ファイル
言語
英語
著者
内容記述(抄録等)
Parametric nonoscillation region is given for the Mathieu-type differential equation
x′′+(−α+βc(t))x=0,
where α and β are real parameters. Oscillation problem about a kind of Meissner’s equation is also discussed. The obtained result is proved by using Sturm’s comparison theorem and phase plane analysis of the second-order differential equation
y′′+a(t)y′+b(t)y=0,
where a, b:[0,∞)→R are continuous functions. The feature of the result is the ease of chequing whether the obtained condition is satisfied or not. Parametric nonoscilla- tion region about (α,β) and some solution orbits are drawn to help understand the result.
主題
Parametric nonoscillation region
Damped linear differential equations
Mathieu’s equation
Meissner’s equation
Phase plane analysis
掲載誌名
Monatshefte für Mathematik
186
4
開始ページ
721
終了ページ
743
ISSN
0026-9255
ISSN(Online)
1436-5081
発行日
2017-4-11
DOI
資料タイプ
学術雑誌論文
ファイル形式
PDF
著者版/出版社版
著者版
部局
総合理工学部 数理科学科