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Abstract. This paper deals with the complex vector space of holomorphic
cross-sections of a homogeneous holomorphic vector bundle over an elliptic ad-
joint orbit of a connected real simple Lie group of Hermitian type, and provides
a necessary and sufficient condition for the vector space to be finite-dimensional.
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2 N. BOUMUKI

1. Introduction and the main result (Theorem 1.2)

This is a sequel to the paper [3] where we study the complex vector space VG/L
of holomorphic cross-sections of a homogeneous holomorphic vector bundle over an
elliptic (adjoint) orbit G/L of a connected real semisimple Lie group G and give a
sufficient condition for the vector space VG/L to be finite-dimensional. First of all,
let us recall a result in [3]. Let GC be a connected complex semisimple Lie group,
G a connected closed subgroup of GC such that g is a real form of gC, and T a
non-zero elliptic element of g. Setting

L := CG(T ), gλ := {A ∈ gC | adT (A) = iλA} for a λ ∈ R,
Q− := NGC(

⊕
µ≥0 g

−µ),

one has an elliptic orbit G/L, a complex parabolic subgroup Q− ⊂ GC and a com-
plex flag manifold GC/Q

− (which is also called a Kähler C-space or a generalized
flag manifold), and knows that ι : G/L → GC/Q

−, gL 7→ gQ−, is a G-equivariant
real analytic diffeomorphism of G/L onto a domain in GC/Q

−. Then we identify
G/L with its image ι(G/L), induce the complex structure J on G/L from GC/Q

−,
and consider G/L = (G/L, J) as a homogeneous complex manifold of G.

G/L ι - GC/Q
−

For any finite-dimensional complex vector space V and holomorphic homomor-
phism ρ : Q− → GL(V), we denote byGC×ρV the homogeneous holomorphic vector
bundle over the complex flag manifold GC/Q

− associated with ρ, by ι♯(GC ×ρ V)
its restriction to the domain G/L = ι(G/L) ⊂ GC/Q

−, and by VG/L or VG/L(V, ρ)
the complex vector space of holomorphic cross-sections of the bundle ι♯(GC ×ρ V).

G/L ι - GC/Q
−

?

ι♯(GC ×ρ V)
?

GC ×ρ V

In this setting, we have established

Theorem 1.1 (cf. Theorem 1.0.1 in [3, p.219]). dimC VG/L < ∞ if a maximal
compact subalgebra of g is semisimple (more precisely, dimC VG/L(V, ρ) < ∞ for
every finite-dimensional complex vector space V and holomorphic homomorphism
ρ : Q− → GL(V), if a maximal compact subalgebra of g is semisimple).

Our goal is to give a necessary and sufficient condition for VG/L to be finite-
dimensional. Theorem 1.1 enables us to achieve this goal in the case where g is a
simple Lie algebra, provided that we demonstrate the following theorem which is
the main result in this paper (see Remark 1.3-(i)):

Theorem 1.2. In the same setting as that of Theorem 1.1, suppose g to be a
simple Lie algebra of Hermitian type. Then, dimC VG/L(V, ρ) <∞ for every finite-
dimensional complex vector space V and holomorphic homomorphism ρ : Q− →
GL(V) if and only if all holomorphic functions on G/L are constant.
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The simple Lie algebras of Hermitian type
(AIII) su(p, q) with p, q ≥ 1 (BDI) so(2, n) with n ≥ 4
(DIII) so∗(2m) with m ≥ 3 (CI) sp(p,R) with p ≥ 1
(EIII) e6(−14) (EVII) e7(−25)

Remark 1.3. Here are comments on Theorems 1.1 and 1.2.

(i) In the same setting as that of Theorem 1.1, suppose that g is a simple Lie
algebra. Then, g is of Hermitian type if and only if a maximal compact
subalgebra of g is not semisimple. Accordingly Theorems 1.2 and 1.1 imply
that the following conditions (A) and (B) are equivalent, where we remark
that

dimCO(G/L) = 1

whenever a maximal compact subalgebra of g is semisimple (cf. Corollary
3.4.6-(ii) in [3, p.248]):
(A) dimC VG/L(V, ρ) <∞ for every finite-dimensional complex vector space

V and holomorphic homomorphism ρ : Q− → GL(V).
(B) dimCO(G/L) = 1.
Here O(G/L) stands for the complex vector space of holomorphic functions
on G/L.

(ii) In the same setting as that of Theorem 1.1, there always exist connected
complex semisimple Lie groups (Ga)C, connected closed subgroups Ga ⊂
(Ga)C and non-zero elliptic elements Ta ∈ ga such that each ga is a real
form of (ga)C and a simple Lie algebra,1 and that G/L is G-equivariant
biholomorphic to the direct product G1/L1 × G2/L2 × · · · × Gn/Ln where
La := CGa(Ta) and we fix a complex structure Ja on Ga/La in a way similar
to the way of fixing the J on G/L (1 ≤ a ≤ n). However, the author does
not know whether the following conditions (α) and (β) are equivalent, or
more precisely, whether (β) implies (α):
(α) dimC VG/L(V, ρ) <∞ for every finite-dimensional complex vector space

V and holomorphic homomorphism ρ : Q− → GL(V).
(β) dimCO(Ga/La) = 1 for each direct factor Ga/La of the G1/L1 ×

G2/L2 × · · · ×Gn/Ln.
(iii) One might derive a more general statement than our Theorems 1.1 and

1.2 from the two proofs of Proposition 2.5 in Dunne-Zierau [5, p.493] and
Proposition 3.16 in Zierau [18, p.115], or from Theorem 3.1 and Proposition
2.1 in Huckleberry [8, p.118, p.117]. Here, the proof of Dunne-Zierau [5,
p.493] depends on results in Wong [17], Vogan [16] and Harish-Chandra
[6], and the proof of Huckleberry [8, p.118, p.117] depends on results in
the study on cycle spaces of flag domains. Our proof of Theorem 1.2 is
independent of the results, but we complete the proof with referring to the
two proofs of Dunne-Zierau [5, p.493] and Zierau [18, p.115].

1Although ga is simple, (ga)C is not necessarily simple.
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This paper consists of three sections. In §2 we recall the definition of elliptic orbit,
show some lemmas and collect former results. In §3 we establish some propositions
and finally conclude Theorem 1.2 by them.

Notation. Throughout this paper, for a Lie group G we denote its Lie algebra by
the corresponding Fraktur small letter g and use the following notation:

(n1) N, Z, R, C : the sets of natural numbers, integers, real numbers, and complex
numbers, respectively, where N does not contain the zero,

(n2) m⊕ n : the direct sum of vector spaces m and n,
(n3) GL(V), gl(V) : the general linear group, and linear Lie algebra on a complex

vector space V, respectively,
(n4) Ad, ad : the adjoint representations of G and g, respectively,
(n5) CG(t) := {g ∈ G |Ad g(H) = H for all H ∈ t} for a subset t ⊂ g,
(n6) CG(T ) := {g ∈ G | Ad g(T ) = T} for an element T ∈ g,
(n7) NG(m) := {g ∈ G | Ad g(m) ⊂ m} for a vector subspace m ⊂ g,
(n8) Bg : the Killing form of g,
(n9) f |S : the restriction of a mapping f to a set S,
(n10) C∗ := C− {0},
(n11) i :=

√
−1.

Acknowledgment. The author would like to thank the referee for his valuable com-
ments on the manuscript.

2. Preliminaries

This section consists of five subsections. In §§2.1 we recall the definitions of
elliptic element and elliptic (adjoint) orbit. In §§2.2 we set an elliptic orbit G/L
and a complex flag manifold GC/Q

−. In §§2.3 we set vector bundles ι♯(GC ×ρ V)
and GC ×ρ V over the elliptic orbit G/L and the complex flag manifold GC/Q

−,
respectively, and set a continuous representation ϱ (resp. ϱ̃) of the Lie group G
(resp. GC) on the vector space VG/L (resp. VGC/Q−) of cross-sections of the bundle
ι♯(GC×ρV) (resp. GC×ρV). Thereafter, we construct arguments in their setting. In
§§2.4 we show four lemmas. Finally in §§2.5 we collect former results, Theorem 2.17,
Lemma 2.18, Lemma 2.19. The six lemmas and the theorem will play important
parts in the next section.

2.1. Definition of elliptic orbit. Here are the definitions of elliptic element and
elliptic (adjoint) orbit.

Definition 2.1 (cf. Kobayashi [9]). Let g be a real semisimple Lie algebra, and G
a connected Lie group with Lie algebra g.

(i) An element T ∈ g is said to be elliptic, if the linear transformation adT :
g→ g, X 7→ [T,X], is semisimple and all the eigenvalues of adT are purely
imaginary.

(ii) The adjoint orbit AdG(T ) = G/CG(T ) of G through an elliptic element
T ∈ g is called an elliptic adjoint orbit or an elliptic orbit for short.
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2.2. Setting on an elliptic orbit and a complex flag manifold. Hereafter,
we obey the following setting which is a little different from the setting of [3,
pp.223–224]:

• GC is a connected complex semisimple Lie group,
• G is a connected closed subgroup of GC such that g is a real form of gC,
• T is a non-zero elliptic element of g,
• L := CG(T ), LC := CGC(T ), g

λ := {A ∈ gC | adT (A) = iλA} for a λ ∈ R,
• us :=

⊕
λ>0 g

sλ, U s := exp us and Qs := NGC(lC ⊕ us) for each s = ±,
• θ is a Cartan involution of g satisfying T = θ(T ),2

• k := {X ∈ g |X = θ(X)}, p := {Y ∈ g |Y = −θ(Y )}, gu := k⊕ ip,
• K and Gu are the maximal compact subgroups of G and GC whose Lie
algebras are k and gu, respectively,
• Lu := CGu(T ),
• t is a maximal torus of k containing the T ,
• h := cg(t), a := p ∩ h, hR := it⊕ a,
• kC, tC, hC, and pC are the complex subalgebras, and vector subspace of gC
generated by k, t, h, and p, respectively,
• 4 = 4(gC, hC) is the non-zero root system of gC relative to hC,
• gα is the root subspace of gC for an α ∈ 4,
• {Eα}α∈△ is Chevalley’s canonical basis of gC mod hC such that (Eα−E−α),
i(Eα + E−α) ∈ gu for all α ∈ 4,3 and

for an H ∈ t we put

(2.2)
4(H, 0) := {γ ∈ 4 | γ(H) = 0}, 4(H,+) := {β ∈ 4 | β(−iH) > 0},

4(H,−) := {β ∈ 4 | β(−iH) < 0}.

In addition to this setting, we suppose4(T,+) to consist of N -roots β1, β2, . . . , βN .
Note here that

(1) the centers of GC and G are both finite,
(2) both K and Gu are connected,
(3) l and lC are reductive subalgebras of g and gC, respectively,
(4) hR = {A ∈ hC |α(A) ∈ R for all α ∈ 4},
(5) gα = spanC{Eα} for all α ∈ 4,
(6) hR = spanR{H∗

α}α∈△, [H∗
α, Eα] = 2Eα and [H∗

α, E−α] = −2E−α if one puts
H∗
α := [Eα, E−α] for each α ∈ 4,

(7) gC =
⊕

λ∈R g
λ = lC ⊕ u+ ⊕ u− = hC ⊕

⊕
α∈△ gα,

(8) gu = ihR ⊕
⊕

α∈△ spanR{Eα − E−α} ⊕ spanR{i(Eα + E−α)},
(9) lC = g0 = hC ⊕

⊕
γ∈△(T,0) gγ,

(10) u+ =
⊕

λ>0 g
λ =

⊕
β∈△(T,+) gβ =

⊕N
ℓ=1 gβℓ ,

(11) 4(T,±) = −4(T,∓),

2Such a θ always exists (e.g. Lemma 7.2.4 in [2, p.69]).
3Such a {Eα}α∈△ exists, since ihR is a maximal torus of gu (cf. Lemma 3.1 in Helgason [7,

pp.257–258]).
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and that tC = hC if and only if g has a compact Cartan subalgebra. In the setting
above, we show two Lemmas 2.3 and 2.5.

Lemma 2.3. There exists a fundamental root system Π1 of 4 = 4(gC, hC) satis-
fying

(2.4) α(−iT ) ≥ 0 for all α ∈ Π1.

Proof. One can obtain such a Π1 by defining the lexicographic linear ordering on
the dual space (hR)

∗ associated with an ordered real basis −iT =: A1, A2, . . . , Al
of hR, for example. □
Lemma 2.5. The following nine items hold:

(i) The closed subgroup L ⊂ G is connected.
(ii) The closed complex (Lie) subgroup LC ⊂ GC is connected.
(iii) U s is a simply connected, closed complex nilpotent subgroup of GC whose Lie

algebra coincides with us, and exp : us → U s is biholomorphic (s = ±).
(iv) Qs is a connected, closed complex parabolic subgroup of GC such that Qs =

LC ⋉ U s (semidirect) and qs = lC ⊕ us =
⊕

µ≥0 g
sµ (s = ±).

(v) The product mapping U+ × Q− 3 (u, q) 7→ uq ∈ GC is a biholomorphism of
U+ ×Q− onto a domain in GC.

(vi) Lu = Gu ∩Qs, L = G ∩Qs (s = ±).
(vii) ιu : Gu/Lu → GC/Q

−, kLu 7→ kQ−, is a Gu-equivariant real analytic diffeo-
morphism of Gu/Lu onto GC/Q

−.
(viii) ι : G/L → GC/Q

−, gL 7→ gQ−, is a G-equivariant real analytic diffeomor-
phism of G/L onto a simply connected domain in GC/Q

−.
(ix) GQ− is a domain in GC.

Proof. We conclude this lemma by taking a fundamental root system Π1 ⊂ 4 with
(2.4) and the proofs of Lemma 7.3.3, Lemma 8.0.1, Proposition 8.2.1 and Lemma
11.1.2 in [2, p.71, p.75, p.78, p.117] into consideration. □

In general, there are several kinds of invariant complex structures on an elliptic
orbit (see Example 2.6 below). Identifying the elliptic orbit G/L with the domain
ι(G/L) in the complex flag manifold GC/Q

− via ι : gL 7→ gQ−, we fix an invariant
complex structure J on G/L in the same way as we did in [3, Remark 2.4.4, p.225].4

G/L ι - GC/Q
−

Example 2.6. Let G = SL(2,C) and

T =

(
i 0
0 −i

)
.

Then it follows that T ∈ g = sl(2,C) and the linear transformation adT : g→ g is
represented by

adT =

2i 0 0
0 −2i 0
0 0 0


4Note here that N = dimC u+ = dimCG/L = dimCGC/Q

−.
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relative to a basis

{(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 0
0 −1

)}
of g. Hence T is a non-zero

elliptic element of g. A direct computation yields

L = CG(T ) =

{(
a 0
0 1/a

)
a ∈ C∗

}
= S(GL(1,C)×GL(1,C)),

and one has G/L = SL(2,C)/S(GL(1,C) × GL(1,C)). Since this elliptic orbit
is a reductive homogeneous space, especially an affine symmetric space, one can
construct G-invariant complex structures J1 and J2 on G/L from

ȷ1 :

(
0 z
w 0

)
7→

(
0 iz
iw 0

)
, ȷ2 :

(
0 z
w 0

)
7→

(
0 iz
−iw 0

)
for z, w ∈ C,

respectively. In this paper, we adopt the J2 as a complex structure on G/L =
SL(2,C)/S(GL(1,C) × GL(1,C)). Incidentally, G/L is a Stein manifold with re-
spect to the J1. cf. Théorèmes 5 et 1 dans Matsushima-Morimoto [13, p.151, p.139].

2.3. Setting on vector bundles over G/L and GC/Q
−. To the setting of §§2.2,

we add the following setting. For any finite-dimensional complex vector space V and
holomorphic homomorphism ρ : Q− → GL(V), q 7→ ρ(q), we denote by GC×ρV the
homogeneous holomorphic vector bundle over the complex flag manifold GC/Q

−

associated with ρ, and by ι♯(GC×ρV) its restriction to the domain G/L = ι(G/L) ⊂
GC/Q

−.

G/L ι - GC/Q
−

?

ι♯(GC ×ρ V)
?

GC ×ρ V

Then we consider

VGC/Q−(V, ρ) :=

h : GC → V
(1) h is holomorphic,
(2) h(aq) = ρ(q)−1

(
h(a)

)
for all (a, q) ∈ GC ×Q−

 and

VG/L(V, ρ) :=

ψ : GQ− → V
(1) ψ is holomorphic,
(2) ψ(xq) = ρ(q)−1

(
ψ(x)

)
for all (x, q) ∈ GQ− ×Q−


(2.7)

as the complex vector spaces of holomorphic cross-sections of the bundles GC×ρ V
and ι♯(GC ×ρ V), respectively, and sometimes express them as VGC/Q− and VG/L,
respectively. Furthermore, we define a homomorphism ϱ : G → GL(VG/L), g 7→
ϱ(g), by

(2.8)
(
ϱ(g)ψ

)
(x) := ψ(g−1x) for ψ ∈ VG/L and x ∈ GQ−,

and equip the vector space VG/L with the Fréchet metric d. Here we refer to (2.6.3)
in [3, p.230] for the definition of the metric d. Similar to the above, we define a
homomorphism ϱ̃ : GC → GL(VGC/Q−), a 7→ ϱ̃(a), and provide the vector space
VGC/Q− with a metric topology.

Remark 2.9. Here are comments on (VG/L, ϱ) and (VGC/Q− , ϱ̃).
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(i) Lemma 2.6.18 in [3, p.235] shows that F : VGC/Q− → VG/L, h 7→ h|GQ− , is
an injective linear mapping satisfying F ◦ ϱ̃(g) = ϱ(g) ◦ F for all g ∈ G.

(ii) Lemma 2.5-(vii) implies that GC/Q
− is a connected compact complex man-

ifold, so that dimC VGC/Q−(V, ρ) < ∞ for every finite-dimensional complex
vector space V and holomorphic homomorphism ρ : Q− → GL(V).5

In addition, given a ψ ∈ VG/L, we define a ϱ(K)-invariant complex vector sub-
space Uψ ⊂ VG/L by

(2.10) Uψ := spanC{ϱ(k)ψ | k ∈ K},

and denote by (VG/L)K the set of K-finite vectors in VG/L for ϱ, i.e.,

(2.11) (VG/L)K := {ϕ ∈ VG/L | dimC Uϕ <∞}.

Note here that

(1) F(VGC/Q−) ⊂ (VG/L)K ,
(2) VG/L = (VG/L, d) is a complex Fréchet space, and ϱ is a continuous repre-

sentation of the Lie group G on the Fréchet space VG/L,6
(3) the differential representation ϱ∗ : gC → gl(VG/L), A 7→ ϱ∗(A), of ϱ : G →

GL(VG/L) is well-defined,7
(4) (VG/L)K is a ϱ(K)-invariant complex vector subspace of VG/L; besides, it is

dense in VG/L = (VG/L, d),8
(5) dimC(VG/L)K <∞ implies dimC VG/L = dimC(VG/L)K <∞.

Let us explain the reason why the above (5) holds. Suppose that dimC(VG/L)K <
∞. Then (VG/L)K is a closed subset of VG/L = (VG/L, d), since VG/L is a Hausdorff
topological vector space. Therefore one has VG/L = (VG/L)K , since (VG/L)K is
dense in VG/L. In view of dimC(VG/L)K < ∞ and VG/L = (VG/L)K we see that
dimC VG/L = dimC(VG/L)K <∞.
We end this subsection with defining a complex vector subspace WG/L ⊂ VG/L

by

(2.12) WG/L := {ψ ∈ VG/L |ψ(u) = ψ(e) for all u ∈ (U+ ∩GQ−)e},

where (U+∩GQ−)e denotes the connected component of U+∩GQ− containing the
unit element e ∈ GC.

2.4. Four lemmas. In the setting of §§2.2, §§2.3 we state the following four Lem-
mas 2.13, 2.14, 2.15 and 2.16 which are needed later:

Lemma 2.13. ϱ∗(A)ϕ ∈ (VG/L)K for all (A, ϕ) ∈ gC × (VG/L)K.

Proof. For any (A, ϕ) ∈ gC×(VG/L)K , we are going to confirm that the vector space
Uϱ∗(A)ϕ = spanC{ϱ(k)(ϱ∗(A)ϕ) | k ∈ K} is finite-dimensional. Let R be a complex

5cf. Corollary in Kodaira [10, p.161].
6e.g. the proof of Lemma 2.6.4 in [3, p.230] and references therein.
7cf. [3, §§2.6.2],

(
ϱ∗(A)ψ

)
(x) = d/dt|t=0ψ

(
exp(−tA)x

)
for ψ ∈ VG/L and x ∈ GQ−.

8e.g. Proposition 6.2.1 in [2, p.62].
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vector subspace of VG/L defined by R := spanC{ϱ∗(B)φ |B ∈ gC, φ ∈ Uϕ}. Then,
it comes from dimC gC <∞ and dimC Uϕ <∞ that

dimCR <∞.
Now, let us show that R is ϱ(K)-invariant. For each k ∈ K and (B,φ) ∈ gC ×Uϕ,
one has Ad k(B) ∈ gC and ϱ(k)φ ∈ Uϕ (since Uϕ is ϱ(K)-invariant), and moreover

R 3 ϱ∗(Ad k(B))(ϱ(k)φ)
(2.8)
= ϱ(k)(ϱ∗(B)φ).

This shows that R is ϱ(K)-invariant. Accordingly ϱ∗(A)ϕ ∈ R yields Uϱ∗(A)ϕ ⊂ R,
and dimC Uϱ∗(A)ϕ ≤ dimCR <∞. □
Lemma 2.14. For any holomorphic function h : GQ− → C and non-empty open
subset O+ of U+ ∩GQ−, the restriction h|O+ is holomorphic on O+.

Proof. From Lemma 2.5-(iii), (ix) it follows that the inclusion ı : U+ → GC, u 7→ u,
is holomorphic, and that U+ ∩ GQ− and GQ− are open subsets of U+ and GC,
respectively. These imply that ı : U+ ∩GQ− → GQ− is holomorphic; furthermore,
ı : O+ → GQ− is holomorphic. Therefore h ◦ ı = h|O+ is holomorphic. □
Lemma 2.15. Suppose that

(s1) the representation ρ : Q− → GL(V), q 7→ ρ(q), is irreducible,

and that V ′ 6= {0} for a given closed ϱ(G)-invariant complex vector subspace V ′ of
VG/L = (VG/L, d). Then, it turns out that {0} 6=WG/L ⊂ V ′.

Proof. We refer to the proof of Proposition 3.2.1-(1) in [3, p.239]. □
Lemma 2.16. Suppose that

(s1) ρ : Q− → GL(V) is irreducible, and
(I) dimC VG/L <∞.

Then, the following two items hold:

(II) ϱ is an irreducible representation of G on VG/L.
(III) The representation module (VGC/Q− , ϱ̃) is G-equivariant isomorphic to

(VG/L, ϱ) via F : h 7→ h|GQ−.

Proof. If VG/L = {0}, then Remark 2.9-(i) tells us that VGC/Q− = {0}, so that both
(II) and (III) hold. Hereafter, we investigate the case VG/L 6= {0}.
(II) First, let us confirm (II). Let V1 be any closed ϱ(G)-invariant complex vector

subspace of VG/L = (VG/L, d) with V1 6= {0}. Then, the supposition (I) and Weyl’s
theorem on semisimplicity of representations9 enable us to choose a closed ϱ(G)-
invariant complex vector subspace V2 of VG/L so that

VG/L = V1 ⊕ V2
because the Lie algebra g is semisimple and the Lie group G is connected. If
V2 6= {0}, then the supposition (s1) and Lemma 2.15 yield {0} 6=WG/L ⊂ V1 ∩V2,
which is a contradiction. Therefore V2 = {0}, and V1 = VG/L. Hence (II) holds.

9cf. Theorem 3.13.1 in Varadarajan [15, p.222].
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(III) It suffices to confirm that

a© VGC/Q− 6= {0}

by virtue of (II) and Remark 2.9-(i). Let Π1 be a fundamental root system of
4 = 4(gC, hC) satisfying (2.4), and 4+ the set of positive roots in 4 relative to
Π1. From VG/L 6= {0}, (I) and (II) there exist a non-zero φ ∈ VG/L and a unique
linear function ν : hC → C such that

(2.i) ϱ∗(gα)φ = {0} for all α ∈ 4+, (2.ii) ϱ∗(A)φ = ν(A)φ for all A ∈ hC.

Here ν is a dominant integral form on hC with respect to 4+, and it follows from
(2.i) and 4(T,+) ⊂ 4+ that φ ∈ WG/L, so that

φ(e) 6= 0

due to φ 6= 0 and Lemma 2.6.17 in [3, p.234]. Accordingly one can prove the above
a© by holomorphic induction in stages, while referring to the proof of the item a©
in [3, p.244]. □

2.5. An analytic continuation from G/L to GC/Q
−. The setting of §§2.2, §§2.3

remains valid here. This subsection outlines a proof of Theorem 2.17 below and
recalls two lemmas. Here, this theorem was originally proved in [1] and its proof is
improved in [2].

Theorem 2.17 (cf. Theorem 3.1 in [1, p.10]). Suppose that there exists a funda-
mental root system Π1 of 4 = 4(gC, hC) satisfying (2.4) and

(s3) gβ ⊂ kC for every β ∈ Π1 −4(T, 0).

Then, the complex vector space VGC/Q− is linear isomorphic to VG/L via

F : VGC/Q− → VG/L, h 7→ h|GQ− ,

and so dimC VG/L = dimC VGC/Q− <∞. Here h|GQ− is the restriction of h to GQ−.

We will outline a proof of this theorem (see [2, §§8.3, §§11.2.2] for related mat-
ters). Define a Weyl group W of the complex semisimple Lie group GC, an action
ζ of W on the dual space (hC)

∗, and an element wα ∈ NGu(ihR) by

W := NGu(ihR)/CGu(ihR), ζ([w])η := tAdw−1(η) for [w] ∈W and η ∈ (hC)
∗,

wα := exp(π/2)(Eα − E−α) for an α ∈ 4,

respectively, where [w] stands for the left coset wCGu(ihR). Let Π1 ⊂ 4 be a
fundamental root system satisfying (2.4). Relative to this Π1 we fix the set 4+

(resp. 4−) of positive (resp. negative) roots in 4, and define a simply connected,
closed complex nilpotent subgroup N+ of GC by N+ := exp

⊕
α∈△+ gα. In addition,

we set
Φ[w] := {α ∈ 4+ | ζ([w])−1α ∈ 4−} for a [w] ∈W,
W1 := {[w] ∈W |Φ[w] ⊂ 4+ −4(T, 0)}.

Then, N+ acts on the complex flag manifoldGC/Q
− viaN+×GC/Q

− 3 (n, aQ−) 7→
naQ− ∈ GC/Q

−, andW1 forms all representatives for the orbit space (GC/Q
−)/N+,
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i.e., GC/Q
− =

⋃
[σ]∈W1 N+σ−1Q−/Q− (disjoint union). This gives rise to a gener-

alized Bruhat decomposition

GC =
⋃

[σ]∈W1 N+σ−1Q− (disjoint union)

and one knows that for a given [σ] ∈W1,

• dimCN
+σ−1Q− = dimCGC if and only if [σ] = [e],

• dimCN
+σ−1Q− = dimCGC−1 if and only if there exists a β ∈ Π1−4(T, 0)

satisfying [σ] = [wβ],

where e is the unit element of GC. cf. Kostant [11], [12]. Setting

O1 := N+Q− ∪
⋃
β∈Π1−△(T,0)N

+w−1
β Q−,

we conclude that every holomorphic function f on O1 can be continued analytically
to the whole GC by Hartogs’s continuation theorem (since GC−O1 is of codimension
2 or more).

Now, let us outline a proof of Theorem 2.17. Remark that

(C) for each ϕ ∈ (VG/L)K there exists a unique holomorphic mapping ϕ′ : U+ →
V such that ϕ = ϕ′ on (U+ ∩GQ−)e,

where (U+ ∩GQ−)e is the connected component of U+ ∩GQ− containing the unit
e ∈ GC. On the one hand, it turns out that

N+Q− = U+Q−, N+w−1
β Q− ⊂ w−1

β U+Q− for all β ∈ Π1 −4(T, 0)

under the supposition (2.4). Thus, every holomorphic function f on O2 := U+Q−∪⋃
β∈Π1−△(T,0)w

−1
β U+Q− can be continued analytically to the whole GC. On the

other hand, the supposition (s3) in Theorem 2.17 implies that wβ belongs to K for
every β ∈ Π1−4(T, 0). Accordingly, for any ϕ ∈ (VG/L)K and all β ∈ Π1−4(T, 0)
we have ϱ(wβ)ϕ ∈ (VG/L)K , and it follows from (C) and (2.7)-(2) that all the
restrictions of ϕ and ϱ(wβ)ϕ to (U+ ∩ GQ−)e can be continued analytically to
U+Q−. From that, ϕ can be continued analytically to the O2; moreover, to the GC.
This assures that for any ϕ ∈ (VG/L)K there exists a unique h ∈ VGC/Q− satisfying
ϕ = h|GQ− , so that (VG/L)K = F(VGC/Q−), dimC(VG/L)K = dimC VGC/Q− < ∞.
Therefore Theorem 2.17 holds (see (5) on page 8 and Remark 2.9-(i)). Incidentally,
the above (C) comes from the following two lemmas which are needed later:

Lemma 2.18 (cf. Lemma 11.2.12 in [2, p.122]). For any ϑ ∈ R and b1, b2, . . . , bN >
0, the number of non-negative integer solutions (p1, p2, . . . , pN) to the equation

ϑ = b1p1 + b2p2 + · · ·+ bNpN

is only finite or zero.

Lemma 2.19 (cf. Lemma 11.2.14 in [2, p.122]). (1) Given a ϕ ∈ (VG/L)K −
{0}, there exist a complex basis {ϕa}

kϕ
a=1 of Uϕ and µ1, µ2, . . . , µkϕ ∈ R such

that

ϱ(exp tT )ϕa = eiµatϕa

for all 1 ≤ a ≤ kϕ = dimC Uϕ and t ∈ R.
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(2) If V 6= {0}, then there exist a complex basis {vb}mb=1 of V and θ1, θ2, . . . , θm ∈
R such that

ρ(exp tT )vb = eiθbtvb

for all 1 ≤ b ≤ m = dimC V and t ∈ R.

3. Proof of Theorem 1.2

In this section also, we obey the setting of §§2.2 and §§2.3.
This section consists of three subsections. In §§3.1 we set a special subset Λ ⊂ 4.

In §§3.2 we deal with the case where g has a compact Cartan subalgebra and derive
dimC VG/L <∞ from the supposition 4 ⊂ Λ. In §§3.3 we deal with the case where
g is a simple Lie algebra of Hermitian type, introduce a fundamental root system Π2

by taking the structure of irreducible Hermitian symmetric space of non-compact
type into consideration, and establish two Corollaries 3.14 and 3.15 and Proposition
3.17 which enable us to complete the proof of Theorem 1.2.

3.1. A special subset Λ ⊂ 4. Let Λ denote the set of roots α ∈ 4 = 4(gC, hC)
which satisfy the following condition (3.1):

(3.1) for each ϕ ∈ (VG/L)K there exists an n ∈ N such that ϱ∗(Eα)
nϕ = 0,

where we express ϱ∗(Eα)(· · · (ϱ∗(Eα)(ϱ∗(Eα)︸ ︷︷ ︸
n

ϕ)) · · · ) as ϱ∗(Eα)nϕ. With this nota-

tion Λ, we demonstrate

Proposition 3.2. β ∈ Λ for all β ∈ 4(T,+), in other words, gβ ⊂ u+, β ∈ 4
imply β ∈ Λ.

Proof. Take any β ∈ 4(T,+) and ϕ ∈ (VG/L)K . Let us confirm that there exists
an n ∈ N satisfying

ϱ∗(Eβ)
nϕ = 0.

That is evident when ϕ = 0. Hereafter, we investigate the case ϕ 6= 0. In this case,

there exist a complex basis {ϕa}
kϕ
a=1 of Uϕ and µ1, µ2, . . . , µkϕ ∈ R such that

1© ϱ(exp tT )ϕa = eiµatϕa

for all 1 ≤ a ≤ kϕ = dimC Uϕ and t ∈ R, and there exist a complex basis {vb}mb=1 of
V and θ1, θ2, . . . , θm ∈ R such that

2© ρ(exp tT )vb = eiθbtvb

for all 1 ≤ b ≤ m = dimC V and t ∈ R, by Lemma 2.19.
First, let us fix the setting for this proof. We recall 4(T,+) = {βℓ}Nℓ=1, assume

A© β = β1

by changing the indexes of β1, β2, . . . , βN (if necessary), and express ϕa(x) ∈ V as

3© ϕa(x) = ϕa
1(x)v1 + ϕa

2(x)v2 + · · ·+ ϕa
m(x)vm (1 ≤ a ≤ kϕ, x ∈ GQ−).
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Let (w1, w2, . . . , wN) denote the canonical coordinates of the second kind associated
with the basis {Eβℓ}Nℓ=1 ⊂ u+,

U+ ⊃ O+ 3 exp(w1Eβ1) exp(w
2Eβ2) · · · exp(wNEβN )

←→ (w1, w2, . . . , wN) ∈ O ⊂ CN .

Here O+ and O are some open subsets of U+ and CN such that

e ∈ O+ ⊂ U+ ∩GQ−

and (0, 0, . . . , 0) ∈ O, respectively. For each 1 ≤ a ≤ kϕ and 1 ≤ b ≤ m, the func-
tion ϕa

b : GQ− → C is holomorphic; thus the restriction ϕa
b|O+ is also holomorphic

due to Lemma 2.14. Accordingly, there exists an R > 0 so that the following
conditions (a1) and (a2) hold for P := {u ∈ O+ : |wℓ(u)| < R, 1 ≤ ℓ ≤ N}:

(a1) P is an open subset of O+ containing e,
(a2) on P we can express each ϕa

b|O+ as

ϕa
b(w1, w2, . . . , wN) =

∑
p1,p2,...,pN≥0

αa
b
p1p2···pN (w

1)p1(w2)p2 · · · (wN)pN

(the Taylor expansion of ϕa
b|O+ at e = (0, 0, . . . , 0)).

In this setting, we will prove that there exists an n ∈ N satisfying ϱ∗(Eβ)
nϕ = 0.

Our first aim is to demonstrate that for each 1 ≤ a ≤ kϕ and 1 ≤ b ≤ m,

a© ϕa
b(w1, w2, . . . , wN) =

∑
p1,p2,...,pN≥0 αa

b
p1p2···pN (w

1)p1(w2)p2 · · · (wN)pN is a
polynomial function on the P of finite degree.

For any u = exp(w1Eβ1) exp(w
2Eβ2) · · · exp(wNEβN ) ∈ P and sufficiently small t ∈

R, we see from βℓ(T ) ∈ iR, (exp tT )u exp(−tT ) ∈ O+ that |eβℓ(T )twℓ| = |wℓ| < R,

(exp tT )u exp(−tT )
= exp(eβ1(T )tw1Eβ1) exp(e

β2(T )tw2Eβ2) · · · exp(eβN (T )twNEβN ) ∈ P.
This and (a2) assure that for each 1 ≤ a ≤ kϕ and 1 ≤ b ≤ m,

4© ϕa
b
(
(exp tT )u exp(−tT )

)
= ϕa

b(eβ1(T )tw1, eβ2(T )tw2, . . . , eβN (T )twN)

=
∑

p1,p2,...,pN≥0

e(β1(T )p1+β2(T )p2+···+βN (T )pN )tαa
b
p1p2···pN (w

1)p1(w2)p2 · · · (wN)pN .

For any 1 ≤ a ≤ kϕ we obtain
m∑
b=1

eiθbtϕa
b(u)vb

2©
= ρ(exp tT )

( m∑
b=1

ϕa
b(u)vb

)
3©
= ρ(exp tT )

(
ϕa(u)

)
= ϕa(u exp(−tT )) (∵ ϕa ∈ VG/L, (2.7)-(2))
(2.8)
= (ϱ(exp tT )ϕa)

(
(exp tT )u exp(−tT )

)
1©
= eiµatϕa

(
(exp tT )u exp(−tT )

)
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3©
=

m∑
b=1

eiµatϕa
b
(
(exp tT )u exp(−tT )

)
vb.

This and (a2) assure that for each 1 ≤ a ≤ kϕ and 1 ≤ b ≤ m,

5© ϕa
b
(
(exp tT )u exp(−tT )

)
= ei(θb−µa)tϕa

b(u) = ei(θb−µa)tϕa
b(w1, w2, . . . , wN)

=
∑

p1,p2,...,pN≥0

ei(θb−µa)tαa
b
p1p2···pN (w

1)p1(w2)p2 · · · (wN)pN .

These 4© and 5© yield

ei(θb−µa)tαa
b
p1p2···pN = ei(β1(−iT )p1+β2(−iT )p2+···+βN (−iT )pN )tαa

b
p1p2···pN

for all 1 ≤ a ≤ kϕ, 1 ≤ b ≤ m, 0 ≤ p1, p2, . . . , pN ∈ Z and sufficiently small t ∈ R.
Differentiating this equation at t = 0 we have

(θb − µa)αabp1p2···pN =
(
β1(−iT )p1 + β2(−iT )p2 + · · ·+ βN(−iT )pN

)
αa

b
p1p2···pN .

Here Lemma 2.18 and βℓ(−iT ) > 0 imply that for each 1 ≤ a ≤ kϕ and 1 ≤ b ≤ m,
the number of non-negative integer solutions (p1, p2, . . . , pN) to the equation

θb − µa = β1(−iT )p1 + β2(−iT )p2 + · · ·+ βN(−iT )pN
is only finite or zero, so that the number of the non-zero coefficients αa

b
p1p2···pN is

only finite. Hence a© holds.
By virtue of a©, one can choose an n ∈ N so that

6© ∂nϕa
b

∂(w1)n
= 0 on P (1 ≤ a ≤ kϕ, 1 ≤ b ≤ m).

For any 1 ≤ a ≤ kϕ and p = exp(α1Eβ1) exp(α
2Eβ2) · · · exp(αNEβN ) ∈ P , one

has(
ϱ∗(Eβ)ϕa

)
(p) =

m∑
b=1

d

dt

∣∣∣
t=0
ϕa

b
(
exp(−tEβ)p

)
vb

A©
=

m∑
b=1

d

dt

∣∣∣
t=0
ϕa

b
(
exp((−t+ α1)Eβ1) exp(α

2Eβ2) · · · exp(αNEβN )
)
vb

=
m∑
b=1

d

dt

∣∣∣
t=0
ϕa

b
(
−t+ α1, α2, . . . , αN)vb

= −
m∑
b=1

∂ϕa
b

∂w1
(p)vb,

and furthermore, (
ϱ∗(Eβ)

nϕa
)
(p) = (−1)n

m∑
b=1

∂nϕa
b

∂(w1)n
(p)vb.

Consequently, it is immediate from 6© that ϱ∗(Eβ)
nϕa = 0 on P (1 ≤ a ≤ kϕ), so

that
ϱ∗(Eβ)

nϕ = 0 on P
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because of ϕ ∈ Uϕ = spanC{ϕa}
kϕ
a=1. This and Lemma 2.6.15-(4) in [3, p.234] enable

us to conclude that ϱ∗(Eβ)
nϕ = 0 on the whole GQ−. □

3.2. Case g has a compact Cartan subalgebra. Suppose that the Lie algebra
g has a compact Cartan subalgebra. Then it turns out that tC = hC and

gC = tC ⊕
⊕

α∈△ gα;

besides, either gα ⊂ kC or gα ⊂ pC holds for each α ∈ 4 = 4(gC, tC). A root α ∈ 4
is said to be compact (resp. non-compact) if gα ⊂ kC (resp. gα ⊂ pC). We denote
by 4(k) and 4(p) the sets of compact and non-compact roots in 4, respectively,
and have

(3.3)
4 = 4(k) ∪4(p) (disjoint union),
kC = tC ⊕

⊕
α∈△(k) gα, pC =

⊕
α∈△(p) gα.

With the notation Λ in §§3.1 and this notation 4(k), we assert

Lemma 3.4. Suppose that (s4) g has a compact Cartan subalgebra. Then, α ∈ Λ
for all α ∈ 4(k), in other words, gα ⊂ kC, α ∈ 4 imply α ∈ Λ.

Proof. Take any α ∈ 4(k) and ϕ ∈ (VG/L)K . Since gα ⊂ kC, dimC Uϕ <∞ and Uϕ
is ϱ(K)-invariant, there exists an n ∈ N such that ϱ∗(Eα)

nϕ = 0. Thus α ∈ Λ by
(3.1). □

Let U(gC) denote the universal enveloping algebra of the complex Lie algebra
gC. Then the representation ϱ∗ of gC on VG/L can be extended to a unique repre-
sentation of U(gC). We denote this extension by the same notation ϱ∗, and express
ϱ∗(E1

i1E2
i2 · · ·Enin)ψ as

ϱ∗(E1)
i1ϱ∗(E2)

i2 · · · ϱ∗(En)inψ

for E1
i1E2

i2 · · ·Enin ∈ U(gC) and ψ ∈ VG/L. In this setting we prove

Proposition 3.5. Suppose that

(s4) g has a compact Cartan subalgebra, and
(s5) 4 ⊂ Λ.

Then, the following (1), (2) and (3) hold for a given non-zero φ ∈ (VG/L)K endowed
with a linear function ω : tC → C such that ϱ∗(H)φ = ω(H)φ for all H ∈ tC :

(1) 0 < dimC ϱ∗(U(gC))φ <∞.
(2) ϱ∗(U(gC))φ is a closed ϱ(G)-invariant complex vector subspace of VG/L with

respect to the Fréchet metric d.
(3) Uφ ⊂ ϱ∗(U(gC))φ.

In addition; if (s1) ρ : Q− → GL(V) is irreducible, then the following (4) and (5)
hold further:

(4) {0} 6=WG/L ⊂ ϱ∗(U(gC))φ.
(5) ϱ is an irreducible representation of G on ϱ∗(U(gC))φ.
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Proof. We suppose 4 = 4(gC, tC) to consist of r-roots αr, . . . , α2, α1,

gC = tC ⊕ gαr ⊕ · · · ⊕ gα2 ⊕ gα1 .

(1) We will only prove dimC ϱ∗(U(gC))φ <∞. From (s5) we obtain α1 ∈ Λ, and
there exists an N1 ∈ N such that

ϱ∗(Eα1)
N1φ = 0

by (3.1) and φ ∈ (VG/L)K . For each 0 ≤ j ≤ N1, Lemma 2.13 yields ϱ∗(Eα1)
jφ ∈

(VG/L)K . This, together with α2 ∈ Λ and (3.1), enables us to find an nj2 ∈ N which
satisfies ϱ∗(Eα2)

nj2ϱ∗(Eα1)
jφ = 0. Setting N2 := max{nj2 | 0 ≤ j ≤ N1}, we see

that N2 ∈ N and

ϱ∗(Eα2)
N2ϱ∗(Eα1)

jφ = 0 for all 0 ≤ j ≤ N1.

For each 0 ≤ k ≤ N2 and 0 ≤ j ≤ N1, we obtain ϱ∗(Eα2)
kϱ∗(Eα1)

jφ ∈ (VG/L)K ,
and there exists an nkj3 ∈ N which satisfies ϱ∗(Eα3)

nkj3ϱ∗(Eα2)
kϱ∗(Eα1)

jφ = 0 by
α3 ∈ Λ and (3.1). Setting N3 := max{nkj3 | 0 ≤ k ≤ N2, 0 ≤ j ≤ N1}, we deduce
that N3 ∈ N and

ϱ∗(Eα3)
N3ϱ∗(Eα2)

kϱ∗(Eα1)
jφ = 0 for all 0 ≤ k ≤ N2, 0 ≤ j ≤ N1.

Inductively, we set natural numbers N4, N5, . . . , Nr. Then, one has

1© spanC{ϱ∗(Eαr)
mr · · · ϱ∗(Eα2)

m2ϱ∗(Eα1)
m1φ | 0 ≤ mi ∈ Z, 1 ≤ i ≤ r}

= spanC{ϱ∗(Eαr)
kr · · · ϱ∗(Eα2)

k2ϱ∗(Eα1)
k1φ | 0 ≤ ki < Ni, 1 ≤ i ≤ r},

and this vector space (on the right-hand side) is finite-dimensional. Here, since
ϱ∗(H)φ = ω(H)φ for all H ∈ tC, it follows that

2© ϱ∗(H)ϱ∗(Eαr)
mr · · · ϱ∗(Eα2)

m2ϱ∗(Eα1)
m1φ

= (ω +mrαr + · · ·+m2α2 +m1α1)(H)ϱ∗(Eαr)
mr · · · ϱ∗(Eα2)

m2ϱ∗(Eα1)
m1φ,

(ω +mrαr + · · ·+m2α2 +m1α1)(H) ∈ C,
for all H ∈ tC. Accordingly we conclude dimC ϱ∗(U(gC))φ < ∞ by 1©, 2© and the
Poincaré-Birkhoff-Witt theorem.

(2) The vector space ϱ∗(U(gC))φ is a closed subset of VG/L = (VG/L, d) by virtue
of (1), and it is also ϱ(G)-invariant, since ϱ∗(U(gC))φ is ϱ∗(g)-invariant and the Lie
group G is connected.

(3) From (2.10), (2), K ⊂ G and φ ∈ ϱ∗(U(gC))φ we deduce

Uφ = spanC{ϱ(k)φ | k ∈ K} ⊂ ϱ∗(U(gC))φ.

From now on, let us suppose that (s1) ρ : Q− → GL(V) is irreducible.
(4) is immediate from (1), (2), (s1) and Lemma 2.15.
(5) The arguments below will be similar to those in the proof of Lemma 2.16-(II).

Let V1 be any closed ϱ(G)-invariant complex vector subspace of ϱ∗(U(gC))φ with
V1 6= {0}. Here ϱ∗(U(gC))φ ⊂ VG/L has the relative topology. By (1) and Weyl’s
theorem on semisimplicity of representations, there exists a closed ϱ(G)-invariant
complex vector subspace V2 of ϱ∗(U(gC))φ such that

ϱ∗(U(gC))φ = V1 ⊕ V2.
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Note here that both V1 and V2 are closed ϱ(G)-invariant complex vector subspaces
of VG/L by (2). If V2 6= {0}, then Lemma 2.15 yields {0} 6=WG/L ⊂ V1 ∩V2, which
is a contradiction. Hence one has V2 = {0}, and V1 = ϱ∗(U(gC))φ. □

Proposition 3.5 leads to

Corollary 3.6. Suppose that

(s1) ρ : Q− → GL(V) is irreducible,
(s4) g has a compact Cartan subalgebra, and
(s5) 4 ⊂ Λ.

Then, the following three items hold:

(I) dimC VG/L <∞.
(II) ϱ is an irreducible representation of G on VG/L.
(III) The representation module (VGC/Q− , ϱ̃) is G-equivariant isomorphic to

(VG/L, ϱ) via F : h 7→ h|GQ−.

Proof. By virtue of Lemma 2.16 and (5) on page 8, it suffices to prove that

a© dimC(VG/L)K <∞.
That is evident when (VG/L)K = {0}. Hereafter, we investigate the case (VG/L)K 6=
{0}. One can conclude this a©, if we confirm the following item (D):

(D) For each ϕ ∈ (VG/L)K − {0}, there exists a unique ϱ(G)-invariant complex
vector subspace V(ϕ) of VG/L satisfying four conditions
(1) dimC V(ϕ) <∞,
(2) {0} 6=WG/L ⊂ V(ϕ),
(3) ϱ : G→ GL

(
V(ϕ)

)
is irreducible, and

(4) ϕ ∈ V(ϕ).
Indeed, fix a ϕ0 ∈ (VG/L)K − {0} and take an arbitrary ϕ ∈ (VG/L)K − {0}. Then,
the vector spaces V(ϕ0) and V(ϕ) both satisfy the conditions (1), (2), (3) and (4).
It follows from (4), (2) and (3) that ϕ ∈ V(ϕ) = V(ϕ0). Hence (VG/L)K ⊂ V(ϕ0),
and it follows from (1) that dimC(VG/L)K ≤ dimC V(ϕ0) <∞, so that a© holds.
Now, let us confirm the (D) above. Take any ϕ ∈ (VG/L)K−{0}. The uniqueness

of V(ϕ) comes from (2) and (3). From now on, we will prove its existence. The com-
plex vector space Uϕ is ϱ(K)-invariant and 0 < dimC Uϕ <∞. Since the Lie group
K is compact, there exist ϱ(K)-invariant complex vector subspaces U1,U2, . . . ,Umϕ

of Uϕ such that

1© Uϕ = U1 ⊕ U2 ⊕ · · · ⊕ Umϕ
,

and that Uj 6= {0} and ϱ : K → GL(Uj) is irreducible (1 ≤ j ≤ mϕ). Then, for
each 1 ≤ j ≤ mϕ, there exist a non-zero φj ∈ Uj and a linear function ωj : tC → C
such that ϱ∗(H)φj = ωj(H)φj for all H ∈ tC. Here for every 1 ≤ j ≤ mϕ,

2© Uφj

(2.10)
= spanC{ϱ(k)φj | k ∈ K} = Uj

follows from 0 6= φj ∈ Uj and ϱ : K → GL(Uj) being irreducible. Now, Proposition
3.5 and 2© imply that

(i) dimC ϱ∗(U(gC))φj <∞,
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(ii) ϱ∗(U(gC))φj is a ϱ(G)-invariant complex vector subspace of VG/L,
(iii) Uj = Uφj

⊂ ϱ∗(U(gC))φj, and

(iv) ϱ : G→ GL
(
ϱ∗(U(gC))φj

)
is irreducible

for each 1 ≤ j ≤ mϕ, and moreover,

{0} 6=WG/L ⊂ ϱ∗(U(gC))φ1 = ϱ∗(U(gC))φ2 = · · · = ϱ∗(U(gC))φmϕ
.

This, together with 1© and (iii), yields

ϕ ∈ Uϕ = U1 ⊕ U2 ⊕ · · · ⊕ Umϕ
⊂ ϱ∗(U(gC))φ1.

Setting V(ϕ) := ϱ∗(U(gC))φ1, we conclude (D). □
3.3. Case g is a simple Lie algebra of Hermitian type. Suppose g to be a
simple Lie algebra of Hermitian type. In this case, G/K is an irreducible Hermitian
symmetric space of non-compact type, the action of G on G/K is effective, tC = hC,
and there exists a non-zero elliptic elementW ∈ g such that the eigenvalue of adW
is ±i or zero and K = CG(W ). Let us set

(3.7) KC := CGC(W ), p± := {A ∈ gC | adW (A) = ±iA}, P± := exp p±

and remark that

(1) the element W is an H-element of g relative to k, cf. Satake [14, p.54],
(2) the existence of W is unique up to sign ±,
(3) G/K admits a unique G-invariant complex structure J ′ up to sign, which

is induced by either adW or ad(−W ),
(4) Lemma 2.5 still holds even if one substitutes K, KC, P

s, ps and KCP
s for

L, LC, U
s, us and Qs, respectively (s = ±),

(5) ι−s : G/K → GC/(KCP
−s), gK 7→ g(KCP

−s), is a G-equivariant holomor-
phic embedding (called the Borel embedding) where we fix the G-invariant
complex structure on G/K induced by ad(sW ) for each s = ±,

(6) gC = kC ⊕ pC, pC = p+ ⊕ p−; [kC, p
s] ⊂ ps, [ps, ps] = {0} for each s = ±,

(7) the representation Adps : K → GL(ps), k 7→ Ad k|ps , is irreducible (s = ±),
(8) W ∈ t follows by k = cg(W ) and t being a maximal torus of k,
(9) p+ =

⊕
β∈△(W,+) gβ, p

− =
⊕

γ∈△(W,−) gγ,

(10) 4 = 4(gC, tC), 4(k) = 4(W, 0), 4(p) = 4(W,+) ∪4(W,−).
Here we refer to (2.2) and §§3.2 for 4(W, · ) and 4(k), 4(p), respectively. Here-
after, we fix an H-element W ∈ g relative to k whenever g is a simple Lie algebra
of Hermitian type.

We first verify two Lemmas 3.8 and 3.10 below, and afterwards we add some
setting in order to state Lemma 3.12, Proposition 3.13, etc.

Lemma 3.8. Suppose that (s4′) g is a simple Lie algebra of Hermitian type. For
each s = ±, we denote by ms the set of elements A ∈ ps which satisfy the following
condition (3.9):

(3.9) for each ϕ ∈ (VG/L)K there exists an n ∈ N such that ϱ∗(A)
nϕ = 0.

Then it turns out that for each s = ±,
(i) ms is an Adps K-invariant complex vector subspace of ps,
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(ii) ms = ps whenever ms 6= {0}. In particular, 4(W, s) ⊂ Λ if ms 6= {0}.
Here we refer to §§3.1 for Λ.

Proof. (i) Take any A,B ∈ ms and α ∈ C. First, let us confirm that ms is a complex
vector space. Since it is clear that αA ∈ ms, we only show that A+B ∈ ms. Given
a ϕ ∈ (VG/L)K , there exist n, k ∈ N such that

ϱ∗(A)
nϕ = 0, ϱ∗(B)kϕ = 0

from A,B ∈ ms. In addition, ϱ∗(A)ϱ∗(B) = ϱ∗(B)ϱ∗(A) follows from ms ⊂ ps and
[A,B] ∈ [ps, ps] = {0}. These yield

ϱ∗(A+B)n+kϕ =
(
ϱ∗(A) + ϱ∗(B)

)n+k
ϕ

=
n+k∑
j=0

(n+ k)!

j!(n+ k − j)!
ϱ∗(A)

jϱ∗(B)n+k−jϕ

= 0,

and A + B ∈ ms. Hence ms is a complex vector space. Now, let us prove that
it is also Adps K-invariant. Take an arbitrary k ∈ K. On the one hand, we have
Ad k(A) ∈ ps. On the other hand, one has ϱ(k−1)ϕ ∈ (VG/L)K , and there exists an
m ∈ N such that ϱ∗(A)

m(ϱ(k−1)ϕ) = 0 on GQ−; then, for any x ∈ GQ− it follows
from k−1x ∈ GQ− that

0 =
(
ϱ∗(A)

m(ϱ(k−1)ϕ)
)
(k−1x)

(2.8)
=

(
ϱ∗(Ad k(A))

mϕ
)
(x).

That yields Ad k(A) ∈ ms, and thus ms is Adps K-invariant.
(ii) ms = ps comes from (i) and Adps : K → GL(ps), k 7→ Ad k|ps , being

irreducible. 4(W, s) ⊂ Λ comes from ms = ps =
⊕

α∈△(W,s) gα, (3.9) and (3.1). □

Lemma 3.10. Suppose that (s4′) g is a simple Lie algebra of Hermitian type. Then,
there exists a fundamental root system Π2 = {αj}lj=1 of 4 = 4(gC, tC) such that

(1) α(−iW ) ≥ 0 for all α ∈ Π2, and
(2) γ(−iT ) ≥ 0 for every γ ∈ Π2 ∩4(W, 0).

Proof. It is enough to consider the lexicographic linear orderings on the dual
space (it)∗ associated with ordered real bases −iW =: C1, C2, . . . , Cl and −iW =:
B1,−iT =: B2, B3, . . . , Bl of it when the sequence T , W of non-zero vectors in t is
linearly dependent and independent, respectively. □
3.3.1. Additional setting. Let us prepare for stating Lemma 3.12, Proposition 3.13,
etc. With respect to the fundamental root system Π2 = {αj}lj=1 in Lemma 3.10,

we denote by α̃ =
∑l

j=1mjαj (∈ 4) the highest root and by {Zj}lj=1 (⊂ it) the

dual basis of {αj}lj=1. Then, there exists a unique index 1 ≤ p ≤ l such that

mp = 1, W = iZp

because W 6= 0, the eigenvalue of adW is ±i or zero and α(−iW ) ≥ 0 for all
α ∈ Π2. Taking this p into account, we set

(3.11) Π0 := Π2 − {αp}
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and note that

(1) Π0 = Π2 − {αp} = Π2 ∩4(W, 0) ⊂ 4(k),
(2) {αp} = Π2 ∩4(W,+) ⊂ 4(p), α̃ ∈ 4(W,+) ⊂ 4(p),

(3) 4(W,+) = {β =
∑l

j=1 njαj ∈ 4 |np = 1},
(4) both Π0 ∪ {αp} and Π0 ∪ {−α̃} are fundamental root systems of 4 =
4(gC, tC). cf. Appendix.

In the setting above, we will individually investigate two cases

(C1) αp(−iT ) ≤ 0 ≤ α̃(−iT ), (C2) 0 < αp(−iT ) or α̃(−iT ) < 0

and conclude dimCO(G/L) = 1, dimC VG/L <∞ (resp. dimCO(G/L) =∞) in the
case (C1) (resp. (C2)).

3.3.2. (C1) αp(−iT ) ≤ 0 ≤ α̃(−iT ). We shall demonstrate Proposition 3.13 after

Lemma 3.12. In the setting of §§3.3.1, suppose that αp(T ) = 0 or α̃(T ) = 0.
Then, dimC VG/L = dimC VGC/Q− <∞.

Proof. Let us recall that Π0 ⊂ 4(k), and that both Π0 ∪ {αp} and Π0 ∪ {−α̃} are
fundamental root systems of 4, and remark that γ(−iT ) ≥ 0 for all γ ∈ Π0.
Suppose αp(T ) = 0. Then, α(−iT ) ≥ 0 for all α ∈ Π0∪{αp}, and thus (2.4) holds

for the fundamental root system Π0 ∪ {αp}. Moreover, β ∈ Π0 ∪ {αp} − 4(T, 0)
implies β ∈ Π0 ⊂ 4(k). Hence dimC VG/L = dimC VGC/Q− <∞ by Theorem 2.17.

One can get the conclusion by considering the fundamental root system Π0∪{−α̃}
in case of α̃(T ) = 0. □
Proposition 3.13. In the setting of §§3.3.1, suppose that

(s1) ρ : Q− → GL(V) is irreducible, and
(C1) αp(−iT ) ≤ 0 ≤ α̃(−iT ).

Then, the following three items hold:

(I) dimC VG/L <∞.
(II) ϱ is an irreducible representation of G on VG/L.
(III) The representation module (VGC/Q− , ϱ̃) is G-equivariant isomorphic to

(VG/L, ϱ) via F : h 7→ h|GQ−.

Proof. In case of αp(T ) = 0 or α̃(T ) = 0, this proposition holds due to Lemmas
3.12 and 2.16. We aim to show that it holds even in case of αp(−iT ) < 0 < α̃(−iT ).
From αp, α̃ ∈ 4(W,+) and αp(−iT ) < 0 < α̃(−iT ) it follows that g−αp ∈ p− ∩ u+,
gα̃ ∈ p+ ∩ u+, so that

E−αp ∈ m−, Eα̃ ∈ m+

by Proposition 3.2, (3.1) and (3.9). Consequently Lemma 3.8-(ii) yields 4(p) =
4(W,−) ∪ 4(W,+) ⊂ Λ; furthermore, Lemma 3.4 yields 4 = 4(k) ∪ 4(p) ⊂ Λ.
This and Corollary 3.6 enable us to achieve the aim. □

Proposition 3.13 leads to the two corollaries below.

Corollary 3.14. In the setting of §§3.3.1, all holomorphic functions on G/L are
constant if (C1) αp(−iT ) ≤ 0 ≤ α̃(−iT ).
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Proof. From Proposition 3.13-(III) and dimCO(GC/Q
−) = 1 one obtains

dimCO(G/L) = dimCO(GC/Q
−) = 1,

where we remark that O(G/L) = VG/L(V, ρ), O(GC/Q
−) = VGC/Q−(V, ρ) and ρ :

Q− → GL(V) is irreducible in the case where V = C and ρ = id (the trivial
representation). □

Corollary 3.15. In the setting of §§3.3.1, suppose that

(C1) αp(−iT ) ≤ 0 ≤ α̃(−iT ).
Then, dimC VG/L(V, ρ) < ∞ for every finite-dimensional complex vector space V
and holomorphic homomorphism ρ : Q− → GL(V).

Proof. Take any finite-dimensional complex vector space V and holomorphic homo-
morphism ρ : Q− → GL(V). If V = {0}, then one has dimC VG/L(V, ρ) = 0 < ∞.
Henceforth, we investigate the case V 6= {0}. By 0 < dimC V <∞ and Lemma 2.5.3
in [3, p.227] there exists a sequence of ρ(Q−)-invariant complex vector subspaces

{0} ⊊ V1 ⊊ · · · ⊊ Vn−1 ⊊ Vn = V

such that each quotient representation ρVi/Vi−1
: Q− → GL(Vi/Vi−1) is irreducible

(1 ≤ i ≤ n), where V0 := {0}. In this case, the supposition (C1) and Proposition
3.13-(I) allow us to assert that

1© dimC VG/L(Vi/Vi−1, ρVi/Vi−1
) <∞ for all 1 ≤ i ≤ n.

Now, let Pri : Vi → Vi/Vi−1 be the projection. Since Pri ◦ρ(q) = ρVi/Vi−1
(q) ◦ Pri

for all q ∈ Q−, the mapping VG/L(Vi, ρ) 3 ψ 7→ Pri ◦ψ ∈ VG/L(Vi/Vi−1, ρVi/Vi−1
) is

linear and its kernel accords with VG/L(Vi−1, ρ). Therefore it follows that

dimC VG/L(Vi, ρ)
/
VG/L(Vi−1, ρ) ≤ dimC VG/L(Vi/Vi−1, ρVi/Vi−1

),

and furthermore,

2© dimC VG/L(Vi, ρ)
/
VG/L(Vi−1, ρ) <∞ for all 1 ≤ i ≤ n

by 1©. Here VG/L(Vi, ρ)
/
VG/L(Vi−1, ρ) is the quotient vector space of VG/L(Vi, ρ) by

VG/L(Vi−1, ρ). By the mathematical induction on i together with 2© and V0 = {0},
one can confirm that dimC VG/L(Vi, ρ) < ∞ for all 1 ≤ i ≤ n. Thus we have
dimC VG/L(V, ρ) = dimC VG/L(Vn, ρ) <∞. □

3.3.3. (C2) 0 < αp(−iT ) or α̃(−iT ) < 0. We first prove the following lemma from
which we deduce Proposition 3.17:

Lemma 3.16. In the setting of §§3.3.1, the following four items hold:

(i1) p+ ⊂ u+ if 0 < αp(−iT ).
(i2) p− ⊂ u+ if α̃(−iT ) < 0.
(ii1) L ⊂ K, Q− ⊂ KCP

− if 0 < αp(−iT ).
(ii2) L ⊂ K, Q− ⊂ KCP

+ if α̃(−iT ) < 0.
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Proof. For any β ∈ 4(W,+) we have

1© αp(−iT ) ≤ β(−iT ) ≤ α̃(−iT )

because 4(W,+) = {
∑l

j=1 njαj ∈ 4 |np = 1} and γ(−iT ) ≥ 0 for all γ ∈ Π0.

(i1) Suppose that 0 < αp(−iT ). Then, it follows from 1© and p+ =
⊕

β∈△(W,+) gβ
that p+ ⊂ u+.

(i2) Suppose α̃(−iT ) < 0. For any β′ ∈ 4(W,−), there exists a β ∈ 4(W,+)
such that β′ = −β. Then, the supposition and 1© yield 0 < −α̃(−iT ) ≤ β′(−iT ).
Therefore we conclude p− ⊂ u+ by p− =

⊕
β′∈△(W,−) gβ′ .

(ii1) Suppose that 0 < αp(−iT ). Then one obtains

p+ ⊂ u+

from (i1). We know that

gC = p+ ⊕ kC ⊕ p− = u+ ⊕ q−,

and that kC⊕ p− (resp. q−) coincides with the orthogonal complement of p+ (resp.
u+) with respect to BgC . Hence p+ ⊂ u+ gives rise to

q− ⊂ kC ⊕ p−.

This yields Q− ⊂ KCP
−, because Q− and KCP

− are connected closed subgroups
of GC whose Lie algebras are q− and kC⊕ p−, respectively. Moreover, Q− ⊂ KCP

−

yields L = G ∩Q− ⊂ G ∩ (KCP
−) = K.

(ii2) One can conclude (ii2) by proof similar to that of (ii1). □
Now, we are in a position to deduce

Proposition 3.17. In the setting of §§3.3.1, the following conditions (a), (b), (c)
and (C2) are equivalent:

(a) L is included in the maximal compact subgroup K of G, and there exists
a G-invariant complex structure J ′ on G/K so that the fibering of G/L by
K/L over G/K is holomorphic.

(b) dimCO(G/L) =∞.
(c) dimCO(G/L) 6= 1, i.e., G/L has a non-constant holomorphic function.

(C2) 0 < αp(−iT ) or α̃(−iT ) < 0.

Proof. (a)⇒(b). Suppose that (a) holds, and let Pr : G/L → G/K, gL 7→ gK.
Then Pr is holomorphic. Since the Hermitian symmetric space G/K is biholomor-
phic to a domain in some Cn, it is natural that

dimCO(G/K) =∞.
The mappingO(G/K) 3 f 7→ f◦Pr ∈ O(G/L) is injective linear, since Pr : G/L→
G/K is surjective holomorphic. Accordingly ∞ = dimCO(G/K) ≤ dimCO(G/L).

(b)⇒(c) is clear.
(c)⇒(C2). This is the contraposition of Corollary 3.14.
(C2)⇒(a). First, let us suppose 0 < αp(−iT ), and fix the G-invariant complex

structure J ′ on G/K induced by adW . Then, ι− : G/K → GC/(KCP
−), gK 7→

g(KCP
−), is a biholomorphism of G/K onto a domain in GC/(KCP

−). Moreover,
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Lemma 3.16-(ii1) assures that L ⊂ K, Q− ⊂ KCP
−, and thus the mappings Pr :

G/L→ G/K, gL 7→ gK, and Pr− : GC/Q
− → GC/(KCP

−), aQ− 7→ a(KCP
−), are

both well-defined; besides, Pr− is holomorphic and Pr−
(
ι(G/L)

)
⊂ ι−(G/K).

G/K ι− - GC/(KCP
−)

Pr
?

G/L ι -

Pr−
?

GC/Q
−

Thus Pr : G/L→ G/K is holomorphic because of Pr = (ι−)
−1 ◦ Pr− ◦ι.

In case the α̃(−iT ) < 0 also, one can conclude that L ⊂ K and Pr : G/L→ G/K
is holomorphic by Lemma 3.16-(ii2) with fixing the complex structure J ′ on G/K
induced by ad(−W ). □

3.3.4. Summary. Let us prove Theorem 1.2.

Proof of Theorem 1.2. Suppose g to be a simple Lie algebra of Hermitian type.
Then, there are two cases where

(C1) αp(−iT ) ≤ 0 ≤ α̃(−iT );
(C2) 0 < αp(−iT ) or α̃(−iT ) < 0.

Here we refer to §§3.3.1 for αp, α̃. Needless to say, the cases (C1) and (C2) are mu-
tually exclusive and one of them necessarily occurs. In these cases, two Corollaries
3.14 and 3.15, and Proposition 3.17 imply that

(C1) dimCO(G/L) = 1, and dimC VG/L(V, ρ) < ∞ for every finite-dimensional
complex vector space V and holomorphic homomorphism ρ : Q− → GL(V);

(C2) dimCO(G/L) =∞.

Hence, we can get the conclusion. □

Appendix. The following diagrams show that Π0 ∪ {−α̃} are fundamental root
systems of 4. cf. §§3.3.1. Here we take the Dynkin diagrams from Bourbaki [4].

(AIII) su(p, q) with p, q ≥ 1, W = iZp, α̃ =
∑p+q−1

j=1 αj:

e
α1

e
α2

· · · e
αp−1

× e
αp+1

· · · e
αp+q−1

   
   

   
```

```
``̀u−α̃

(BI) so(2, 2m− 1) with m ≥ 3, W = iZ1, α̃ = α1 + 2
∑m

k=2 αk:

× e
α2

e
α3

· · · e
αm−1

e
αm��

@@
u−α̃

(DI) so(2, 2q + 2) with q ≥ 1, W = iZ1, α̃ = α1 + 2
∑q

k=2 αk + αq+1 + αq+2:

× e
α2

e
α3

· · · e
αq

e
αq+1

u−α̃ eαq+2

��

(DIII) so∗(2m) with m ≥ 3, W = iZm−1, α̃ = α1 + 2
∑m−2

k=2 αk + αm−1 + αm:
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e
α1

e
α2

e
α3

· · · e
αm−2

×
u−α̃ eαm

��

W = iZm:

e
α1

e
α2

e
α3

· · · e
αm−2

e
αm−1

u−α̃ ×

(CI) sp(p,R) with p ≥ 1, W = iZp, α̃ = 2
∑p−1

j=1 αj + αp:

u
−α̃ ��

@@e
α1

e
α2

· · · e
αp−1

×

(EIII) e6(−14), W = iZ1, α̃ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6:

× e
α3

e
α4

e
α5

e
α6

e α2

u−α̃

W = iZ6:

e
α1

e
α3

e
α4

e
α5

×
e α2

u−α̃

(EVII) e7(−25), W = iZ7, α̃ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7:

u
−α̃

e
α1

e
α3

e
α4

e
α5

e
α6

×
e α2
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