Mem. Gra. Sci. Eng. Shimane Univ. Series B: Mathematics **51** (2018), pp. 7–21

# DISCRETE q-GREEN POTENTIALS WITH FINITE ENERGY

### HISAYASU KURATA AND MARETSUGU YAMASAKI

Communicated by Toshihiro Nakanishi

(Received: November 21, 2017)

ABSTRACT. Discrete q-Green potentials related to the equation  $\Delta u - qu = 0$  on an infinite network were studied in [12] as a discrete analogue to [9]. We study some properties of q-Green potentials with finite q-Green energy. The q-Dirichlet energy plays an important role instead of the Dirichlet sum. Our aim is to show that results obtained in [7] in case q = 0 hold similarly even in case  $q \ge 0$ . We show that every q-Dirichlet potential can be expressed as a difference of two q-Green potentials with finite q-Green energy.

#### 1. INTRODUCTION WITH PRELIMINARIES

Discrete potential theory on infinite networks related to the discrete Laplacian  $\Delta$  has been studied by many authors; for example, Anandam [1], Ayadi [2], Kasue [3], Kumaresan and Narayanaraju [4], Lyons and Peres [8], and Yamasaki [11].

Many potential theoretic results related to the equation  $\Delta_q u := \Delta u - qu = 0$ on a Riemann surface were given in [9]. The q-harmonic Green function (q-Green function, for short) implies the Green function related to  $\Delta_q$ . As for the q-Green function of an infinite network, some results which have counterparts in [9] were shown in [12]. Our aim of this paper is to show that every q-Dirichlet potential can be expressed as a difference of two q-Green potentials with finite q-Green energy. We proved in [7] that this property holds in case q = 0.

More precisely, let  $\mathcal{N} = \langle V, E, K, r \rangle$  be an infinite network which is connected and locally finite and has no self-loop, where V is the set of nodes, E is the set of arcs, and the resistance r is a strictly positive function on E. For  $x \in V$  and for  $e \in E$  the node-arc incidence matrix K is defined by K(x, e) = 1 if x is the initial node of e; K(x, e) = -1 if x is the terminal node of e; K(x, e) = 0 otherwise. Let L(V) be the set of all real valued functions on V,  $L^+(V)$  the set of all non-negative real valued functions on V, and  $L_0(V)$  the set of all  $u \in L(V)$  with finite support. We similarly define L(E),  $L^+(E)$ , and  $L_0(E)$ . Let q be a non-negative function on

<sup>2010</sup> Mathematics Subject Classification. 31C20; 31C25.

Key words and phrases. discrete potential theory, q-Dirichlet potential, q-Green potential, Riesz representation, discrete q-Laplacian.

V with  $q \neq 0$ . For  $u \in L(V)$  we define the discrete derivative  $\nabla u \in L(E)$ , the Laplacian  $\Delta u \in L(V)$ , and the q-Laplacian  $\Delta_q u \in L(V)$  as

$$\nabla u(e) = -r(e)^{-1} \sum_{x \in V} K(x, e) u(x)$$
$$\Delta u(x) = \sum_{e \in E} K(x, e) \nabla u(e),$$
$$\Delta_q u(x) = \Delta u(x) - q(x) u(x).$$

For convenience we give specific forms. For  $e \in E$  let  $x^+ \in V$  be the initial node of e and  $x^- \in V$  the terminal node of e. Then

$$\nabla u(e) = \frac{u(x^-) - u(x^+)}{r(e)}$$

For  $x \in V$  let  $\{e_1, \ldots, e_d\}$  be the set of arcs adjacent to x and let  $y_j$  be the other node of  $e_j$  for each j. Then

$$\Delta u(x) = \sum_{j=1}^{d} \frac{u(y_j) - u(x)}{r(e_j)},$$
$$\Delta_q u(x) = \sum_{j=1}^{d} \frac{u(y_j) - u(x)}{r(e_j)} - q(x)u(x).$$

For  $u, v \in L(V)$ , we put

$$\begin{split} (u,v)_{\mathbf{D}} &= \sum_{e \in E} r(e) \nabla u(e) \nabla v(e), \\ \|u\|_{\mathbf{D}} &= (u,u)_{\mathbf{D}}^{1/2} \quad (\text{Dirichlet sum}), \\ (u,v)_{\mathbf{E}} &= \sum_{e \in E} r(e) \nabla u(e) \nabla v(e) + \sum_{x \in V} q(x) u(x) v(x), \\ \|u\|_{\mathbf{E}} &= (u,u)_{\mathbf{E}}^{1/2} \quad (q\text{-Dirichlet energy}). \end{split}$$

We define some classes of functions on V as

$$\mathbf{D} = \{ u \in L(V) \mid ||u||_{\mathbf{D}} < \infty \},$$
$$\mathbf{E} = \{ u \in L(V) \mid ||u||_{\mathbf{E}} < \infty \},$$
$$\mathbf{H}_q = \{ u \in L(V) \mid \Delta_q u = 0 \}.$$

It is easy to see that **E** is a Hilbert space with respect to the inner product  $(u, v)_{\mathbf{E}}$ . On the other hand,  $(u, v)_{\mathbf{D}}$  is a degenerate bilinear form in **D**; for example,  $(1, u)_{\mathbf{D}} = 0$  and  $||u + 1||_{\mathbf{D}} = ||u||_{\mathbf{D}}$  for  $u \in \mathbf{D}$ . It was shown in [11, Theorem 1.1] that **D** is a Hilbert space with respect to the inner product  $(u, v)_{\mathbf{D}} + u(o)v(o)$  for a fixed node  $o \in V$ . We easily verify that a sequence  $\{u_n\}_n \subset \mathbf{D}$  converges to u in **D** if and only if  $\lim_{n\to\infty} ||u_n - u||_{\mathbf{D}} = 0$  and  $\{u_n\}_n$  converges pointwise to u. Denote by  $\mathbf{D}_0$  and  $\mathbf{E}_0$  the closure of  $L_0(V)$  in **D** and in **E** respectively. We call a function in **D**, in  $\mathbf{D}_0$ , in **E**, and in  $\mathbf{E}_0$  a Dirichlet function, a Dirichlet potential, a q-Dirichlet function, and a q-Dirichlet potential, respectively.

It was shown in [7] that the space  $\mathbf{D}_0$  is equal to the space of the differences of Green potentials with finite energy provided that conditions (LD) and (CLD) are fulfilled. As an application, we showed a Riesz decomposition of a function whose Laplacian is a Dirichlet function. Our aim is to verify that similar results for q-Green potentials are also valid by replacing conditions (LD) and (CLD) by (LD)<sub>q</sub> and (CLD)<sub>q</sub>, which are defined in Section 3. In contrast with (LD) and (CLD), our modified conditions contain some barriers caused by the term qu. We shall discuss in Section 4 some relations among these conditions.

## 2. The q-Green function

Let us recall some fundamental results related to the q-Dirichlet functions established in [12].

Lemma 2.1 ([12, Theorem 3.1]).  $E_0 = D_0 \cap E$ .

**Lemma 2.2** ([12, Lemma 3.1]).  $(u, h)_{\mathbf{E}} = 0$  for every  $u \in \mathbf{E}_0$  and  $h \in \mathbf{H}_q \cap \mathbf{E}$ .

**Lemma 2.3** ([12, Theorem 3.2]). Every  $u \in \mathbf{E}$  is decomposed uniquely into the form u = v + h with  $v \in \mathbf{E}_0$  and  $h \in \mathbf{H}_q \cap \mathbf{E}$ .

We give a fundamental property of the norm in  $\mathbf{E}$ , which is used repeatedly in the following.

**Lemma 2.4.** If  $\{u_n\}_n \subset \mathbf{E}$  converges to  $u \in \mathbf{E}$  in the norm of  $\mathbf{E}$ , then  $\{u_n\}_n$  converges pointwise to u.

Proof. Let  $v_n = u_n - u$  and assume that  $||v_n||_{\mathbf{E}} \to 0$  as  $n \to \infty$ . There exists  $x_0 \in V$  such that  $q(x_0) > 0$ . The fact  $q(x_0)|v_n(x_0)|^2 \leq ||v_n||_{\mathbf{E}}^2$  shows that  $v_n(x_0) \to 0$  as  $n \to \infty$ . Since  $||v_n||_{\mathbf{D}} \leq ||v_n||_{\mathbf{E}} \to 0$  as  $n \to \infty$ , by [10, Corollary 2 of Lemma 1] it follows that  $\{v_n\}_n$  converges pointwise to 0.

We call a function T defined on  $\mathbb{R}$  into  $\mathbb{R}$  a normal contraction of  $\mathbb{R}$  if T0 = 0and  $|Ts_1 - Ts_2| \leq |s_1 - s_2|$  for  $s_1, s_2 \in \mathbb{R}$ . For example,  $Ts = \max\{s, 0\}$  is a normal contraction of  $\mathbb{R}$ .

**Lemma 2.5** ([12, Lemma 4.2 and before it]). Let T be a normal contraction of  $\mathbb{R}$ . Then  $||T \circ u||_{\mathbf{E}} \leq ||u||_{\mathbf{E}}$  for  $u \in \mathbf{E}$ . Moreover,  $T \circ u \in \mathbf{E}_0$  if  $u \in \mathbf{E}_0$ .

**Lemma 2.6.** Let  $f \in L_0(V)$  and  $u \in \mathbf{E}$ . Then

$$(u, f)_{\mathbf{E}} = -\sum_{x \in V} (\Delta_q u(x)) f(x).$$

*Proof.* Since  $(u, f)_{\mathbf{D}} = -\sum_{x \in V} (\Delta u(x)) f(x)$  by [10, Lemma 3], we have

$$(u, f)_{\mathbf{E}} = -\sum_{x \in V} (\Delta u(x)) f(x) + \sum_{x \in V} q(x) u(x) f(x)$$
$$= -\sum_{x \in V} (\Delta_q u(x)) f(x)$$

as required.

We say that  $u \in L(V)$  is *q*-superharmonic or *q*-harmonic on V if  $\Delta_q u \leq 0$  or  $\Delta_q u = 0$  respectively. Recall that the (harmonic) Green function  $g_a \in \mathbf{D}_0$  of  $\mathcal{N}$  with pole at  $a \in V$  is defined as the unique solution of the boundary value problem:

$$\Delta g_a(x) = -\delta_a(x) \quad \text{for } x \in V,$$

where  $\delta_a(a) = 1$  and  $\delta_a(x) = 0$  for  $x \neq a$ . See [11] for details.

The q-Green function  $\tilde{g}_a \in \mathbf{E}_0$  of  $\mathcal{N}$  with pole at  $a \in V$  is defined similarly by

$$\Delta_q \tilde{g}_a(x) = -\delta_a(x) \quad \text{for } x \in V.$$

Note that q-Green functions always exist and satisfy that  $\tilde{g}_a(x) = \tilde{g}_x(a)$  for  $a, x \in V$ and that  $0 < \tilde{g}_a(x) \le \tilde{g}_a(a)$  for  $a, x \in V$ . See [12, Theorems 4.1, 4.2, and 4.3].

3. Representation of the space  $\mathbf{E}_0$ 

Let  $\mu, \nu \in L^+(V)$ . Recall that the Green potential  $G\mu \in L(V)$  and the mutual Green energy  $G(\mu, \nu)$  are defined by

$$G\mu(x) = \sum_{y \in V} g_x(y)\mu(y), \quad G(\mu,\nu) = \sum_{x \in V} (G\mu(x))\nu(x).$$

Similarly we define the q-Green potential  $G_q \mu \in L(V)$  and the mutual q-Green energy  $G_q(\mu, \nu)$  by

$$G_q\mu(x) = \sum_{y \in V} \tilde{g}_x(y)\mu(y), \quad G_q(\mu,\nu) = \sum_{x \in V} (G_q\mu(x))\nu(x).$$

We call  $G_q(\mu, \mu)$  the q-Green energy of  $\mu$ . Let us put

$$\mathcal{M}_q = \{ \mu \in L^+(V) \mid G_q \mu(x) < \infty \text{ for each } x \in V \},\$$
$$\mathcal{E}_q = \{ \mu \in \mathcal{M}_q \mid G_q(\mu, \mu) < \infty \}.$$

Lemma 3.1 ([12, Lemma 7.1]).  $\Delta_q G_q \mu = -\mu$  for  $\mu \in \mathcal{M}_q$ .

**Lemma 3.2** ([12, Theorem 7.2]). If  $\mu \in \mathcal{E}_q$ , then  $G_q \mu \in \mathbf{E}_0$  and  $\Delta_q G_q \mu \leq 0$ . Conversely, if  $u \in \mathbf{E}_0$  satisfies  $\Delta_q u \leq 0$ , then  $u = G_q \mu$  for some  $\mu \in \mathcal{E}_q$ .

We show some results for the q-Green potential and the mutual q-Green energy, which are similar to those considered in [7].

**Lemma 3.3.** For  $\mu, \nu \in L_0(V) \cap L^+(V)$  we have

$$(G_q\mu, G_q\nu)_{\mathbf{E}} = G_q(\mu, \nu).$$

Proof. Let  $\mu, \nu \in L_0(V) \cap L^+(V)$ . Lemma 3.2 shows that  $G_q \mu \in \mathbf{E}_0$ , so that there exists a sequence  $\{f_n\}_n \subset L_0(V)$  which converges to  $G_q \mu$  in the norm of  $\mathbf{E}$ . Especially  $\{f_n\}_n$  converges pointwise to  $G_q \mu$ . Lemmas 2.6 and 3.1 imply that

$$(f_n, G_q \nu)_{\mathbf{E}} = -\sum_{x \in V} f_n(x) (\Delta_q G_q \nu(x)) = \sum_{x \in V} f_n(x) \nu(x).$$

Letting  $n \to \infty$ , we have the assertion.

**Lemma 3.4.** For  $\mu \in \mathcal{E}_q$ , there exists  $\{\mu_n\}_n \subset L_0(V) \cap L^+(V)$  such that  $\{G_q\mu_n\}_n$  converges to  $G_q\mu$  in the norm of  $\mathbf{E}$  and that  $\{\mu_n\}_n$  converges pointwise to  $\mu$ .

Proof. let  $\mu \in \mathcal{E}_q$ . Let  $\{\mathcal{N}_n\}_n$  be an exhaustion of  $\mathcal{N}$  with  $\mathcal{N}_n = \langle V_n, E_n \rangle$ . We put  $\mu_n = \mu$  on  $V_n$  and  $\mu_n = 0$  on  $V \setminus V_n$ . Clearly,  $\{\mu_n\}_n$  increases monotonically and converges pointwise to  $\mu$ . Fatou's lemma shows that

$$G_q\mu(x) \le \liminf_{n\to\infty} G_q\mu_n(x) = \lim_{n\to\infty} G_q\mu_n(x) \le G_q\mu(x),$$

so that  $\{G_q\mu_n\}_n$  converges pointwise to  $G_q\mu$ .

For m < n, the monotonicity of  $\{\mu_n\}_n$  implies that  $\{\|G_q\mu_n\|_{\mathbf{E}}\}$  converges and, together with Lemma 3.3, that

$$(G_q\mu_m, G_q\mu_n)_{\mathbf{E}} = G_q(\mu_m, \mu_n) \ge G_q(\mu_m, \mu_m) = ||G_q\mu_m||_{\mathbf{E}}^2.$$

Consequently

$$\|G_{q}\mu_{n} - G_{q}\mu_{m}\|_{\mathbf{E}}^{2} = \|G_{q}\mu_{n}\|_{\mathbf{E}}^{2} - 2(G_{q}\mu_{n}, G_{q}\mu_{m})_{\mathbf{E}} + \|G_{q}\mu_{m}\|_{\mathbf{E}}^{2}$$
$$\leq \|G_{q}\mu_{n}\|_{\mathbf{E}}^{2} - \|G_{q}\mu_{m}\|_{\mathbf{E}}^{2}.$$

Since  $G_q\mu_n \in \mathbf{E}_0$  by Lemma 3.2, it follows that  $\{G_q\mu_n\}_n$  converges to some  $v \in \mathbf{E}_0$  in the norm of  $\mathbf{E}$ . This means that  $v = G_q\mu$ , and that  $\{G_q\mu_n\}_n$  converges to  $G_q\mu$  in the norm of  $\mathbf{E}$ .

**Proposition 3.5.** Let  $\{\mu_n\}_n \subset \mathcal{E}_q$ . If  $\{G_q\mu_n\}_n$  converges to some  $u \in \mathbf{E}$  in the norm of  $\mathbf{E}$ , then  $u = G_q\mu$  for some  $\mu \in \mathcal{E}_q$ .

*Proof.* Let  $\{\mu_n\}_n \subset \mathcal{E}_q$ . Lemma 3.2 implies that  $G_q \mu_n \in \mathbf{E}_0$ , so that  $u \in \mathbf{E}_0$ . Lemma 3.1 shows

$$\Delta_q u(x) = \lim_{n \to \infty} \Delta_q G_q \mu_n(x) = -\lim_{n \to \infty} \mu_n(x) \le 0.$$

Again by Lemma 3.2 we have that  $u = G_q \mu$  for some  $\mu \in \mathcal{E}_q$ .

Now we introduce two conditions which are similar to conditions (LD) and (CLD) considered in [7]. We say that  $\mathcal{N}$  satisfies condition  $(LD)_q$  if there exists a constant c > 0 such that

$$(\mathrm{LD})_q \qquad \qquad \|\Delta_q f\|_{\mathbf{E}} \le c \|f\|_{\mathbf{E}} \quad \text{for all } f \in L_0(V).$$

We say that  $\mathcal{N}$  satisfies condition  $(CLD)_q$  if there exists a constant c > 0 such that

$$(CLD)_q \qquad \qquad \|f\|_{\mathbf{E}} \le c \|\Delta_q f\|_{\mathbf{E}} \quad \text{for all } f \in L_0(V)$$

**Lemma 3.6.** Assume  $(LD)_q$ . Then there exists a constant c > 0 such that  $\|\Delta_q u\|_{\mathbf{E}} \leq c \|u\|_{\mathbf{E}}$  for all  $u \in \mathbf{E}$ .

*Proof.* Let  $u \in \mathbf{E}$ . By Lemma 2.3 we find  $v \in \mathbf{E}_0$  and  $h \in \mathbf{H}_q \cap \mathbf{E}$  such that u = v + h. Lemma 2.2 shows that

$$||u||_{\mathbf{E}}^{2} = ||v||_{\mathbf{E}}^{2} + 2(v,h)_{\mathbf{E}} + ||h||_{\mathbf{E}}^{2}$$
$$= ||v||_{\mathbf{E}}^{2} + ||h||_{\mathbf{E}}^{2} \ge ||v||_{\mathbf{E}}^{2}.$$

Let  $\{f_n\}_n$  be a sequence in  $L_0(V)$  which converges to v in the norm of  $\mathbf{E}$ . Then  $(\mathrm{LD})_q$  implies that  $\|\Delta_q f_n\|_{\mathbf{E}} \leq c \|f_n\|_{\mathbf{E}}$  for all n. Since  $\{\Delta_q f_n\}_n$  converges pointwise

to  $\Delta_q v$ , Fatou's lemma gives

$$\begin{aligned} |\Delta_q u||_{\mathbf{E}} &= \|\Delta_q v\|_{\mathbf{E}} \le \liminf_{n \to \infty} \|\Delta_q f_n\|_{\mathbf{E}} \\ &\le c \liminf_{n \to \infty} \|f_n\|_{\mathbf{E}} = c \|v\|_{\mathbf{E}} \le c \|u\|_{\mathbf{E}} \end{aligned}$$

as required.

**Lemma 3.7.** Assume  $(LD)_q$ . Then  $\Delta_q u \in \mathbf{E}_0$  for  $u \in \mathbf{E}_0$ .

*Proof.* Let  $u \in \mathbf{E}_0$  and  $\{f_n\}_n$  a sequence in  $L_0(V)$  which converges to u in the norm of  $\mathbf{E}$ . Then  $||f_n - f_m||_{\mathbf{E}} \to 0$  as  $n, m \to \infty$ . Condition  $(\text{LD})_q$  implies that

$$\|\Delta_q f_n - \Delta_q f_m\|_{\mathbf{E}} \le c \|f_n - f_m\|_{\mathbf{E}} \to 0$$

as  $n, m \to \infty$ . Thus  $\{\Delta_q f_n\}_n$  is a Cauchy sequence in **E** and converges to some  $v \in \mathbf{E}_0$  in the norm of **E**. Since  $\{\Delta_q f_n\}_n$  converges pointwise to  $\Delta_q u$ , we see that  $\Delta_q u = v \in \mathbf{E}_0$ .

**Proposition 3.8.** Assume both  $(LD)_q$  and  $(CLD)_q$ . Then there exists a constant c > 0 such that

$$||u||_{\mathbf{E}} \leq c ||\Delta_q u||_{\mathbf{E}} \text{ for all } u \in \mathbf{E}_0$$

Proof. Let  $u \in \mathbf{E}_0$ . There exists a sequence  $\{f_n\}_n \subset L_0(V)$  which converges to uin the norm of  $\mathbf{E}$ . Lemma 3.6 shows that there exists  $c_1 > 0$  such that  $\|\Delta_q u - \Delta_q f_n\|_{\mathbf{E}} \leq c_1 \|u - f_n\|_{\mathbf{E}}$  for all n, so that  $\|\Delta_q f_n\|_{\mathbf{E}} \to \|\Delta_q u\|_{\mathbf{E}}$  as  $n \to \infty$ . By (CLD)<sub>q</sub>, there exists  $c_2 > 0$  such that  $\|f_n\|_{\mathbf{E}} \leq c_2 \|\Delta_q f_n\|_{\mathbf{E}}$  for all n. We have

$$\|u\|_{\mathbf{E}} = \lim_{n \to \infty} \|f_n\|_{\mathbf{E}} \le c_2 \lim_{n \to \infty} \|\Delta_q f_n\|_{\mathbf{E}} = c_2 \|\Delta_q u\|_{\mathbf{E}},$$

as required.

**Lemma 3.9.** Let  $\{u_n\}_n$  be a sequence in  $\mathbf{E}_0$  such that  $\{||u_n||_{\mathbf{E}}\}_n$  is bounded and that  $\{u_n\}_n$  converges pointwise to a function  $u \in \mathbf{E}$ . Then  $\lim_{n\to\infty} (u_n, v)_{\mathbf{E}} = (u, v)_{\mathbf{E}}$  for  $v \in \mathbf{E}_0$ .

*Proof.* Let  $v \in \mathbf{E}_0$ . For any  $\varepsilon > 0$ , there exists  $f \in L_0(V)$  such that  $||v - f||_{\mathbf{E}} < \varepsilon$ . We take M with  $||u_n||_{\mathbf{E}} \leq M$  for all n. Fatou's lemma shows that  $||u||_{\mathbf{E}} \leq M$ . It is easy to see that  $|(u_n - u, f)_{\mathbf{E}}| < \varepsilon$  for sufficiently large n. We have

$$|(u_n - u, v)_{\mathbf{E}}| \leq |(u_n - u, v - f)_{\mathbf{E}}| + |(u_n - u, f)_{\mathbf{E}}|$$
  
$$\leq ||u_n - u||_{\mathbf{E}}||v - f||_{\mathbf{E}} + \varepsilon < (2M + 1)\varepsilon,$$

and the assertion.

**Lemma 3.10.** If  $\mu \in \mathbf{E}_0 \cap L^+(V)$ , then there exists  $\{\mu_n\}_n \subset L_0(V) \cap L^+(V)$  which converges to  $\mu$  in the norm of  $\mathbf{E}$ .

Proof. Let  $\mu \in \mathbf{E}_0 \cap L^+(V)$ . There exists a sequence  $\{f_n\}_n$  in  $L_0(V)$  which converges to  $\mu$  in the norm of  $\mathbf{E}$ . Let  $\mu_n = \max\{f_n, 0\}$ . Then  $\|\mu_n\|_{\mathbf{E}} \leq \|f_n\|_{\mathbf{E}}$  by Lemma 2.5. Since  $\mu \geq 0$ ,  $\{\mu_n\}_n$  converges pointwise to  $\mu$ . Fatou's lemma gives

$$\|\mu\|_{\mathbf{E}} \leq \liminf_{n \to \infty} \|\mu_n\|_{\mathbf{E}} \leq \limsup_{n \to \infty} \|\mu_n\|_{\mathbf{E}}$$
$$\leq \lim_{n \to \infty} \|f_n\|_{\mathbf{E}} = \|\mu\|_{\mathbf{E}},$$

or  $\lim_{n\to\infty} \|\mu_n\|_{\mathbf{E}} = \|\mu\|_{\mathbf{E}}$ . Since  $\{\|f_n\|_{\mathbf{E}}\}_n$  is bounded, so is  $\{\|\mu_n\|_{\mathbf{E}}\}_n$ . By Lemma 3.9,  $(\mu_n, \mu)_{\mathbf{E}} \to (\mu, \mu)_{\mathbf{E}} = \|\mu\|_{\mathbf{E}}^2$  as  $n \to \infty$ . Thus we have

$$\|\mu - \mu_n\|_{\mathbf{E}}^2 = \|\mu\|_{\mathbf{E}}^2 - 2(\mu, \mu_n)_{\mathbf{E}} + \|\mu_n\|_{\mathbf{E}}^2 \to 0$$

as  $n \to \infty$ .

**Theorem 3.11.**  $\mathcal{E}_q = \mathbf{E}_0 \cap L^+(V)$  if both  $(\mathrm{LD})_q$  and  $(\mathrm{CLD})_q$  are fulfilled.

Proof. Let  $\mu \in \mathcal{E}_q$ . By Lemma 3.4, there exists  $\{\mu_n\}_n \subset L_0(V) \cap L^+(V)$  such that  $\{G_q\mu_n\}_n$  converges to  $G_q\mu$  in the norm of  $\mathbf{E}$  and that  $\{\mu_n\}_n$  converges pointwise to  $\mu$ . Lemma 3.2 shows that  $G_q\mu \in \mathbf{E}_0$  and  $G_q\mu_n \in \mathbf{E}_0$  for each n. By Lemmas 3.1 and 3.6

$$\|\mu - \mu_n\|_{\mathbf{E}} = \|\Delta_q G_q \mu_n - \Delta_q G_q \mu\|_{\mathbf{E}} \le c \|G_q \mu_n - G_q \mu\|_{\mathbf{E}} \to 0$$

as  $n \to \infty$ . Thus  $\mu \in \mathbf{E}_0$ .

We show the converse. Let  $\mu \in \mathbf{E}_0 \cap L^+(V)$ . By Lemma 3.10, there exists  $\{\mu_n\}_n \subset L_0(V) \cap L^+(V)$  which converges to  $\mu$  in the norm of  $\mathbf{E}$ . Lemma 3.2 implies  $G_q\mu_n \in \mathbf{E}_0$  for each n. Proposition 3.8 and Lemma 3.1 show that

$$\|G_q\mu_n - G_q\mu_m\|_{\mathbf{E}} \le c\|\Delta_q(G_q\mu_n - G_q\mu_m)\|_{\mathbf{E}} = c\|\mu_m - \mu_n\|_{\mathbf{E}} \to 0$$

as  $n, m \to \infty$ . Therefore  $\{G_q \mu_n\}_n$  converges to some  $u \in \mathbf{E}_0$  in the norm of  $\mathbf{E}$ . Fatou's lemma and Lemma 3.3 give

$$G_q(\mu,\mu) \le \liminf_{n \to \infty} G_q(\mu_n,\mu_n) = \lim_{n \to \infty} \|G_q\mu_n\|_{\mathbf{E}}^2 = \|u\|_{\mathbf{E}}^2 < \infty.$$

Namely  $\mu \in \mathcal{E}_q$ .

For any  $u \in L(V)$ , we define  $G_q u$  by  $G_q u = G_q u^+ - G_q u^-$  if both  $u^+ = \max\{u, 0\}$ and  $u^- = -\min\{u, 0\}$  belong to  $\mathcal{M}_q$ .

**Theorem 3.12.**  $\mathbf{E}_0 = \mathcal{E}_q - \mathcal{E}_q$  if both  $(LD)_q$  and  $(CLD)_q$  are fulfilled. In this case,  $u^+, u^- \in \mathcal{E}_q$  for  $u \in \mathbf{E}_0$ .

*Proof.* By Theorem 3.11,  $\mathcal{E}_q - \mathcal{E}_q \subset \mathbf{E}_0$ . Conversely, for  $u \in \mathbf{E}_0$ , Lemma 2.5 and Theorem 3.11 imply that  $u^+, u^- \in \mathbf{E}_0 \cap L^+(V) = \mathcal{E}_q$ , so that  $\mathbf{E}_0 \subset \mathcal{E}_q - \mathcal{E}_q$ .  $\Box$ 

**Theorem 3.13.**  $G_q u \in \mathbf{E}_0$  and  $\Delta_q G_q u = -u$  for  $u \in \mathbf{E}_0$  if both  $(\mathrm{LD})_q$  and  $(\mathrm{CLD})_q$  are fulfilled.

*Proof.* Let  $u \in \mathbf{E}_0$ . Theorem 3.12 shows that  $u^+, u^- \in \mathcal{E}_q$ . Lemma 3.2 implies  $G_q u = G_q u^+ - G_q u^- \in \mathbf{E}_0$ . By Lemma 3.1 we have

$$\Delta_q G_q u = \Delta_q G_q u^+ - \Delta_q G_q u^- = -u^+ + u^- = -u$$

as required.

**Corollary 3.14.**  $\{G_q u \mid u \in \mathbf{E}_0\} \subset \mathbf{E}_0$  if both  $(LD)_q$  and  $(CLD)_q$  are fulfilled.

**Theorem 3.15.**  $G_q \Delta_q u = -u$  for  $u \in \mathbf{E}_0$  if both  $(\mathrm{LD})_q$  and  $(\mathrm{CLD})_q$  are fulfilled.

*Proof.* Let  $u \in \mathbf{E}_0$ . Then  $v := \Delta_q u \in \mathbf{E}_0$  by Lemma 3.7. Theorem 3.13 shows that  $G_q v \in \mathbf{E}_0$  and that  $\Delta_q (u + G_q v) = v - v = 0$ . Therefore  $u + G_q v \in \mathbf{E}_0 \cap \mathbf{H}_q$ . Thus  $u + G_q v = 0$  by Lemma 2.2.

We arrive at the following main result.

**Theorem 3.16.**  $\mathbf{E}_0 = \{G_q \mu - G_q \nu \mid \mu, \nu \in \mathcal{E}_q\}$  if both  $(\mathrm{LD})_q$  and  $(\mathrm{CLD})_q$  are fulfilled.

Proof. Lemma 3.2 implies that  $\{G_q\mu - G_q\nu \mid \mu, \nu \in \mathcal{E}_q\} \subset \mathbf{E}_0$ . We show the converse. Let  $u \in \mathbf{E}_0$ . We have  $v := -\Delta_q u \in \mathbf{E}_0$  by Lemma 3.7. Theorem 3.15 shows that  $u = G_q v = G_q v^+ - G_q v^-$ . Theorem 3.12 implies that  $v^+, v^- \in \mathcal{E}_q$ , and that  $u \in \{G_q \mu - G_q \nu \mid \mu, \nu \in \mathcal{E}_q\}$ .

As an application of our results, we shall give a version of Riesz decomposition of  $u \in \mathbf{E}^{(2)} = \{u \in L(V) \mid \Delta_q u \in \mathbf{E}\}$  as follows. Let us put

$$\mathbf{E}_0^{(2)} = \{ u \in L(V) \mid \Delta_q u \in \mathbf{E}_0 \}, \\ \mathbf{H}_q^{(2)} = \{ u \in L(V) \mid \Delta_q u \in \mathbf{H}_q \}.$$

**Theorem 3.17.** If both  $(LD)_q$  and  $(CLD)_q$  are fulfilled, then for every  $u \in \mathbf{E}^{(2)}$ , there exist a unique  $v \in \mathbf{E}_0$  and a unique  $w \in \mathbf{H}_q^{(2)} \cap \mathbf{E}^{(2)}$  such that  $u = G_q v + w$ .

*Proof.* Let  $u \in \mathbf{E}^{(2)}$ . Applying Lemma 2.3 to  $\Delta_q u \in \mathbf{E}$  yields

 $\Delta_q u = -v + h$  with  $v \in \mathbf{E}_0$  and  $h \in \mathbf{H}_q \cap \mathbf{E}$ .

Theorem 3.13 shows that  $\Delta_q G_q v = -v \in \mathbf{E}_0$ . Hence  $G_q v \in \mathbf{E}_0^{(2)}$ . Let  $w = u - G_q v$ . Then  $w \in \mathbf{E}^{(2)}$  and

$$\Delta_q w = \Delta_q u - \Delta_q G_q v = (-v + h) + v = h \in \mathbf{H}_q,$$

so that  $w \in \mathbf{H}_q^{(2)}$ .

To show the uniqueness, we assume that  $u = G_q v_1 + w_1 = G_q v_2 + w_2$  with  $v_1, v_2 \in \mathbf{E}_0$  and  $w_1, w_2 \in \mathbf{H}_q^{(2)} \cap \mathbf{E}^{(2)}$ . Theorem 3.13 shows that  $w_1 - w_2 = G_q v_2 - G_q v_1 \in \mathbf{E}_0$ . Lemma 3.7 implies  $\Delta_q(w_1 - w_2) \in \mathbf{E}_0$ . Since  $w_1 - w_2 \in \mathbf{H}_q^{(2)}$ , it follows that  $\Delta_q(w_1 - w_2) \in \mathbf{H}_q$ . Lemma 2.2 shows that  $\Delta_q(w_1 - w_2) = 0$ , so that  $w_1 - w_2 \in \mathbf{H}_q \cap \mathbf{E}_0$ . Again by Lemma 2.2 we have  $w_1 = w_2$ , so that  $G_q v_1 = G_q v_2$ . Theorem 3.13 gives  $v_1 = -\Delta_q G_q v_1 = -\Delta_q G_q v_2 = v_2$ .

Corollary 3.18.  $\mathbf{E}^{(2)} = \mathbf{E}_0^{(2)} + \mathbf{H}_q^{(2)} \cap \mathbf{E}^{(2)}$  if both  $(\mathrm{LD})_q$  and  $(\mathrm{CLD})_q$  are fulfilled.

Proof. Clearly  $\mathbf{E}_0^{(2)} + \mathbf{H}_q^{(2)} \cap \mathbf{E}^{(2)} \subset \mathbf{E}^{(2)}$ . We show the converse. Let  $u \in \mathbf{E}^{(2)}$ . By Theorem 3.17 we take  $v \in \mathbf{E}_0$  and  $w \in \mathbf{H}_q^{(2)} \cap \mathbf{E}^{(2)}$  such that  $u = G_q v + w$ . Theorem 3.13 shows that  $\Delta_q G_q v = -v \in \mathbf{E}_0$ , so that  $G_q v \in \mathbf{E}_0^{(2)}$ .

# 4. Conditions $(LD)_q$ and $(CLD)_q$

We considered in [7] the following conditions:

(LD) There exists a constant c > 0 such that  $\|\Delta f\|_{\mathbf{D}} \leq c \|f\|_{\mathbf{D}}$  for all  $f \in L_0(V)$ ; (CLD) There exists a constant c > 0 such that  $\|f\|_{\mathbf{D}} \leq c \|\Delta f\|_{\mathbf{D}}$  for all  $f \in L_0(V)$ . Note that  $(\mathrm{LD})_q$  and  $(\mathrm{CLD})_q$  in Section 3 are obtained by replacing  $\mathbf{D}$  by  $\mathbf{E}$  and  $\Delta$  by  $\Delta_q$  in (LD) and (CLD).

We recall

**Lemma 4.1** ([6, Lemma 3.2]). Assume (LD). Then there exists a constant c > 0 such that  $\|\Delta u\|_{\mathbf{D}} \leq c \|u\|_{\mathbf{D}}$  for all  $u \in \mathbf{D}$ .

First of all, we note that  $\|\Delta u\|_{\mathbf{D}} < \infty$  does not imply  $\|\Delta_q u\|_{\mathbf{D}} < \infty$ . In fact, let u = 1 on V and  $q \in L^+(V) \setminus \mathbf{D}$ . Then  $\|\Delta u\|_{\mathbf{D}} = 0$  and  $\|\Delta_q u\|_{\mathbf{D}} = \|q\|_{\mathbf{D}} = \infty$ . Let us define t(x, y) and t(x) for  $x, y \in V$  by

$$t(x,y) = \sum_{e \in E} |K(x,e)K(y,e)|r(e)^{-1} \quad \text{if } x \neq y,$$
$$t(x,x) = 0,$$
$$t(x) = \sum_{e \in E} |K(x,e)|r(e)^{-1} = \sum_{y \in V} t(x,y).$$

Then we have

$$\Delta u(x) = -t(x)u(x) + \sum_{y \in V} t(x,y)u(y)$$

For convenience sake, we introduce the following conditions:

(qB) q(x) is bounded on V;

(tB) t(x) is bounded on V.

**Lemma 4.2.** Assume both (qB) and (tB). Then there exists a constant c > 0 such that  $||qu||_{\mathbf{D}} \leq c \left(\sum_{x \in V} u(x)^2\right)^{1/2}$  and  $||qu||_{\mathbf{D}} \leq c ||u||_{\mathbf{E}}$  for all  $u \in \mathbf{E}$ .

*Proof.* Let  $\gamma$  satisfy  $t(x) \leq \gamma$  and  $q(x) \leq \gamma$  for all  $x \in V$ . Let  $u \in \mathbf{E}$ . For  $e \in E$ , let  $x_1$  and  $x_2 \in V$  be the initial node and the terminal node of e. Then

$$(\nabla(qu)(e))^{2} = r(e)^{-2} (q(x_{2})u(x_{2}) - q(x_{1})u(x_{1}))^{2}$$
  

$$\leq r(e)^{-2} \times 2 (q(x_{2})^{2}u(x_{2})^{2} + q(x_{1})^{2}u(x_{1})^{2})$$
  

$$\leq 2r(e)^{-2} \times \gamma (q(x_{1})u(x_{1})^{2} + q(x_{2})u(x_{2})^{2})$$
  

$$= 2\gamma r(e)^{-2} \sum_{x \in V} |K(x, e)|q(x)u(x)^{2}.$$

We have

$$\begin{aligned} \|qu\|_{\mathbf{D}}^{2} &= \sum_{e \in E} r(e) (\nabla(qu)(e))^{2} \leq 2\gamma \sum_{e \in E} r(e)^{-1} \sum_{x \in V} |K(x,e)| q(x) u(x)^{2} \\ &= 2\gamma \sum_{x \in V} t(x) q(x) u(x)^{2} \leq 2\gamma^{2} \sum_{x \in V} q(x) u(x)^{2}, \end{aligned}$$

which implies  $||qu||_{\mathbf{D}}^2 \le 2\gamma^3 \sum_{x \in V} u(x)^2$  and  $||qu||_{\mathbf{D}}^2 \le 2\gamma^2 ||u||_{\mathbf{E}}^2$ .

**Proposition 4.3.**  $(LD)_q$  implies both (qB) and (tB).

*Proof.* Condition  $(LD)_q$  shows that there exists c > 0 such that  $\|\Delta \delta_a\|_{\mathbf{E}} \leq c \|\delta_a\|_{\mathbf{E}}$  for all  $a \in V$ , where  $\delta_a$  is the characteristic function of  $\{a\}$ . We shall show that  $t(a) + q(a) \leq c$ .

Let  $\{e_j\}_{j=1}^d \subset E$  be the arcs adjacent to a and let  $b_j \in V$  be the other node of  $e_j$ . For  $e \in E$ 

$$\nabla \delta_a(e) = -r(e)^{-1} \sum_{x \in V} K(x, e) \delta_a(x) = -r(e)^{-1} K(a, e).$$

Since  $K(x, e)^2 = |K(x, e)|$  in general,

$$\|\delta_a\|_{\mathbf{E}}^2 = \sum_{e \in E} r(e)^{-1} K(a, e)^2 + \sum_{x \in V} q(x) \delta_a(x)^2$$
$$= \sum_{e \in E} r(e)^{-1} |K(a, e)| + q(a) = t(a) + q(a).$$

On the other hand

$$\Delta_q \delta_a(x) = \sum_{e \in E} K(x, e) \nabla \delta_a(e) - q(x) \delta_a(x)$$
  
=  $-\sum_{e \in E} K(x, e) r(e)^{-1} K(a, e) - q(x) \delta_a(x)$   
=  $-\sum_{i=1}^d K(x, e_i) r(e_i)^{-1} K(a, e_i) - q(x) \delta_a(x).$ 

Especially

$$\Delta_q \delta_a(a) = -t(a) - q(a).$$

Since  $K(x, e_i)K(a, e_i) = 0$  unless x = a or  $x = b_i$  and  $K(b_i, e_i)K(a, e_i) = -1$ , it follows that

$$\nabla(\Delta_q \delta_a)(e) = -r(e)^{-1} \sum_{x \in V} K(x, e) \Delta_q \delta_a(x)$$
  
=  $r(e)^{-1} \sum_{x \in V} K(x, e) \left( \sum_{i=1}^d K(x, e_i) r(e_i)^{-1} K(a, e_i) + q(x) \delta_a(x) \right)$   
=  $r(e)^{-1} \left( K(a, e) t(a) - \sum_{i=1}^d K(b_i, e) r(e_i)^{-1} + K(a, e) q(a) \right).$ 

If  $e = e_j$ , then, by  $K(b_j, e_j) = -K(a, e_j)$ ,

$$\nabla(\Delta_q \delta_a)(e_j) = r(e_j)^{-1} \Big( K(a, e_j) t(a) - K(b_j, e_j) r(e_j)^{-1} + K(a, e_j) q(a) \Big)$$
  
=  $r(e_j)^{-1} K(a, e_j) \Big( t(a) + r(e_j)^{-1} + q(a) \Big).$ 

Consequently

$$\begin{aligned} |\Delta_q \delta_a||_{\mathbf{E}}^2 &\geq \sum_{j=1}^d r(e_j) |\nabla(\Delta \delta_a)(e_j)|^2 + q(a)(\Delta_q \delta_a(a))^2 \\ &= \sum_{j=1}^d r(e_j)^{-1} \Big( t(a) + r(e_j)^{-1} + q(a) \Big)^2 + q(a)(-t(a) - q(a))^2 \\ &\geq \sum_{j=1}^d r(e_j)^{-1} \Big( t(a) + q(a) \Big)^2 + q(a)(t(a) + q(a))^2 \\ &= \Big( t(a) + q(a) \Big)^3. \end{aligned}$$

Combining these we have  $(t(a) + q(a))^3 \le c^2(t(a) + q(a))$ , or  $t(a) + q(a) \le c$ .  $\Box$ 

Assuming q = 0 in the proposition above, we have

Corollary 4.4. (LD) implies (tB).

**Proposition 4.5.** If both (LD) and (qB) are fulfilled, then there exists a constant c > 0 such that  $\|\Delta_q u\|_{\mathbf{D}} \leq c \|u\|_{\mathbf{E}}$  for all  $u \in \mathbf{E}$ .

*Proof.* Let  $u \in \mathbf{E}$ . Note that Corollary 4.4 implies (tB). Lemmas 4.1 and 4.2 show that there exist constants  $c_1 > 0$  and  $c_2 > 0$  such that  $\|\Delta u\|_{\mathbf{D}} \leq c_1 \|u\|_{\mathbf{D}}$  and  $\|qu\|_{\mathbf{D}} \leq c_2 \|u\|_{\mathbf{E}}$ . We have

$$\|\Delta_q u\|_{\mathbf{D}} \le \|\Delta u\|_{\mathbf{D}} + \|qu\|_{\mathbf{D}} \le (c_1 + c_2)\|u\|_{\mathbf{E}}$$

as required.

Denote by  $\mathbf{S}_{q}^{+}$  the set of  $u \in L^{+}(V)$  such that  $\Delta_{q} u \leq 0$ .

**Lemma 4.6.** Assume both (qB) and (tB). Then there exists a constant c > 0 such that  $|\Delta_q u(x)| \leq cu(x)$  on V for all  $u \in \mathbf{S}_q^+$ .

*Proof.* Let  $u \in \mathbf{S}_q^+$ . If we set  $\Delta^* u(x) = \sum_{y \in V} t(x, y) u(y)$ , then, since  $\Delta_q u(x) = \Delta^* u(x) - (t(x) + q(x)) u(x)$ , it follows that

$$(t(x) + q(x))u(x) \ge \Delta^* u(x) \ge 0,$$

so that

$$|\Delta_q u(x)| \le |\Delta^* u(x)| + |(t(x) + q(x))u(x)| \le 2(t(x) + q(x))u(x).$$

We may take  $c = 2 \sup_{x \in V} (t(x) + q(x)).$ 

**Theorem 4.7.** If both (LD) and (qB) are fulfilled, then there exists a constant c > 0 such that

$$\|\Delta_q u\|_{\mathbf{E}} \le c \|u\|_{\mathbf{E}} \quad for \ all \ u \in \mathbf{E}_0 \cap \mathbf{S}_q^+.$$

*Proof.* Let  $u \in \mathbf{E}_0 \cap \mathbf{S}_q^+$ . Note that Corollary 4.4 implies (*t*B). Proposition 4.5 and Lemma 4.6 show that there exist constants  $c_1 > 0$  and  $c_2 > 0$  such that  $\|\Delta_q u\|_{\mathbf{D}} \leq c_1 \|u\|_{\mathbf{E}}$  and  $|\Delta_q u(x)| \leq c_2 u(x)$  on V. We have

$$\begin{split} \|\Delta_q u\|_{\mathbf{E}}^2 &= \|\Delta_q u\|_{\mathbf{D}}^2 + \sum_{x \in V} q(x) (\Delta_q u(x))^2 \le c_1^2 \|u\|_{\mathbf{E}}^2 + c_2^2 \sum_{x \in V} q(x) u(x)^2 \\ &\le (c_1^2 + c_2^2) \|u\|_{\mathbf{E}}^2, \end{split}$$

as required.

**Proposition 4.8.** If both (qB) and (tB) are fulfilled and if q is superharmonic on V, i.e.,  $\Delta q \leq 0$  on V, then there exists a constant c > 0 such that

$$\sum_{x \in V} q(x) (\Delta_q u(x))^2 \le c \sum_{x \in V} q(x) u(x)^2$$

for all  $u \in L(V)$ .

*Proof.* Let  $\gamma$  satisfy  $t(x) \leq \gamma$  and  $q(x) \leq \gamma$  for all  $x \in V$ . We set  $\Delta^* u(x) = \sum_{y \in V} t(x, y)u(y)$ . Schwarz's inequality implies that

$$\begin{split} (\Delta^* u(x))^2 &\leq \Big(\sum_{y \in V} t(x,y)\Big) \Big(\sum_{y \in V} t(x,y)u(y)^2\Big) = t(x)\sum_{y \in V} t(x,y)u(y)^2 \\ &\leq \gamma \sum_{y \in V} t(x,y)u(y)^2. \end{split}$$

Since q is superharmonic on V, i.e.,  $\Delta^* q(x) \leq t(x)q(x)$  on V, it follows that

$$\begin{split} \sum_{x \in V} q(x) (\Delta^* u(x))^2 &\leq \gamma \sum_{x \in V} q(x) \sum_{y \in V} t(x, y) u(y)^2 \\ &= \gamma \sum_{y \in V} u(y)^2 \sum_{x \in V} t(x, y) q(x) \\ &= \gamma \sum_{y \in V} u(y)^2 \Delta^* q(y) \\ &\leq \gamma \sum_{y \in V} u(y)^2 t(y) q(y) \leq \gamma^2 \sum_{y \in V} q(y) u(y)^2 \end{split}$$

We have

$$(\Delta_q u(x))^2 = \left(\Delta^* u(x) - (t(x) + q(x))u(x)\right)^2$$
  

$$\leq 2(\Delta^* u(x))^2 + 2(t(x) + q(x))^2 u(x)^2$$
  

$$\leq 2(\Delta^* u(x))^2 + 8\gamma^2 u(x)^2,$$

so that

$$\sum_{x \in V} q(x) (\Delta_q u(x))^2 \le 2 \sum_{x \in V} q(x) (\Delta^* u(x))^2 + 8\gamma^2 \sum_{x \in V} q(x) u(x)^2 \le 10\gamma^2 \sum_{x \in V} q(x) u(x)^2.$$

This completes the proof.

**Theorem 4.9.** If q is superharmonic on V, then  $(LD)_q$  follows from (LD) and (qB).

*Proof.* Let  $f \in L_0(V)$  and assume (LD) and (qB). Proposition 4.5 shows that there exists a constant  $c_1 > 0$  such that  $\|\Delta_q f\|_{\mathbf{D}} \leq c_1 \|f\|_{\mathbf{E}}$ . Since (tB) is fulfilled by Corollary 4.4, there exists a constant  $c_2 > 0$  such that

$$\sum_{x \in V} q(x) (\Delta_q f(x))^2 \le c_2 \sum_{x \in V} q(x) f(x)^2 \le c_2 ||f||_{\mathbf{E}}^2$$

by Proposition 4.8. Thus we have  $\|\Delta_q f\|_{\mathbf{E}}^2 \leq (c_1^2 + c_2) \|f\|_{\mathbf{E}}^2$ , so that  $(\mathrm{LD})_q$  is fulfilled.

As a generalized version of Poincaré-Sobolev's inequality, we introduced in [7] the following condition (SPS): There exists a constant c > 0 such that

(SPS) 
$$\sum_{x \in V} f(x)^2 \le c \|f\|_{\mathbf{D}}^2 \quad \text{for all } f \in L_0(V).$$

**Lemma 4.10** ([7, Lemma 2.1]). Assume (SPS). Then there exists a constant c > 0 such that

$$\sum_{x \in V} u(x)^2 \le c \|u\|_{\mathbf{D}}^2 \quad \text{for all } u \in \mathbf{D}_0.$$

**Proposition 4.11.** If both (SPS) and (qB) are fulfilled, then there exists a constant c > 0 such that  $||u||_{\mathbf{E}} \leq c||u||_{\mathbf{D}}$  for all  $u \in \mathbf{D}_0$ .

*Proof.* Let  $\gamma$  be such that  $q(x) \leq \gamma$  for all  $x \in V$ . By Lemma 4.10, there exists a constant  $c_1 > 0$  such that

$$\|u\|_{\mathbf{E}}^{2} = \|u\|_{\mathbf{D}}^{2} + \sum_{x \in V} q(x)u(x)^{2} \le \|u\|_{\mathbf{D}}^{2} + \gamma \sum_{x \in V} u(x)^{2} \le (1 + c_{1}\gamma)\|u\|_{\mathbf{D}}^{2},$$

which shows the assertion.

**Corollary 4.12.**  $\mathbf{E}_0 = \mathbf{D}_0$  if both (SPS) and (qB) are fulfilled.

*Proof.* Since  $\mathbf{D}_0 \subset \mathbf{E}$  by Proposition 4.11, we have  $\mathbf{E}_0 = \mathbf{D}_0 \cap \mathbf{E} = \mathbf{D}_0$  by Lemma 2.1.

**Lemma 4.13.** Assume all of (SPS), (qB), and (tB). Then there exists a constant c > 0 such that  $||qu||_{\mathbf{D}} \le c||u||_{\mathbf{D}}$  for all  $u \in \mathbf{D}_0$ .

*Proof.* Let  $u \in \mathbf{D}_0$ . Then  $u \in \mathbf{E}_0$  by Corollary 4.12. Lemmas 4.2 and 4.10 show that  $\|qu\|_{\mathbf{D}} \leq c_1 (\sum_{x \in V} u(x)^2)^{1/2}$  and  $\sum_{x \in V} u(x)^2 \leq c_2 \|u\|_{\mathbf{D}}^2$ . Combining these, we have  $\|qu\|_{\mathbf{D}}^2 \leq c_1^2 c_2 \|u\|_{\mathbf{D}}^2$ .

**Lemma 4.14.**  $\{\Delta_q u \mid u \in \mathbf{D}_0\} \subset \mathbf{D}_0$  if all of (LD), (SPS), and (qB) are fulfilled.

Proof. Let  $u \in \mathbf{D}_0$ . Then  $\Delta u \in \mathbf{D}_0$  by [5, Lemma 6.1]. Let  $\{f_n\}_n$  be a sequence in  $L_0(V)$  such that  $||u - f_n||_{\mathbf{D}} \to 0$  as  $n \to \infty$ . There exists a constant  $c_1 > 0$  such that  $||qu - qf_n||_{\mathbf{D}} \leq c_1 ||u - f_n||_{\mathbf{D}}$  by Lemma 4.13. Since  $qf_n \in L_0(V)$ , we see that  $qu \in \mathbf{D}_0$ . Therefore  $\Delta_q u = \Delta u - qu \in \mathbf{D}_0$ .

**Theorem 4.15.**  $(LD)_q$  follows from all of (LD), (SPS), and (qB).

Proof. Assume all of (LD), (SPS), and (qB). Let  $\gamma$  be a number such that  $q(x) \leq \gamma$  for all  $x \in V$ . Let  $f \in L_0(V)$ . There exists a constant  $c_1 > 0$  such that  $\|\Delta_q f\|_{\mathbf{D}} \leq c_1 \|f\|_{\mathbf{E}}$  by Proposition 4.5. Since  $\Delta_q f \in L_0(V)$ , we have  $\sum_{x \in V} (\Delta_q f(x))^2 \leq c_2 \|\Delta_q f\|_{\mathbf{D}}^2$  by Lemma 4.10. We have

$$\begin{aligned} \|\Delta_q f\|_{\mathbf{E}}^2 &\leq c_1^2 \|f\|_{\mathbf{E}}^2 + \sum_{x \in V} q(x) (\Delta_q f(x))^2 \leq c_1^2 \|f\|_{\mathbf{E}}^2 + \gamma c_2 \|\Delta_q f\|_{\mathbf{D}}^2 \\ &\leq c_1^2 (1 + \gamma c_2) \|f\|_{\mathbf{E}}^2, \end{aligned}$$

which shows  $(LD)_q$ .

**Theorem 4.16.** (SPS) *implies*  $(CLD)_q$ .

*Proof.* Let  $f \in L_0(V)$ . Since  $\Delta_q f \in L_0(V)$ , there exists a constant  $c_1 > 0$  by (SPS) such that

$$\sum_{x \in V} (\Delta_q f(x))^2 \le c_1 \|\Delta_q f\|_{\mathbf{D}}^2 \quad \text{and} \quad \sum_{x \in V} f(x)^2 \le c_1 \|f\|_{\mathbf{D}}^2.$$

Lemma 2.6 shows that

$$\|f\|_{\mathbf{E}}^{2} = -\sum_{x \in V} (\Delta_{q} f(x)) f(x) \leq \left(\sum_{x \in V} (\Delta_{q} f(x))^{2}\right)^{1/2} \left(\sum_{x \in V} f(x)^{2}\right)^{1/2}$$
$$\leq c_{1} \|\Delta_{q} f\|_{\mathbf{D}} \|f\|_{\mathbf{D}} \leq c_{1} \|\Delta_{q} f\|_{\mathbf{E}} \|f\|_{\mathbf{E}},$$

or  $||f||_{\mathbf{E}} \leq c_1 ||\Delta_q f||_{\mathbf{E}}$ .

Finally we give an example to show that (LD) does not imply  $(LD)_q$ .

**Example 4.17.** Let  $\mathcal{N} = \langle V, E, K, r \rangle$  be a linear network, where  $V = \{x_n\}_{n=0}^{\infty}$ ,  $E = \{e_n\}_{n=1}^{\infty}$ , and  $r(e_n) = 1$  for each  $n \ge 1$ . Let  $K(x_{n-1}, e_n) = 1$  and  $K(x_n, e_n) = -1$  for each  $n \ge 1$ , and let K(x, e) = 0 for any other pairs. We showed in [6, Corollary 2.3] that  $\mathcal{N}$  satisfies (LD).

To prove that  $(LD)_q$  is not satisfied, we choose  $q(x_k) = k$ . Consider the function  $f_n$  defined by  $f_n(x_k) = 1$  if k < n and  $f_n(x_k) = 0$  otherwise. Then  $\nabla f_n(e_k) = -\delta_{n,k}$ , where  $\delta_{n,k}$  is Kronecker's delta. Therefore

$$||f_n||_{\mathbf{E}}^2 = \sum_{k=1}^{\infty} (-\delta_{n,k})^2 + \sum_{k=0}^{n-1} k \cdot 1^2 = 1 + \frac{1}{2}n(n-1).$$

On the other hand,  $\Delta_q f_n(x_k) = -k$  for  $k \leq n-2$ , so that

$$\|\Delta_q f_n\|_{\mathbf{E}}^2 \ge \sum_{k=0}^{n-2} q(x_k) (\Delta_q f_n(x_k))^2 = \sum_{k=0}^{n-2} k^3 = \frac{1}{4} (n-1)^2 (n-2)^2.$$

Consequently

$$\lim_{n \to \infty} \frac{\|\Delta_q f_n\|_{\mathbf{E}}}{\|f_n\|_{\mathbf{E}}} = \infty,$$

which means that  $\mathcal{N}$  does not satisfy  $(LD)_q$ .

### References

- [1] Victor Anandam, Harmonic functions and potentials on finite or infinite networks, Lecture Notes of the Unione Matematica Italiana, vol. 12, Springer, Heidelberg, 2011.
- [2] Hèla Ayadi, Opérateur de Gauss-Bonnet semi-Fredholm et propriétés spectrales sur les graphes infinis, thèse de doctorat, Université de Nantes, hal archives-ouvertes. fr. 2015.
- [3] Atsushi Kasue, Random walks and Kuramochi boundaries of infinite networks, Osaka J. Math. 50 (2013), no. 1, 31–51.
- [4] Premalatha Kumaresan and Nathiya Narayanaraju, A non-Laplace harmonic structure in infinite networks, Eur. J. Math., 1 (2015), no. 2, 387–403
- [5] Hisayasu Kurata and Maretsugu Yamasaki, *Bi-flows on a network*, Hokkaido Mathematical Journal, 44 (2015), no. 2, 203–220.
- [6] \_\_\_\_\_, The metric growth of the discrete Laplacian, Hokkaido Mathematical Journal, 45 (2016), no. 3, 399–417.
- [7] \_\_\_\_\_, Discrete Green potentials with finite energy, to appear in Hokkaido Mathematical Journal.
- [8] Russell Lyons and Yuval Peres, *Probability on trees and networks*, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42, Cambridge University Press, New York, 2016.
- [9] Fumi-Yuki Maeda, Boundary value problems for the equation  $\Delta u qu = 0$  with respect to an ideal boundary, J. Sci. Hiroshima Univ. Ser. A-I Math., **32** (1968), 85–146.
- [10] Maretsugu Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5(1975), 223–250.
- [11] \_\_\_\_\_, Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13(1979), 31–44.
- [12] \_\_\_\_\_, The equation  $\Delta u = qu$  on an infinite network, ibid. **21** (1987), 31–46.

H. KURATA: YONAGO NATIONAL COLLEGE OF TECHNOLOGY; YONAGO, TOTTORI, 683-8502, JAPAN

*E-mail address*: kurata@yonago-k.ac.jp

M. YAMASAKI: MATSUE, SHIMANE, 690-0824, JAPAN *E-mail address*: yama0565m@mable.ne.jp