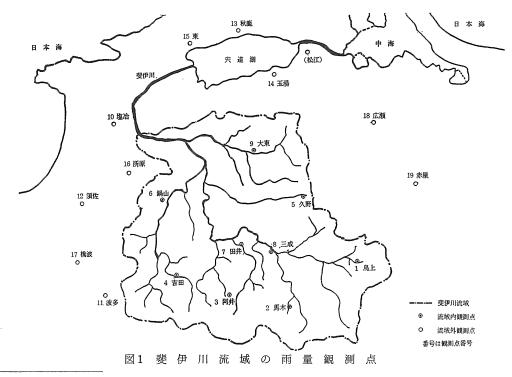
斐伊山流域における豪雨の DAD 解析について (続報)


田 中 礼 次 郎**

Reijiro TANAKA

Some Considerations on the Depth-Area-Duration Analysis of Storm Precipitation over the Hi River Basin (Second Report)

1 はじめに

わが国では、地点雨量の諸特性すなわち降雨強度と降 雨継続時間の関係や降雨強度の時間的分布などについて は、かなりの研究成果が見られるが、面積雨量について は、その必要性が認められながらもあまり進んだ研究が なされていない。その主な原因の1つとして、面積雨量 は降雨の空間的な分布特性に支配されるため、対象流域 内にできるだけ多くの地点雨量記録が存在しないことに は研究の手がかりがつかめない。しかし従来はほとんどの河川流域において,面積雨量の解析に必要な程度の雨量観測施設の整備がなされていなかったことをあげることができる。最近ようやくその必要性が認識されて,主要水系の流域に水文観測施設が数多く設置される傾向になって来た。斐伊川流域にも近年かなりの地点で降雨観測が実施されて来たので,これらの雨量記録を用いて前報につづいて面積雨量の解析に若干の検討を試みた。

[※] 農業水利工学研究室

^{※※} 第32回農業土木学会中国四国支部講演会発表

2 斐伊川流域の雨量記録

図1の破線で囲んだ宍道湖流入前の斐伊川流域(流域面積914km²)を対象とした。雨量記録は、建設省中国地方建設局出雲工事事務所が観測している、流域内9地点(図で1~9)と流域外2地点(10~11)、計11点の雨量記録のうち、大洪水をもたらした昭和47年7月および50年7月豪雨記録を用いた。

3 流域平均降雨強度の式形とその適用例

(1) 2定数型平均降雨強度式

i) 式形

このタイプに属するものとしてつぎの(1)~(4)式を用いた。(1)式はよく知られているホルトン(Horton)の式である。(2)~(4)式は,地点雨量の降雨強度式として用いられている式形である。これを1部変数を取りかえて面積雨量にも適用できないかを調べた。すなわち一般に降雨継続時間を一定とした場合,流域面積Aが大きくなるにつれて平均量Pはしだいに小さくなる。このP-A関係曲線は,DD解析における降雨強度 I と降雨継続時間 T との関係を表わす降雨強度曲線に,その形状が近似していることに着目して,TをAに置きかえた降雨強度型について検討する。

ホルトン(Horton)型
$$P/P_0=e^{-\alpha A^{\beta}}$$
.....(1)

タルボット(
$$Talbot$$
)型 $P/P_o=a/(A+b)$ …… (2)

シャーマン(Sherman)型
$$P/P_0=a/A^n$$
.....(3)

久野型
$$P/P_0=a/(\sqrt{A}+b)\cdots$$
 (4)

ここに P は平均雨量 (mm), P_o は 地 点 最 大 雨 量 (mm), A は流域面積 (km^2) , α , β , a, b, n は定数 ii) 適用例

昭和47年7月豪雨について,前述11地点の観測記録から,降雨強度が各地点とも平均的に見て最大と見なされる同時期間から,1,6,12時間降雨量をマスカーブから読み取り,各降雨量ごとの等雨量線図を作成した。これを用いて等雨量線法により,各面積ごとの平均雨量を求め,これらの平均雨量を入力として, $(1)\sim(4)$ 式の各定数を推定した。 また各式の適合度は,(5)式の相対平均誤差 F (%) の大小で評価した。

$$F_{i} = \{|P_{i}' - P_{i}|/P_{i}\} \times 100(\%)\}$$

$$F = \Sigma F_{i}/N$$
(5)

ここに F_i は分割流域 i の平均雨量の相対誤差(%)

 P_i は等雨量線法により求めた流域 i の平均雨量(mm)

 P_{i}' は(1)~(4)式より求めた P_{i} に対応する平均雨量

N は流域分割数

適用結果は表1のとおりで、各式とも F < 5% となり

表1 2定数型平均降雨強度式のパラメータと適合度

T	D	HORTON			TALBOT			SHERMAN			KUNO		
(hr)	P_0	α	β	F(%)	а	b	F(%)	A	n	F(%)	а	b	F(%)
12	205.0	0.0274	0.404	1.3	1593.2	1707	3.4	1.16	0.0810	3.4	51.9	51.2	0.9
6	145.0	0.0119	0.552	1.8	1371.6	1463	3.6	1.22	0.0987	3.7	43.4	42.0	1.1
1	32.5	0.0009	0.958	0.7	1079.8	1035	1.0	2.60	0.2227	4.4	27.4	19.0	2.9

47年豪雨については大へんよい適合を示している。とくに Horton の式がよく合っている。しかし 各式 とも降雨継続時間が,1,6,12時間と変化すると2つの定数がかなり大きく変化していることがわかる。またここでは計算結果を省略したが,同一流域で降雨継続時間が同じでも,降雨ごとに2定数は変化する。したがって(1)~(4)式は,同一流域においても,降雨ごと,降雨継続時間ごとに2定数を推定する必要があるため,実用的にはきわめて不都合である。

(2) 降雨継続時間の項を含む平均降雨強度式

i) 式形

2定数型平均降雨強度式は,同一降雨でも降雨継続時間でとに定数が変化する不便さがあった。そこで降雨継続時間 Tの項を含む(6)式で,任意の T に対して適用できるような定数が推定できないかを検討した。

$$I = a/(T^b + A^c + d) \qquad \cdots \qquad (6)$$

(6)式において

$$d_1 = T^b + d \qquad \cdots (7)$$

とおくと(6)式は(8)式のようになる。

$$I = a/(A^c + d_1) \qquad \cdots (8)$$

したがって

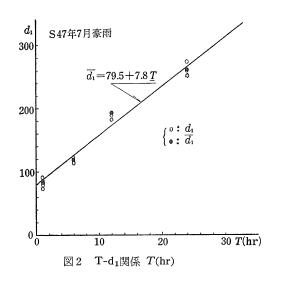
$$d_1 = a/I - A^c \qquad \dots (9)$$

ここに I は流域平均降雨強度 (mm/hr), T は降雨継続時間 (hr), A は流域面積 (km^2) , a, b, c, d は定

数

ii) 適用例

昭和47年7月および50年7月豪雨について,(1)と同様に等雨量線法により推定した各種のTに対する平均降雨強度のうち,中間的な6時間平均降雨強度を用いて(6)式の定数を求める。まず(9)式を推定すると次のようになる。

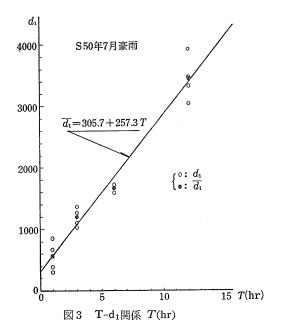

表2 T と d_1 の関係

T	A≑	100km²	A ≑300km²		A ≑500km²		A=914km ²		7	
(hr)	I	d_1	I	d_1	I	d_1	I	d_1	d_1	
1	27.5	92.1	24.3	80.4	21.7	74.7	16.4	84.9	83.0	S.47.7
6	22.5	117.9	18.3	123.4	17.1	114.2	13.8	121.5	119.3	
12	14.8	191.6	13.1	192.6	12.1	191.3	10.5	194.2	192.4	
24	11.6	251.0	10.5	252.9	9.6	259.9	8.3	274.6	259.6	
1	37.5	865.9	35.1	673.2	29.7	393.2	22.5	311.7	561.0	S.50.7
3	24.7	1383.8	22.5	1271.2	19.7	1033.8	15.2	1111.7	1200.1	
6	20.2	1721.8	18.0	1687.6	15.2	1597.1	12.4	1668.5	1668.8	
12	11.8	3042.7	10.0	3353.4	8.6	3489.4	7.1	3924.8	3452.4	

$$d_1 = 3188.6/I - A^{0.6887}(S47.7)$$
(10)

$$d_1 = 37480.2/I - A^{1.0557}(S50.7)$$
(11)

 $A=914km^2$, A=500, 300, $100km^2$ のそれぞれについて, T=1, 6, 12, 24時間に対する I を(10), (11)式に代入して d_1 を求めると表 2 のようになる. これによると図 2, 3 に示すように同一の T に対しても各 A ごとに d_1 の値がかなり変動しているため,各 A に対する d_1 の平均値 $\overline{d_1}$ を用いて, $T-\overline{d_1}$ の関係を求めた。 図 2 、図 3 の $T-\overline{d_1}$ の関係を見ると,(7) 式のよ



うな指数関係でなく直線関係に近い。そこで両者の関係 を直線近似すると、(12)、(13)式が得られる。

$$\overline{d}_1 = 79.5 + 7.8T \quad (S47.7) \quad \cdots (12)$$

$$\overline{d}_1 = 305.7 + 257.3T$$
 (S50.7)(13)

(10)~(13)式と(8)式から(6)式に対応する(14),(15)式が得られる。また(5)式より適合性を相対平均誤差Fで

(S.47.7豪雨)

表3

<u> </u>		(5.47.7家阳)
$T{=}1\mathrm{hr}$	T=6hr	T=9hr
$A \qquad I_i \qquad I_{i'} \qquad F_i$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$A \qquad I_i \qquad I_{i'} \qquad F_i$
107.2 27.5 28.4 3	8.3 25.3 24.4 4	4.8 20.3 20.9 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.8 24.5 23.4 5 52.8 23.6 22.5 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
490.9 21.7 20.1 7 755.3 18.5 17.4 2 886.7 16.8 16.4 2	52.8 23.6 22.5 5 87.0 22.5 21.5 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
886.7 16.8 16.4 2	125.2 21.5 20.7 4	94.3 17.3 18.5 7
915.0 16.4 16.2 $\frac{1}{F=3.3}$	178 3 20 3 19 7 6	168.6 16.3 17.3 6
F=3.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	355.1 15.0 15.4 3
	458.2 17.1 16.4 4	513.6 14.3 14.3 0
	3 325.1 18.3 17.7 2 458.2 17.1 16.4 4 595.2 16.0 15.3 4 738.8 15.1 14.5 2 810.2 14.2 13.8 3	694.9 13.6 13.3 2 821.9 13.2 12.7 4
	1 - 810.2 - 14.2 - 13.8 - 3 + 1	890.6 12.9 12.4 4
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	F=3.8	
T=12hr	T=18hr	T=24 hr
$A \qquad I_i \qquad I_{i'} \qquad F_i$	$A I_i I_{i'} F_i$	A I_i $I_{i'}$ F_i
4.0 16.8 18.1 8 16.9 16.4 17.7 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
34.2 15.9 17.3 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
54.3 15.4 16.9 10	40.2 12.5 13.7 10	91.3 11.6 11.0 5
84.0 14.8 16.4 11	63.7 12.1 13.4 11	117.9 11.4 10.9 5
143.4 14.0 15.6 11	102.8 11.6 13.0 12	150.5 11.1 10.7 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	166.7 11.1 12.5 13 336.9 10.4 11.6 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	336.9 10.4 11.6 12 461.7 10.1 11.1 10	$263.7 10.5 10.2 3 \\ 354.6 10.1 9.8 3$
620.8 11.6 12.4 7	567.6 9.8 10.7 9	447.5 9.8 9.5 3
740 1 11 2 11 9 6	658 8 7 6 10 4 9	507.9 9.6 9.4 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	760.5 9.3 10.1 9	576.2 9.3 9.2 1
914.9 10.5 11.3 8	849.6 9.0 9.8 10 915.0 8.9 9.7 9	670.7 9.1 9.0 1 746.9 8.8 8.8 0
T=t, 2	F=9	746.9 8.8 8.8 0 806.5 8.7 8.7 0
		806.5 8.7 8.7 0 857.3 8.5 8.6 1.2
		895.0 8.4 8.5 1.2
		915.0 8.3 8.5 2.4
	l l	210.0 0.0 0.0 2.4
		915.0 8.3 8.5 2.4 $F=2.5$
+ 1		F=2.5
表 4		F=2.5 (S.50.7豪雨)
$T=1\mathrm{hr}$	$T=3\mathrm{hr}$	$F=2.5$ (S.50.7豪雨) $T=6\mathrm{hr}$
$T=1 ext{hr} \ A \qquad I_i \qquad I_{i'} \qquad F_i$	A I_i $I_{i'}$ F_i	$F=2.5$ $(S.50.7$ 豪雨) $T=6\mathrm{hr}$ A I_i $I_{i'}$ F_i
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$F{=}2.5$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F{=}2.5$
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$F{=}2.5$
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$F{=}2.5$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F=2.5
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F=2.5
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F=2.5
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F=2.5 $(S.50.7$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F=2.5 $(S.50.7$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F=2.5 $(S.50.7$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F=2.5 (S.50.7 豪雨)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F=2.5 $(S.50.7$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
	$\begin{array}{ c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & \\ \hline & & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c }\hline A & I_i & I_{i'} & F_i \\ \hline 76.2 & 24.7 & 31.9 & 29 \\ 280.0 & 22.5 & 25.6 & 14 \\ 483.8 & 20.7 & 22.1 & 7 \\ 590.4 & 19.7 & 19.4 & 1 \\ 680.6 & 18.6 & 18.1 & 3 \\ 751.2 & 17.7 & 17.2 & 3 \\ 848.6 & 1.62 & 16.1 & 1 \\ 915.0 & 15.2 & 15.4 & 1 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$	$F=2.5$ $(S.50.7 \overline{\otimes} \overline{m})$ $T=6 \text{hr}$ $A \qquad I_i \qquad I_{i'} \qquad F_i$ $10.9 \qquad 22.3 \qquad 20.1 \qquad 10$ $60.8 \qquad 21.1 \qquad 19.5 \qquad 8$ $115.4 \qquad 20.2 \qquad 18.7 \qquad 7$ $193.4 \qquad 19.1 \qquad 17.8 \qquad 7$ $298.3 \qquad 18.0 \qquad 16.6 \qquad 8$ $418.4 \qquad 16.9 \qquad 15.4 \qquad 9$ $551.8 \qquad 15.8 \qquad 14.2 \qquad 10$ $629.0 \qquad 15.2 \qquad 13.6 \qquad 11$ $703.1 \qquad 13.6 \qquad 13.0 \qquad 4$ $761.6 \qquad 14.0 \qquad 12.6 \qquad 10$ $817.4 \qquad 13.5 \qquad 12.3 \qquad 9$ $866.5 \qquad 12.9 \qquad 12.0 \qquad 7$ $904.3 \qquad 12.5 \qquad 11.8 \qquad 6$ $915.0 \qquad 12.4 \qquad 11.7 \qquad 6$

判断すると表3,4のようになる.

 $I=3188.6/(7.8T+A0.6887+79.5)(S47.7)\cdots(14)$ $I=37480.2/(257.3T+A1.0575+305.7)(S50.7)\cdots(15)$

4 考 察

2定数型平均降雨強度式は,(1)~(4)式ともに同一降雨継続時間についてはよい適合性を示している。とくにこの適用例においては Horton 式((1)式) がよく合っている。一方(1)~(4)式ともに降雨別,降雨継続時間別に式中の2つのパラメータがかなり変化する。これは同一流域においても,降雨ごとにその地域的分布,時間的分布が大きく変化することを意味する。

降雨継続時間の項を含む平均降雨 強 度 式 も、(14),(15)式を比べてわかるように,降雨でとに (6)式 中のパラメータが大きく変化する。 このうち a, c だけでも適当な値に固定して,(7)式の T と d_1 の関係を同一流域では,一つの関係式で表現できると実用的に大へん便利であるとの観点から,かなりの検討を加えたが期待した十分な成果が得られなかった。

また表 3 、 4 からわかるように、(12)、(13)式ともに 大体 F < 10%で平均降雨強度が推定されている.表 2 の 47年 7 月豪雨では、 各 T に対する d_1 と $\overline{d_1}$ の差が、 A の変化に対して小さいが、50年 7 月豪雨ではその差が 大きいので、(13)式による近似の精度が悪くなり、(15) 式による計算結果は表4に示すとおり,表3よりも適合性が悪い。したがって(6)式の適合性は,(7)式の T と d_1 の関係を許容誤差以内で表現できるかどうかに左右される。

5 おわりに

ここで提案した流域平均降雨強度式は、降雨によってあるいは降雨継続時間によってそのパラメータが変化する。これは降雨現象の地域的および時間的分布のランダム性から見て当然予想されることであるが、実用的にはきわめて不都合なことである。このランダム現象を確率的概念を導入して整理することが可能であれば、ある程度流域平均降雨強度式のパラメータの挙動を明らかにすることができるものと思われる。今後の研究課題としたい。なお本研究は文部省科学研究費(試験研究(1))の補助による研究成果の1部であることを付記して謝意を表する。

参考文献

- 1. 田中礼次郎:島根大農研報10:135-140, 1976.
- LINSLEY, R. K., KOHLER, M. A and PAULHUS, J. L. H.: Applied Hydrology: MCGRAW-HILLNew York 1949, p. 79-92
- 3. 岩井重久,石黒政儀:応用水文学:森北出版 東京 1970, p. 148-235

Summary

For many design purposes, it is necessary to determine the maximum depths of precipitation (P) within a given sorm for various areas (A) and durations (tT).

Over the Hi River basin (914 sb. km), in this paper, the maximum depths of precipitation were analyzed by using storm records from 11 stations as shown in Fig. 1.

The relations between P and A were well described by following formulas; $P/P_o = e^{-\alpha A^{\beta}}$, $P/P_o = a/(A+b)$. $P/P_o = a/A^n$, and $P/P_o = a/(\sqrt{A+b})$. And the most accurate method for computing P was the use of $P/P_o = e^{-\alpha A^{\beta}}$. However, the parameters of α , β , α , α , α , and α in formulas varied with storms and their durations.

 $P=a/(T^b+A^c+d)$ was proposed as the formula containing a term, T, but the accuracy was not satisfactory.