \\ 1.4709$	$1.643 \\ 1.6455$		$0.21753 = B_1$ $B_0 = -0.00052$	
		0,0016		1,2000	1.1100	1,0100		22 5.00002	
	$egin{array}{c} x_1\ x_2 \end{array}$	$-\frac{2}{2}$	1 1	$-\frac{0}{2}$	$^{-1}_{-1}$	$\frac{2}{2}$			

Table 3. Aanalysis of variance of the larvae measurements in Table 1.

Row	Term	DF	SS	MS×10 ⁶	F
1	Between larva totals	22	0.012524	569.3	10.94
2	Trend on instar, B_c^2	1	8,293503	8293503.0	
2′	Curvature, Q_c^2	1	0.007881	7881.0	151,56
3	Scatter about parabola	2	0.000731	365.5	7.04
4	Larvae $ imes$ linear trend	22	0.002897	131.7	2.54
4′	Larvae $ imes$ curvature	22	0.002905	132.0	2,54
5	Larvae imes scatter	44	0.002283	51.9	
6	Total	114	8.322724		
7	Correction, C_m	1	186.916276		

Table 4. Analysis of variance of the larvae measurements in Table 2.

		f. <i>ma</i>	ndane		f. pammon					
Row	DF	SS	MS×10 ⁶	F	DF	SS	MS×10 ⁶	F		
- 1	7	0,002663	380.4	4.80	15	0.009466	631.1	7.11		
2	1	2,934546	2934546.0		1	5,796538	5796538.0			
2'	1	0.004577	4577.0	57.72	1	0.006132	6132.0	69.05		
3	2	0.000248	124.0	1.56	2	0,000867	433.5	4.88		
4	7	0.001316	188.0	2.37	15	0.001503	100.2			
4'	7	0.000805	115.0		15	0.001889	125.9			
5	14	0.000860	61.4		30	0.001933	64.4			
6	39	2,945015			79	5.818328				
7	1	64.907753			1	130,108657				
8	21	0.001665	79.3		60	0.005325	89.8			

-142-

		No.				D					
Sex	1 OI III		Egg	I	II	III	IV	v	Tota1	Pupa	Total
		$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	4 4 4 4 4	4 3 4 3 3	2 3 2 2 2	2 2 3 3 2	3 3 2 2 2	7 6 7 8 8	18 17 18 18 17	10 10 10 10 10	$32 \\ 31 \\ 32 \\ 32 \\ 31 \\ 31$
		6 7 8 9 10	4 4 4 4	3 3 3 3 3 3 3 3	2 2 3 2 3	2 3 2 3 2	3 2 2 3 3	6 7 6 8 6	16 17 16 19 17	10 10 10 10 10	30 31 30 33 31
Male	_	$11 \\ 12 \\ 13 \\ 14 \\ 15$	4 4 4 4	ິ ວິ ເນີ ເນີ ເນີ ເນີ ເນີ ເນີ ເນີ ເນີ ເນີ ເນີ	2 3 2 2 2	3 2 2 2 3	2 3 3 3 3 3	6 7 6 8 6	16 18 16 18 17	10 10 10 10 10	30 32 30 32 31
		$16 \\ 17 \\ 18 \\ 19 \\ 20$	4 4 4 4	ຕ ຕ ຕ ຕ ຕ	2 3 2 3 3	2 2 3 2 2	3 3 3 2	8 6 6 8	18 17 17 17 18	$10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	32 31 31 31 32
		21 22 23	5 5 5	3 2 3	$2 \\ 2 \\ 1$	2 2 3	3 3 3	7 7 7	17 16 17	$\begin{array}{c}10\\10\\10\end{array}$	32 31 32
		$\stackrel{Mean}{\pm S.D.}$	$\substack{4.13\\\pm0.34}$	$\substack{3.04\\\pm0.37}$	$\substack{2.26\\\pm0.54}$	$\substack{2.35\\\pm0.49}$	$\begin{array}{c} 2.70 \\ \pm 0.47 \end{array}$	$\begin{array}{r} 6.83 \\ \pm 0.83 \end{array}$	$\begin{array}{c} 17.17 \\ \pm 0.83 \end{array}$	$\substack{10.00\\\pm0.00}$	$\substack{31.30\\\pm0.82}$
		1 2 3 4 5	4 4 4 4 4	3 3 4 3 3	2 2 2 2 2 2	2 3 3 2 3	2 2 3 4 2	8 7 7 7 8	17 17 19 18 18	10 9 10 10 10	31 30 33 32 32 32
	pammon	6 7 8 9 10	4 4 4 4	3 3 4 3 3	2 3 2 3 2	3 2 3 2 3	3 3 3 2	8 7 8 7 8	19 18 20 18 18	10 10 11 10 10	33 32 35 32 32
Female		11 12 13 14 15 16	4 4 4 5 5	4 3 3 4 3	2 2 3 2 1	2 3 2 3 2 3 2	3 3 3 4 3	8 9 7 7 7 9	19 20 17 18 20 18	11 11 10 10 10 11	34 35 31 32 35 34
		Mean ±S.D.	$\substack{4.13\\\pm0.34}$	$\substack{3.25\\\pm0.45}$	$\begin{array}{r} 2.13 \\ \pm 0.50 \end{array}$	$\substack{2.50\\\pm0.52}$	$\begin{array}{r} 2.88 \\ \pm 0.62 \end{array}$	$7.63 \\ \pm 0.72$	$\begin{array}{c}18.38\\\pm1.02\end{array}$	$\begin{array}{c} 10.19 \\ \pm 0.54 \end{array}$	$32.69 \\ \pm 1.54$
		1 2 3 4 5	4 4 4 4 4	3 3 3 3 3	2 2 2 3 3	3 3 3 2 2	2 3 2 3 3	8 7 8 7 8	18 18 18 18 18 19	$11 \\ 16 \\ 11 \\ 10 \\ 10 \\ 10$	33 38 33 32 33
	manaane	6 7 8	4 5 5	3 2 3	2 3 2	3 3 3	3 2 2	6 8 8	17 18 18	$\begin{array}{c}10\\10\\9\end{array}$	31 33 32
		Mean ±S.D.	$\substack{4.25\\\pm0.46}$	$\substack{2.88\\\pm0.35}$	$\substack{2.38\\\pm0.52}$	$\begin{array}{c} 2.75 \\ \pm 0.46 \end{array}$	$\begin{array}{c} 2.50 \\ \pm 0.53 \end{array}$	$\begin{array}{r} 7.50 \\ \pm 0.76 \end{array}$	$\begin{array}{c} 18.00 \\ \pm 0.53 \end{array}$	$\begin{array}{c} 10.88 \\ \pm 2.17 \end{array}$	$\begin{array}{r} 33.13 \\ \pm 2.10 \end{array}$

Table 5. Duration of development (day) of Papilio polytes Linnaeus.

幼虫は平均の大きさに比較して有意に異っていた(第1 行). あてはめた放物線のまわりの測定値のちらばりも 有意であり(第3行),また幼虫と第1, 2次回帰項と の交互作用,すなわち幼虫が,成長,脱皮を繰り返し, 頭幅が増大する割合(第4行)も,その割合が直線的に 進まず,彎曲する度合にも(第4⁴行),幼虫間で有意に 異っていた.24個体の雄幼虫の間では,その大きさも, 頭幅の成長の度合も,決して整一でないと言える.計算 によって求めた式はY=1.23126+0.18198(X-3) -0.00474(X-3)²で, これより算定した期待値Yが最 下行の数値である.

つぎに雌について白帯型,赤斑型のふたつに分けて示 した第2表の測定結果の,分散分析の結果が第4表であ る.両型とも平均の大きさにくらべて,それぞれの幼虫 は有意に異っていた(第1行).また1次, 2次回帰項 共に有意で(第2,3行),雄個体と同様 Gaines & Campbell の2次式をもって近似されるべき事を示し ている.ただこの場合の検定は,幼虫と第1次回帰項, また第2次回帰項との交互作用が,第5行の誤差との交 互作用と対決させたとき有意でなかったものは,それら の平方和は,総計し,対応する自由度の総計で割った平 均平方を pooled error として,これによってそれぞれ の有意性を検定する方法をとった.その結果は,あては めた2次曲線のまわりに測定値がちらばる割合(第4 行)は,白帯型では有意でなかったが,赤斑型では有意 であった.計算によって求めた2次方程式は,白帯型, 赤斑型それぞれに Y=1.28663+0.19153(X-3) -0.00639(X-3)², Y=1.28775+0.19034(X-3) -0.00523(X-3)² となった.そしてこれらの方程式から求めた期待値が,第2表のそれぞれの部の最後の行のYの値である.

第5表に,卵,幼虫各令及び蛹期間を示した.全発育 期間でみると,雌は雄よりも若干長時間を要する様であ る.

引用文献

- BLISS, C. I. and BEARD, R. L. : Ann. Entomol. Soc. Amer. 47 : 388-392, 1954.
- 2. BLISS, C. I.: Statistics in Biology. I: McGraw-Hill Co., New York, 1968.
- 3. DYAR, H. G.: Psyche 5: 420-422, 1890.
- 4. GAINES, J. C. and CAMPBELL, F. L. : Ann. Entomol. Soc. Amer. 28 : 445-461, 1935.

Summary

The rearing of *Papilio polytes* Linnaeus was made individually on citrus leaves under a laboratory condition without controls of temperature, humidity and illumination. The largest widths of exuviae of head capsule were measured for the same individual through its development. The results of analysis of variance of the measurements showed that the increase of log-width of head capsule (Y) in successive instars (X) of male and two types of female (f. *madane* and *pammon*) have been described by quadratic of Gaines and Campbell rather than by Dyar's linear equations.