DISCRETE q-GREEN POTENTIALS WITH FINITE ENERGY

HISAYASU KURATA AND MARETSUGU YAMASAKI
Communicated by Toshihiro Nakanishi

(Received: November 21, 2017)

Abstract

Discrete q-Green potentials related to the equation $\Delta u-q u=0$ on an infinite network were studied in [12] as a discrete analogue to [9]. We study some properties of q-Green potentials with finite q-Green energy. The q-Dirichlet energy plays an important role instead of the Dirichlet sum. Our aim is to show that results obtained in [7] in case $q=0$ hold similarly even in case $q \geq 0$. We show that every q-Dirichlet potential can be expressed as a difference of two q-Green potentials with finite q-Green energy.

1. Introduction with preliminaries

Discrete potential theory on infinite networks related to the discrete Laplacian Δ has been studied by many authors; for example, Anandam [1], Ayadi [2], Kasue [3], Kumaresan and Narayanaraju [4], Lyons and Peres [8], and Yamasaki [11].

Many potential theoretic results related to the equation $\Delta_{q} u:=\Delta u-q u=0$ on a Riemann surface were given in [9]. The q-harmonic Green function (q-Green function, for short) implies the Green function related to Δ_{q}. As for the q-Green function of an infinite network, some results which have counterparts in [9] were shown in [12]. Our aim of this paper is to show that every q-Dirichlet potential can be expressed as a difference of two q-Green potentials with finite q-Green energy. We proved in [7] that this property holds in case $q=0$.

More precisely, let $\mathcal{N}=\langle V, E, K, r\rangle$ be an infinite network which is connected and locally finite and has no self-loop, where V is the set of nodes, E is the set of arcs, and the resistance r is a strictly positive function on E. For $x \in V$ and for $e \in E$ the node-arc incidence matrix K is defined by $K(x, e)=1$ if x is the initial node of $e ; K(x, e)=-1$ if x is the terminal node of $e ; K(x, e)=0$ otherwise. Let $L(V)$ be the set of all real valued functions on $V, L^{+}(V)$ the set of all non-negative real valued functions on V, and $L_{0}(V)$ the set of all $u \in L(V)$ with finite support. We similarly define $L(E), L^{+}(E)$, and $L_{0}(E)$. Let q be a non-negative function on

[^0]V with $q \neq 0$. For $u \in L(V)$ we define the discrete derivative $\nabla u \in L(E)$, the Laplacian $\Delta u \in L(V)$, and the q-Laplacian $\Delta_{q} u \in L(V)$ as
\[

$$
\begin{gathered}
\nabla u(e)=-r(e)^{-1} \sum_{x \in V} K(x, e) u(x), \\
\Delta u(x)=\sum_{e \in E} K(x, e) \nabla u(e), \\
\Delta_{q} u(x)=\Delta u(x)-q(x) u(x)
\end{gathered}
$$
\]

For convenience we give specific forms. For $e \in E$ let $x^{+} \in V$ be the initial node of e and $x^{-} \in V$ the terminal node of e. Then

$$
\nabla u(e)=\frac{u\left(x^{-}\right)-u\left(x^{+}\right)}{r(e)} .
$$

For $x \in V$ let $\left\{e_{1}, \ldots, e_{d}\right\}$ be the set of arcs adjacent to x and let y_{j} be the other node of e_{j} for each j. Then

$$
\begin{gathered}
\Delta u(x)=\sum_{j=1}^{d} \frac{u\left(y_{j}\right)-u(x)}{r\left(e_{j}\right)}, \\
\Delta_{q} u(x)=\sum_{j=1}^{d} \frac{u\left(y_{j}\right)-u(x)}{r\left(e_{j}\right)}-q(x) u(x) .
\end{gathered}
$$

For $u, v \in L(V)$, we put

$$
\begin{gathered}
(u, v)_{\mathbf{D}}=\sum_{e \in E} r(e) \nabla u(e) \nabla v(e), \\
\|u\|_{\mathbf{D}}=(u, u)_{\mathbf{D}}^{1 / 2} \quad(\text { Dirichlet sum }), \\
(u, v)_{\mathbf{E}}=\sum_{e \in E} r(e) \nabla u(e) \nabla v(e)+\sum_{x \in V} q(x) u(x) v(x), \\
\|u\|_{\mathbf{E}}=(u, u)_{\mathbf{E}}^{1 / 2} \quad(q \text {-Dirichlet energy }) .
\end{gathered}
$$

We define some classes of functions on V as

$$
\begin{aligned}
& \mathbf{D}=\left\{u \in L(V) \mid\|u\|_{\mathbf{D}}<\infty\right\}, \\
& \mathbf{E}=\left\{u \in L(V) \mid\|u\|_{\mathbf{E}}<\infty\right\}, \\
& \mathbf{H}_{q}=\left\{u \in L(V) \mid \Delta_{q} u=0\right\} .
\end{aligned}
$$

It is easy to see that \mathbf{E} is a Hilbert space with respect to the inner product $(u, v)_{\mathbf{E}}$. On the other hand, $(u, v)_{\mathbf{D}}$ is a degenerate bilinear form in \mathbf{D}; for example, $(1, u)_{\mathbf{D}}=0$ and $\|u+1\|_{\mathbf{D}}=\|u\|_{\mathbf{D}}$ for $u \in \mathbf{D}$. It was shown in [11, Theorem 1.1] that \mathbf{D} is a Hilbert space with respect to the inner product $(u, v)_{\mathbf{D}}+u(o) v(o)$ for a fixed node $o \in V$. We easily verify that a sequence $\left\{u_{n}\right\}_{n} \subset \mathbf{D}$ converges to u in \mathbf{D} if and only if $\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{\mathbf{D}}=0$ and $\left\{u_{n}\right\}_{n}$ converges pointwise to u. Denote by \mathbf{D}_{0} and \mathbf{E}_{0} the closure of $L_{0}(V)$ in \mathbf{D} and in \mathbf{E} respectively. We call a function in \mathbf{D}, in \mathbf{D}_{0}, in \mathbf{E}, and in \mathbf{E}_{0} a Dirichlet function, a Dirichlet potential, a q-Dirichlet function, and a q-Dirichlet potential, respectively.

It was shown in [7] that the space \mathbf{D}_{0} is equal to the space of the differences of Green potentials with finite energy provided that conditions (LD) and (CLD) are fulfilled. As an application, we showed a Riesz decomposition of a function whose Laplacian is a Dirichlet function. Our aim is to verify that similar results for q Green potentials are also valid by replacing conditions (LD) and (CLD) by (LD) q^{\prime} and (CLD) ${ }_{q}$, which are defined in Section 3. In contrast with (LD) and (CLD), our modified conditions contain some barriers caused by the term qu. We shall discuss in Section 4 some relations among these conditions.

2. The q-Green function

Let us recall some fundamental results related to the q-Dirichlet functions established in [12].

Lemma 2.1 ([12, Theorem 3.1]). $\mathbf{E}_{0}=\mathbf{D}_{0} \cap \mathbf{E}$.
Lemma 2.2 ([12, Lemma 3.1]). $(u, h)_{\mathbf{E}}=0$ for every $u \in \mathbf{E}_{0}$ and $h \in \mathbf{H}_{q} \cap \mathbf{E}$.
Lemma 2.3 ([12, Theorem 3.2]). Every $u \in \mathbf{E}$ is decomposed uniquely into the form $u=v+h$ with $v \in \mathbf{E}_{0}$ and $h \in \mathbf{H}_{q} \cap \mathbf{E}$.

We give a fundamental property of the norm in \mathbf{E}, which is used repeatedly in the following.
Lemma 2.4. If $\left\{u_{n}\right\}_{n} \subset \mathbf{E}$ converges to $u \in \mathbf{E}$ in the norm of \mathbf{E}, then $\left\{u_{n}\right\}_{n}$ converges pointwise to u.

Proof. Let $v_{n}=u_{n}-u$ and assume that $\left\|v_{n}\right\|_{\mathbf{E}} \rightarrow 0$ as $n \rightarrow \infty$. There exists $x_{0} \in V$ such that $q\left(x_{0}\right)>0$. The fact $q\left(x_{0}\right)\left|v_{n}\left(x_{0}\right)\right|^{2} \leq\left\|v_{n}\right\|_{\mathbf{E}}^{2}$ shows that $v_{n}\left(x_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\left\|v_{n}\right\|_{\mathbf{D}} \leq\left\|v_{n}\right\|_{\mathbf{E}} \rightarrow 0$ as $n \rightarrow \infty$, by [10, Corollary 2 of Lemma 1] it follows that $\left\{v_{n}\right\}_{n}$ converges pointwise to 0 .

We call a function T defined on \mathbb{R} into \mathbb{R} a normal contraction of \mathbb{R} if $T 0=0$ and $\left|T s_{1}-T s_{2}\right| \leq\left|s_{1}-s_{2}\right|$ for $s_{1}, s_{2} \in \mathbb{R}$. For example, $T s=\max \{s, 0\}$ is a normal contraction of \mathbb{R}.

Lemma 2.5 ([12, Lemma 4.2 and before it]). Let T be a normal contraction of \mathbb{R}. Then $\|T \circ u\|_{\mathbf{E}} \leq\|u\|_{\mathbf{E}}$ for $u \in \mathbf{E}$. Moreover, $T \circ u \in \mathbf{E}_{0}$ if $u \in \mathbf{E}_{0}$.
Lemma 2.6. Let $f \in L_{0}(V)$ and $u \in \mathbf{E}$. Then

$$
(u, f)_{\mathbf{E}}=-\sum_{x \in V}\left(\Delta_{q} u(x)\right) f(x) .
$$

Proof. Since $(u, f)_{\mathbf{D}}=-\sum_{x \in V}(\Delta u(x)) f(x)$ by [10, Lemma 3], we have

$$
\begin{aligned}
(u, f)_{\mathbf{E}} & =-\sum_{x \in V}(\Delta u(x)) f(x)+\sum_{x \in V} q(x) u(x) f(x) \\
& =-\sum_{x \in V}\left(\Delta_{q} u(x)\right) f(x)
\end{aligned}
$$

as required.

We say that $u \in L(V)$ is q-superharmonic or q-harmonic on V if $\Delta_{q} u \leq 0$ or $\Delta_{q} u=0$ respectively. Recall that the (harmonic) Green function $g_{a} \in \mathbf{D}_{0}$ of \mathcal{N} with pole at $a \in V$ is defined as the unique solution of the boundary value problem:

$$
\Delta g_{a}(x)=-\delta_{a}(x) \quad \text { for } x \in V
$$

where $\delta_{a}(a)=1$ and $\delta_{a}(x)=0$ for $x \neq a$. See [11] for details.
The q-Green function $\tilde{g}_{a} \in \mathbf{E}_{0}$ of \mathcal{N} with pole at $a \in V$ is defined similarly by

$$
\Delta_{q} \tilde{g}_{a}(x)=-\delta_{a}(x) \quad \text { for } x \in V .
$$

Note that q-Green functions always exist and satisfy that $\tilde{g}_{a}(x)=\tilde{g}_{x}(a)$ for $a, x \in V$ and that $0<\tilde{g}_{a}(x) \leq \tilde{g}_{a}(a)$ for $a, x \in V$. See [12, Theorems 4.1, 4.2, and 4.3].

3. Representation of the space \mathbf{E}_{0}

Let $\mu, \nu \in L^{+}(V)$. Recall that the Green potential $G \mu \in L(V)$ and the mutual Green energy $G(\mu, \nu)$ are defined by

$$
G \mu(x)=\sum_{y \in V} g_{x}(y) \mu(y), \quad G(\mu, \nu)=\sum_{x \in V}(G \mu(x)) \nu(x) .
$$

Similarly we define the q-Green potential $G_{q} \mu \in L(V)$ and the mutual q-Green energy $G_{q}(\mu, \nu)$ by

$$
G_{q} \mu(x)=\sum_{y \in V} \tilde{g}_{x}(y) \mu(y), \quad G_{q}(\mu, \nu)=\sum_{x \in V}\left(G_{q} \mu(x)\right) \nu(x) .
$$

We call $G_{q}(\mu, \mu)$ the q-Green energy of μ. Let us put

$$
\begin{gathered}
\mathcal{M}_{q}=\left\{\mu \in L^{+}(V) \mid G_{q} \mu(x)<\infty \text { for each } x \in V\right\}, \\
\mathcal{E}_{q}=\left\{\mu \in \mathcal{M}_{q} \mid G_{q}(\mu, \mu)<\infty\right\}
\end{gathered}
$$

Lemma 3.1 ([12, Lemma 7.1]). $\Delta_{q} G_{q} \mu=-\mu$ for $\mu \in \mathcal{M}_{q}$.
Lemma 3.2 ([12, Theorem 7.2]). If $\mu \in \mathcal{E}_{q}$, then $G_{q} \mu \in \mathbf{E}_{0}$ and $\Delta_{q} G_{q} \mu \leq 0$. Conversely, if $u \in \mathbf{E}_{0}$ satisfies $\Delta_{q} u \leq 0$, then $u=G_{q} \mu$ for some $\mu \in \mathcal{E}_{q}$.
We show some results for the q-Green potential and the mutual q-Green energy, which are similar to those considered in [7].
Lemma 3.3. For $\mu, \nu \in L_{0}(V) \cap L^{+}(V)$ we have

$$
\left(G_{q} \mu, G_{q} \nu\right)_{\mathbf{E}}=G_{q}(\mu, \nu)
$$

Proof. Let $\mu, \nu \in L_{0}(V) \cap L^{+}(V)$. Lemma 3.2 shows that $G_{q} \mu \in \mathbf{E}_{0}$, so that there exists a sequence $\left\{f_{n}\right\}_{n} \subset L_{0}(V)$ which converges to $G_{q} \mu$ in the norm of \mathbf{E}. Especially $\left\{f_{n}\right\}_{n}$ converges pointwise to $G_{q} \mu$. Lemmas 2.6 and 3.1 imply that

$$
\left(f_{n}, G_{q} \nu\right)_{\mathbf{E}}=-\sum_{x \in V} f_{n}(x)\left(\Delta_{q} G_{q} \nu(x)\right)=\sum_{x \in V} f_{n}(x) \nu(x) .
$$

Letting $n \rightarrow \infty$, we have the assertion.
Lemma 3.4. For $\mu \in \mathcal{E}_{q}$, there exists $\left\{\mu_{n}\right\}_{n} \subset L_{0}(V) \cap L^{+}(V)$ such that $\left\{G_{q} \mu_{n}\right\}_{n}$ converges to $G_{q} \mu$ in the norm of \mathbf{E} and that $\left\{\mu_{n}\right\}_{n}$ converges pointwise to μ.

Proof. let $\mu \in \mathcal{E}_{q}$. Let $\left\{\mathcal{N}_{n}\right\}_{n}$ be an exhaustion of \mathcal{N} with $\mathcal{N}_{n}=\left\langle V_{n}, E_{n}\right\rangle$. We put $\mu_{n}=\mu$ on V_{n} and $\mu_{n}=0$ on $V \backslash V_{n}$. Clearly, $\left\{\mu_{n}\right\}_{n}$ increases monotonically and converges pointwise to μ. Fatou's lemma shows that

$$
G_{q} \mu(x) \leq \liminf _{n \rightarrow \infty} G_{q} \mu_{n}(x)=\lim _{n \rightarrow \infty} G_{q} \mu_{n}(x) \leq G_{q} \mu(x),
$$

so that $\left\{G_{q} \mu_{n}\right\}_{n}$ converges pointwise to $G_{q} \mu$.
For $m<n$, the monotonicity of $\left\{\mu_{n}\right\}_{n}$ implies that $\left\{\left\|G_{q} \mu_{n}\right\|_{\mathbf{E}}\right\}$ converges and, together with Lemma 3.3, that

$$
\left(G_{q} \mu_{m}, G_{q} \mu_{n}\right)_{\mathbf{E}}=G_{q}\left(\mu_{m}, \mu_{n}\right) \geq G_{q}\left(\mu_{m}, \mu_{m}\right)=\left\|G_{q} \mu_{m}\right\|_{\mathbf{E}}^{2}
$$

Consequently

$$
\begin{aligned}
\left\|G_{q} \mu_{n}-G_{q} \mu_{m}\right\|_{\mathbf{E}}^{2} & =\left\|G_{q} \mu_{n}\right\|_{\mathbf{E}}^{2}-2\left(G_{q} \mu_{n}, G_{q} \mu_{m}\right)_{\mathbf{E}}+\left\|G_{q} \mu_{m}\right\|_{\mathbf{E}}^{2} \\
& \leq\left\|G_{q} \mu_{n}\right\|_{\mathbf{E}}^{2}-\left\|G_{q} \mu_{m}\right\|_{\mathbf{E}}^{2}
\end{aligned}
$$

Since $G_{q} \mu_{n} \in \mathbf{E}_{0}$ by Lemma 3.2, it follows that $\left\{G_{q} \mu_{n}\right\}_{n}$ converges to some $v \in \mathbf{E}_{0}$ in the norm of \mathbf{E}. This means that $v=G_{q} \mu$, and that $\left\{G_{q} \mu_{n}\right\}_{n}$ converges to $G_{q} \mu$ in the norm of \mathbf{E}.

Proposition 3.5. Let $\left\{\mu_{n}\right\}_{n} \subset \mathcal{E}_{q}$. If $\left\{G_{q} \mu_{n}\right\}_{n}$ converges to some $u \in \mathbf{E}$ in the norm of \mathbf{E}, then $u=G_{q} \mu$ for some $\mu \in \mathcal{E}_{q}$.
Proof. Let $\left\{\mu_{n}\right\}_{n} \subset \mathcal{E}_{q}$. Lemma 3.2 implies that $G_{q} \mu_{n} \in \mathbf{E}_{0}$, so that $u \in \mathbf{E}_{0}$. Lemma 3.1 shows

$$
\Delta_{q} u(x)=\lim _{n \rightarrow \infty} \Delta_{q} G_{q} \mu_{n}(x)=-\lim _{n \rightarrow \infty} \mu_{n}(x) \leq 0
$$

Again by Lemma 3.2 we have that $u=G_{q} \mu$ for some $\mu \in \mathcal{E}_{q}$.
Now we introduce two conditions which are similar to conditions (LD) and (CLD) considered in [7]. We say that \mathcal{N} satisfies condition (LD) $)_{q}$ if there exists a constant $c>0$ such that

$$
\begin{equation*}
\left\|\Delta_{q} f\right\|_{\mathbf{E}} \leq c\|f\|_{\mathbf{E}} \quad \text { for all } f \in L_{0}(V) \tag{LD}
\end{equation*}
$$

We say that \mathcal{N} satisfies condition (CLD) ${ }_{q}$ if there exists a constant $c>0$ such that $(\mathrm{CLD})_{q} \quad\|f\|_{\mathbf{E}} \leq c\left\|\Delta_{q} f\right\|_{\mathbf{E}} \quad$ for all $f \in L_{0}(V)$.
Lemma 3.6. Assume $(\mathrm{LD})_{q}$. Then there exists a constant $c>0$ such that $\left\|\Delta_{q} u\right\|_{\mathbf{E}} \leq$ $c\|u\|_{\mathbf{E}}$ for all $u \in \mathbf{E}$.
Proof. Let $u \in \mathbf{E}$. By Lemma 2.3 we find $v \in \mathbf{E}_{0}$ and $h \in \mathbf{H}_{q} \cap \mathbf{E}$ such that $u=v+h$. Lemma 2.2 shows that

$$
\begin{aligned}
\|u\|_{\mathbf{E}}^{2} & =\|v\|_{\mathbf{E}}^{2}+2(v, h)_{\mathbf{E}}+\|h\|_{\mathbf{E}}^{2} \\
& =\|v\|_{\mathbf{E}}^{2}+\|h\|_{\mathbf{E}}^{2} \geq\|v\|_{\mathbf{E}}^{2} .
\end{aligned}
$$

Let $\left\{f_{n}\right\}_{n}$ be a sequence in $L_{0}(V)$ which converges to v in the norm of \mathbf{E}. Then $(\mathrm{LD})_{q}$ implies that $\left\|\Delta_{q} f_{n}\right\|_{\mathbf{E}} \leq c\left\|f_{n}\right\|_{\mathbf{E}}$ for all n. Since $\left\{\Delta_{q} f_{n}\right\}_{n}$ converges pointwise
to $\Delta_{q} v$, Fatou's lemma gives

$$
\begin{aligned}
\left\|\Delta_{q} u\right\|_{\mathbf{E}} & =\left\|\Delta_{q} v\right\|_{\mathbf{E}} \leq \liminf _{n \rightarrow \infty}\left\|\Delta_{q} f_{n}\right\|_{\mathbf{E}} \\
& \leq c \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{\mathbf{E}}=c\|v\|_{\mathbf{E}} \leq c\|u\|_{\mathbf{E}}
\end{aligned}
$$

as required.
Lemma 3.7. Assume (LD) $)_{q}$. Then $\Delta_{q} u \in \mathbf{E}_{0}$ for $u \in \mathbf{E}_{0}$.
Proof. Let $u \in \mathbf{E}_{0}$ and $\left\{f_{n}\right\}_{n}$ a sequence in $L_{0}(V)$ which converges to u in the norm of \mathbf{E}. Then $\left\|f_{n}-f_{m}\right\|_{\mathbf{E}} \rightarrow 0$ as $n, m \rightarrow \infty$. Condition (LD) ${ }_{q}$ implies that

$$
\left\|\Delta_{q} f_{n}-\Delta_{q} f_{m}\right\|_{\mathbf{E}} \leq c\left\|f_{n}-f_{m}\right\|_{\mathbf{E}} \rightarrow 0
$$

as $n, m \rightarrow \infty$. Thus $\left\{\Delta_{q} f_{n}\right\}_{n}$ is a Cauchy sequence in \mathbf{E} and converges to some $v \in \mathbf{E}_{0}$ in the norm of \mathbf{E}. Since $\left\{\Delta_{q} f_{n}\right\}_{n}$ converges pointwise to $\Delta_{q} u$, we see that $\Delta_{q} u=v \in \mathbf{E}_{0}$.
Proposition 3.8. Assume both $(\mathrm{LD})_{q}$ and $(\mathrm{CLD})_{q}$. Then there exists a constant $c>0$ such that

$$
\|u\|_{\mathbf{E}} \leq c\left\|\Delta_{q} u\right\|_{\mathbf{E}} \quad \text { for all } u \in \mathbf{E}_{0}
$$

Proof. Let $u \in \mathbf{E}_{0}$. There exists a sequence $\left\{f_{n}\right\}_{n} \subset L_{0}(V)$ which converges to u in the norm of \mathbf{E}. Lemma 3.6 shows that there exists $c_{1}>0$ such that $\| \Delta_{q} u-$ $\Delta_{q} f_{n}\left\|_{\mathbf{E}} \leq c_{1}\right\| u-f_{n} \|_{\mathbf{E}}$ for all n, so that $\left\|\Delta_{q} f_{n}\right\|_{\mathbf{E}} \rightarrow\left\|\Delta_{q} u\right\|_{\mathbf{E}}$ as $n \rightarrow \infty$. By $(\mathrm{CLD})_{q}$, there exists $c_{2}>0$ such that $\left\|f_{n}\right\|_{\mathbf{E}} \leq c_{2}\left\|\Delta_{q} f_{n}\right\|_{\mathbf{E}}$ for all n. We have

$$
\|u\|_{\mathbf{E}}=\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\mathbf{E}} \leq c_{2} \lim _{n \rightarrow \infty}\left\|\Delta_{q} f_{n}\right\|_{\mathbf{E}}=c_{2}\left\|\Delta_{q} u\right\|_{\mathbf{E}}
$$

as required.
Lemma 3.9. Let $\left\{u_{n}\right\}_{n}$ be a sequence in \mathbf{E}_{0} such that $\left\{\left\|u_{n}\right\|_{\mathbf{E}}\right\}_{n}$ is bounded and that $\left\{u_{n}\right\}_{n}$ converges pointwise to a function $u \in \mathbf{E}$. Then $\lim _{n \rightarrow \infty}\left(u_{n}, v\right)_{\mathbf{E}}=(u, v)_{\mathbf{E}}$ for $v \in \mathbf{E}_{0}$.
Proof. Let $v \in \mathbf{E}_{0}$. For any $\varepsilon>0$, there exists $f \in L_{0}(V)$ such that $\|v-f\|_{\mathbf{E}}<\varepsilon$. We take M with $\left\|u_{n}\right\|_{\mathbf{E}} \leq M$ for all n. Fatou's lemma shows that $\|u\|_{\mathbf{E}} \leq M$. It is easy to see that $\left|\left(u_{n}-u, f\right)_{\mathbf{E}}\right|<\varepsilon$ for sufficiently large n. We have

$$
\begin{aligned}
\left|\left(u_{n}-u, v\right)_{\mathbf{E}}\right| & \leq\left|\left(u_{n}-u, v-f\right)_{\mathbf{E}}\right|+\left|\left(u_{n}-u, f\right)_{\mathbf{E}}\right| \\
& \leq\left\|u_{n}-u\right\|_{\mathbf{E}}\|v-f\|_{\mathbf{E}}+\varepsilon<(2 M+1) \varepsilon
\end{aligned}
$$

and the assertion.
Lemma 3.10. If $\mu \in \mathbf{E}_{0} \cap L^{+}(V)$, then there exists $\left\{\mu_{n}\right\}_{n} \subset L_{0}(V) \cap L^{+}(V)$ which converges to μ in the norm of \mathbf{E}.
Proof. Let $\mu \in \mathbf{E}_{0} \cap L^{+}(V)$. There exists a sequence $\left\{f_{n}\right\}_{n}$ in $L_{0}(V)$ which converges to μ in the norm of \mathbf{E}. Let $\mu_{n}=\max \left\{f_{n}, 0\right\}$. Then $\left\|\mu_{n}\right\|_{\mathbf{E}} \leq\left\|f_{n}\right\|_{\mathbf{E}}$ by Lemma 2.5. Since $\mu \geq 0,\left\{\mu_{n}\right\}_{n}$ converges pointwise to μ. Fatou's lemma gives

$$
\begin{aligned}
\|\mu\|_{\mathbf{E}} & \leq \liminf _{n \rightarrow \infty}\left\|\mu_{n}\right\|_{\mathbf{E}} \leq \limsup _{n \rightarrow \infty}\left\|\mu_{n}\right\|_{\mathbf{E}} \\
& \leq \lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\mathbf{E}}=\|\mu\|_{\mathbf{E}}
\end{aligned}
$$

or $\lim _{n \rightarrow \infty}\left\|\mu_{n}\right\|_{\mathbf{E}}=\|\mu\|_{\mathbf{E}}$. Since $\left\{\left\|f_{n}\right\|_{\mathbf{E}}\right\}_{n}$ is bounded, so is $\left\{\left\|\mu_{n}\right\|_{\mathbf{E}}\right\}_{n}$. By Lemma 3.9, $\left(\mu_{n}, \mu\right)_{\mathbf{E}} \rightarrow(\mu, \mu)_{\mathbf{E}}=\|\mu\|_{\mathbf{E}}^{2}$ as $n \rightarrow \infty$. Thus we have

$$
\left\|\mu-\mu_{n}\right\|_{\mathbf{E}}^{2}=\|\mu\|_{\mathbf{E}}^{2}-2\left(\mu, \mu_{n}\right)_{\mathbf{E}}+\left\|\mu_{n}\right\|_{\mathbf{E}}^{2} \rightarrow 0
$$

as $n \rightarrow \infty$.
Theorem 3.11. $\mathcal{E}_{q}=\mathbf{E}_{0} \cap L^{+}(V)$ if both $(\mathrm{LD})_{q}$ and $(\mathrm{CLD})_{q}$ are fulfilled.
Proof. Let $\mu \in \mathcal{E}_{q}$. By Lemma 3.4, there exists $\left\{\mu_{n}\right\}_{n} \subset L_{0}(V) \cap L^{+}(V)$ such that $\left\{G_{q} \mu_{n}\right\}_{n}$ converges to $G_{q} \mu$ in the norm of \mathbf{E} and that $\left\{\mu_{n}\right\}_{n}$ converges pointwise to μ. Lemma 3.2 shows that $G_{q} \mu \in \mathbf{E}_{0}$ and $G_{q} \mu_{n} \in \mathbf{E}_{0}$ for each n. By Lemmas 3.1 and 3.6

$$
\left\|\mu-\mu_{n}\right\|_{\mathbf{E}}=\left\|\Delta_{q} G_{q} \mu_{n}-\Delta_{q} G_{q} \mu\right\|_{\mathbf{E}} \leq c\left\|G_{q} \mu_{n}-G_{q} \mu\right\|_{\mathbf{E}} \rightarrow 0
$$

as $n \rightarrow \infty$. Thus $\mu \in \mathbf{E}_{0}$.
We show the converse. Let $\mu \in \mathbf{E}_{0} \cap L^{+}(V)$. By Lemma 3.10, there exists $\left\{\mu_{n}\right\}_{n} \subset L_{0}(V) \cap L^{+}(V)$ which converges to μ in the norm of \mathbf{E}. Lemma 3.2 implies $G_{q} \mu_{n} \in \mathbf{E}_{0}$ for each n. Proposition 3.8 and Lemma 3.1 show that

$$
\left\|G_{q} \mu_{n}-G_{q} \mu_{m}\right\|_{\mathbf{E}} \leq c\left\|\Delta_{q}\left(G_{q} \mu_{n}-G_{q} \mu_{m}\right)\right\|_{\mathbf{E}}=c\left\|\mu_{m}-\mu_{n}\right\|_{\mathbf{E}} \rightarrow 0
$$

as $n, m \rightarrow \infty$. Therefore $\left\{G_{q} \mu_{n}\right\}_{n}$ converges to some $u \in \mathbf{E}_{0}$ in the norm of \mathbf{E}. Fatou's lemma and Lemma 3.3 give

$$
G_{q}(\mu, \mu) \leq \liminf _{n \rightarrow \infty} G_{q}\left(\mu_{n}, \mu_{n}\right)=\lim _{n \rightarrow \infty}\left\|G_{q} \mu_{n}\right\|_{\mathbf{E}}^{2}=\|u\|_{\mathbf{E}}^{2}<\infty
$$

Namely $\mu \in \mathcal{E}_{q}$.
For any $u \in L(V)$, we define $G_{q} u$ by $G_{q} u=G_{q} u^{+}-G_{q} u^{-}$if both $u^{+}=\max \{u, 0\}$ and $u^{-}=-\min \{u, 0\}$ belong to \mathcal{M}_{q}.
Theorem 3.12. $\mathrm{E}_{0}=\mathcal{E}_{q}-\mathcal{E}_{q}$ if both $(\mathrm{LD})_{q}$ and $(\mathrm{CLD})_{q}$ are fulfilled. In this case, $u^{+}, u^{-} \in \mathcal{E}_{q}$ for $u \in \mathbf{E}_{0}$.

Proof. By Theorem 3.11, $\mathcal{E}_{q}-\mathcal{E}_{q} \subset \mathbf{E}_{0}$. Conversely, for $u \in \mathbf{E}_{0}$, Lemma 2.5 and Theorem 3.11 imply that $u^{+}, u^{-} \in \mathbf{E}_{0} \cap L^{+}(V)=\mathcal{E}_{q}$, so that $\mathbf{E}_{0} \subset \mathcal{E}_{q}-\mathcal{E}_{q}$.
Theorem 3.13. $G_{q} u \in \mathbf{E}_{0}$ and $\Delta_{q} G_{q} u=-u$ for $u \in \mathbf{E}_{0}$ if both $(\mathrm{LD})_{q}$ and $(\mathrm{CLD})_{q}$ are fulfilled.
Proof. Let $u \in \mathbf{E}_{0}$. Theorem 3.12 shows that $u^{+}, u^{-} \in \mathcal{E}_{q}$. Lemma 3.2 implies $G_{q} u=G_{q} u^{+}-G_{q} u^{-} \in \mathbf{E}_{0}$. By Lemma 3.1 we have

$$
\Delta_{q} G_{q} u=\Delta_{q} G_{q} u^{+}-\Delta_{q} G_{q} u^{-}=-u^{+}+u^{-}=-u
$$

as required.
Corollary 3.14. $\left\{G_{q} u \mid u \in \mathbf{E}_{0}\right\} \subset \mathbf{E}_{0}$ if both $(\mathrm{LD})_{q}$ and $(\mathrm{CLD})_{q}$ are fulfilled.
Theorem 3.15. $G_{q} \Delta_{q} u=-u$ for $u \in \mathbf{E}_{0}$ if both $(\mathrm{LD})_{q}$ and $(\mathrm{CLD})_{q}$ are fulfilled.
Proof. Let $u \in \mathbf{E}_{0}$. Then $v:=\Delta_{q} u \in \mathbf{E}_{0}$ by Lemma 3.7. Theorem 3.13 shows that $G_{q} v \in \mathbf{E}_{0}$ and that $\Delta_{q}\left(u+G_{q} v\right)=v-v=0$. Therefore $u+G_{q} v \in \mathbf{E}_{0} \cap \mathbf{H}_{q}$. Thus $u+G_{q} v=0$ by Lemma 2.2.

We arrive at the following main result.
Theorem 3.16. $\mathrm{E}_{0}=\left\{G_{q} \mu-G_{q} \nu \mid \mu, \nu \in \mathcal{E}_{q}\right\}$ if both (LD) $)_{q}$ and (CLD) ${ }_{q}$ are fulfilled.
Proof. Lemma 3.2 implies that $\left\{G_{q} \mu-G_{q} \nu \mid \mu, \nu \in \mathcal{E}_{q}\right\} \subset \mathbf{E}_{0}$. We show the converse. Let $u \in \mathbf{E}_{0}$. We have $v:=-\Delta_{q} u \in \mathbf{E}_{0}$ by Lemma 3.7. Theorem 3.15 shows that $u=G_{q} v=G_{q} v^{+}-G_{q} v^{-}$. Theorem 3.12 implies that $v^{+}, v^{-} \in \mathcal{E}_{q}$, and that $u \in\left\{G_{q} \mu-G_{q} \nu \mid \mu, \nu \in \mathcal{E}_{q}\right\}$.

As an application of our results, we shall give a version of Riesz decomposition of $u \in \mathbf{E}^{(2)}=\left\{u \in L(V) \mid \Delta_{q} u \in \mathbf{E}\right\}$ as follows. Let us put

$$
\begin{aligned}
\mathbf{E}_{0}^{(2)} & =\left\{u \in L(V) \mid \Delta_{q} u \in \mathbf{E}_{0}\right\}, \\
\mathbf{H}_{q}^{(2)} & =\left\{u \in L(V) \mid \Delta_{q} u \in \mathbf{H}_{q}\right\} .
\end{aligned}
$$

Theorem 3.17. If both $(\mathrm{LD})_{q}$ and $(\mathrm{CLD})_{q}$ are fulfilled, then for every $u \in \mathbf{E}^{(2)}$, there exist a unique $v \in \mathbf{E}_{0}$ and a unique $w \in \mathbf{H}_{q}^{(2)} \cap \mathbf{E}^{(2)}$ such that $u=G_{q} v+w$. Proof. Let $u \in \mathbf{E}^{(2)}$. Applying Lemma 2.3 to $\Delta_{q} u \in \mathbf{E}$ yields

$$
\Delta_{q} u=-v+h \quad \text { with } v \in \mathbf{E}_{0} \text { and } h \in \mathbf{H}_{q} \cap \mathbf{E} .
$$

Theorem 3.13 shows that $\Delta_{q} G_{q} v=-v \in \mathbf{E}_{0}$. Hence $G_{q} v \in \mathbf{E}_{0}^{(2)}$. Let $w=u-G_{q} v$. Then $w \in \mathbf{E}^{(2)}$ and

$$
\Delta_{q} w=\Delta_{q} u-\Delta_{q} G_{q} v=(-v+h)+v=h \in \mathbf{H}_{q}
$$

so that $w \in \mathbf{H}_{q}^{(2)}$.
To show the uniqueness, we assume that $u=G_{q} v_{1}+w_{1}=G_{q} v_{2}+w_{2}$ with $v_{1}, v_{2} \in \mathbf{E}_{0}$ and $w_{1}, w_{2} \in \mathbf{H}_{q}^{(2)} \cap \mathbf{E}^{(2)}$. Theorem 3.13 shows that $w_{1}-w_{2}=G_{q} v_{2}-$ $G_{q} v_{1} \in \mathbf{E}_{0}$. Lemma 3.7 implies $\Delta_{q}\left(w_{1}-w_{2}\right) \in \mathbf{E}_{0}$. Since $w_{1}-w_{2} \in \mathbf{H}_{q}^{(2)}$, it follows that $\Delta_{q}\left(w_{1}-w_{2}\right) \in \mathbf{H}_{q}$. Lemma 2.2 shows that $\Delta_{q}\left(w_{1}-w_{2}\right)=0$, so that $w_{1}-w_{2} \in \mathbf{H}_{q} \cap \mathbf{E}_{0}$. Again by Lemma 2.2 we have $w_{1}=w_{2}$, so that $G_{q} v_{1}=G_{q} v_{2}$. Theorem 3.13 gives $v_{1}=-\Delta_{q} G_{q} v_{1}=-\Delta_{q} G_{q} v_{2}=v_{2}$.
Corollary 3.18. $\mathbf{E}^{(2)}=\mathbf{E}_{0}^{(2)}+\mathbf{H}_{q}^{(2)} \cap \mathbf{E}^{(2)}$ if both $(\mathrm{LD})_{q}$ and $(\mathrm{CLD})_{q}$ are fulfilled. Proof. Clearly $\mathbf{E}_{0}^{(2)}+\mathbf{H}_{q}^{(2)} \cap \mathbf{E}^{(2)} \subset \mathbf{E}^{(2)}$. We show the converse. Let $u \in \mathbf{E}^{(2)}$. By Theorem 3.17 we take $v \in \mathbf{E}_{0}$ and $w \in \mathbf{H}_{q}^{(2)} \cap \mathbf{E}^{(2)}$ such that $u=G_{q} v+w$. Theorem 3.13 shows that $\Delta_{q} G_{q} v=-v \in \mathbf{E}_{0}$, so that $G_{q} v \in \mathbf{E}_{0}^{(2)}$.

4. Conditions $(\mathrm{LD})_{q}$ AND $(\mathrm{CLD})_{q}$

We considered in [7] the following conditions:
(LD) There exists a constant $c>0$ such that $\|\Delta f\|_{\mathbf{D}} \leq c\|f\|_{\mathbf{D}}$ for all $f \in L_{0}(V)$; (CLD) There exists a constant $c>0$ such that $\|f\|_{\mathbf{D}} \leq c\|\Delta f\|_{\mathbf{D}}$ for all $f \in L_{0}(V)$. Note that $(\mathrm{LD})_{q}$ and $(\mathrm{CLD})_{q}$ in Section 3 are obtained by replacing \mathbf{D} by \mathbf{E} and Δ by Δ_{q} in (LD) and (CLD).

We recall

Lemma 4.1 ([6, Lemma 3.2]). Assume (LD). Then there exists a constant $c>0$ such that $\|\Delta u\|_{\mathbf{D}} \leq c\|u\|_{\mathbf{D}}$ for all $u \in \mathbf{D}$.

First of all, we note that $\|\Delta u\|_{\mathbf{D}}<\infty$ does not imply $\left\|\Delta_{q} u\right\|_{\mathbf{D}}<\infty$. In fact, let $u=1$ on V and $q \in L^{+}(V) \backslash \mathbf{D}$. Then $\|\Delta u\|_{\mathbf{D}}=0$ and $\left\|\Delta_{q} u\right\|_{\mathbf{D}}=\|q\|_{\mathbf{D}}=\infty$.

Let us define $t(x, y)$ and $t(x)$ for $x, y \in V$ by

$$
\begin{gathered}
t(x, y)=\sum_{e \in E}|K(x, e) K(y, e)| r(e)^{-1} \quad \text { if } x \neq y, \\
t(x, x)=0 \\
t(x)=\sum_{e \in E}|K(x, e)| r(e)^{-1}=\sum_{y \in V} t(x, y) .
\end{gathered}
$$

Then we have

$$
\Delta u(x)=-t(x) u(x)+\sum_{y \in V} t(x, y) u(y)
$$

For convenience sake, we introduce the following conditions:
$(q \mathrm{~B}) q(x)$ is bounded on V;
$(t \mathrm{~B}) t(x)$ is bounded on V.
Lemma 4.2. Assume both ($q \mathrm{~B}$) and ($t \mathrm{~B}$). Then there exists a constant $c>0$ such that $\|q u\|_{\mathbf{D}} \leq c\left(\sum_{x \in V} u(x)^{2}\right)^{1 / 2}$ and $\|q u\|_{\mathbf{D}} \leq c\|u\|_{\mathbf{E}}$ for all $u \in \mathbf{E}$.
Proof. Let γ satisfy $t(x) \leq \gamma$ and $q(x) \leq \gamma$ for all $x \in V$. Let $u \in \mathbf{E}$. For $e \in E$, let x_{1} and $x_{2} \in V$ be the initial node and the terminal node of e. Then

$$
\begin{aligned}
(\nabla(q u)(e))^{2} & =r(e)^{-2}\left(q\left(x_{2}\right) u\left(x_{2}\right)-q\left(x_{1}\right) u\left(x_{1}\right)\right)^{2} \\
& \leq r(e)^{-2} \times 2\left(q\left(x_{2}\right)^{2} u\left(x_{2}\right)^{2}+q\left(x_{1}\right)^{2} u\left(x_{1}\right)^{2}\right) \\
& \leq 2 r(e)^{-2} \times \gamma\left(q\left(x_{1}\right) u\left(x_{1}\right)^{2}+q\left(x_{2}\right) u\left(x_{2}\right)^{2}\right) \\
& =2 \gamma r(e)^{-2} \sum_{x \in V}|K(x, e)| q(x) u(x)^{2} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\|q u\|_{\mathbf{D}}^{2} & =\sum_{e \in E} r(e)(\nabla(q u)(e))^{2} \leq 2 \gamma \sum_{e \in E} r(e)^{-1} \sum_{x \in V}|K(x, e)| q(x) u(x)^{2} \\
& =2 \gamma \sum_{x \in V} t(x) q(x) u(x)^{2} \leq 2 \gamma^{2} \sum_{x \in V} q(x) u(x)^{2}
\end{aligned}
$$

which implies $\|q u\|_{\mathbf{D}}^{2} \leq 2 \gamma^{3} \sum_{x \in V} u(x)^{2}$ and $\|q u\|_{\mathbf{D}}^{2} \leq 2 \gamma^{2}\|u\|_{\mathbf{E}}^{2}$.
Proposition 4.3. $(\mathrm{LD})_{q}$ implies both $(q \mathrm{~B})$ and $(t \mathrm{~B})$.
Proof. Condition (LD) $)_{q}$ shows that there exists $c>0$ such that $\left\|\Delta \delta_{a}\right\|_{\mathbf{E}} \leq c\left\|\delta_{a}\right\|_{\mathbf{E}}$ for all $a \in V$, where δ_{a} is the characteristic function of $\{a\}$. We shall show that $t(a)+q(a) \leq c$.

Let $\left\{e_{j}\right\}_{j=1}^{d} \subset E$ be the arcs adjacent to a and let $b_{j} \in V$ be the other node of e_{j}. For $e \in E$

$$
\nabla \delta_{a}(e)=-r(e)^{-1} \sum_{x \in V} K(x, e) \delta_{a}(x)=-r(e)^{-1} K(a, e) .
$$

Since $K(x, e)^{2}=|K(x, e)|$ in general,

$$
\begin{aligned}
\left\|\delta_{a}\right\|_{\mathbf{E}}^{2} & =\sum_{e \in E} r(e)^{-1} K(a, e)^{2}+\sum_{x \in V} q(x) \delta_{a}(x)^{2} \\
& =\sum_{e \in E} r(e)^{-1}|K(a, e)|+q(a)=t(a)+q(a) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\Delta_{q} \delta_{a}(x) & =\sum_{e \in E} K(x, e) \nabla \delta_{a}(e)-q(x) \delta_{a}(x) \\
& =-\sum_{e \in E} K(x, e) r(e)^{-1} K(a, e)-q(x) \delta_{a}(x) \\
& =-\sum_{i=1}^{d} K\left(x, e_{i}\right) r\left(e_{i}\right)^{-1} K\left(a, e_{i}\right)-q(x) \delta_{a}(x) .
\end{aligned}
$$

Especially

$$
\Delta_{q} \delta_{a}(a)=-t(a)-q(a)
$$

Since $K\left(x, e_{i}\right) K\left(a, e_{i}\right)=0$ unless $x=a$ or $x=b_{i}$ and $K\left(b_{i}, e_{i}\right) K\left(a, e_{i}\right)=-1$, it follows that

$$
\begin{aligned}
\nabla\left(\Delta_{q} \delta_{a}\right)(e) & =-r(e)^{-1} \sum_{x \in V} K(x, e) \Delta_{q} \delta_{a}(x) \\
& =r(e)^{-1} \sum_{x \in V} K(x, e)\left(\sum_{i=1}^{d} K\left(x, e_{i}\right) r\left(e_{i}\right)^{-1} K\left(a, e_{i}\right)+q(x) \delta_{a}(x)\right) \\
& =r(e)^{-1}\left(K(a, e) t(a)-\sum_{i=1}^{d} K\left(b_{i}, e\right) r\left(e_{i}\right)^{-1}+K(a, e) q(a)\right) .
\end{aligned}
$$

If $e=e_{j}$, then, by $K\left(b_{j}, e_{j}\right)=-K\left(a, e_{j}\right)$,

$$
\begin{aligned}
\nabla\left(\Delta_{q} \delta_{a}\right)\left(e_{j}\right) & =r\left(e_{j}\right)^{-1}\left(K\left(a, e_{j}\right) t(a)-K\left(b_{j}, e_{j}\right) r\left(e_{j}\right)^{-1}+K\left(a, e_{j}\right) q(a)\right) \\
& =r\left(e_{j}\right)^{-1} K\left(a, e_{j}\right)\left(t(a)+r\left(e_{j}\right)^{-1}+q(a)\right)
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\left\|\Delta_{q} \delta_{a}\right\|_{\mathbf{E}}^{2} & \geq \sum_{j=1}^{d} r\left(e_{j}\right)\left|\nabla\left(\Delta \delta_{a}\right)\left(e_{j}\right)\right|^{2}+q(a)\left(\Delta_{q} \delta_{a}(a)\right)^{2} \\
& =\sum_{j=1}^{d} r\left(e_{j}\right)^{-1}\left(t(a)+r\left(e_{j}\right)^{-1}+q(a)\right)^{2}+q(a)(-t(a)-q(a))^{2} \\
& \geq \sum_{j=1}^{d} r\left(e_{j}\right)^{-1}(t(a)+q(a))^{2}+q(a)(t(a)+q(a))^{2} \\
& =(t(a)+q(a))^{3}
\end{aligned}
$$

Combining these we have $(t(a)+q(a))^{3} \leq c^{2}(t(a)+q(a))$, or $t(a)+q(a) \leq c$.
Assuming $q=0$ in the proposition above, we have
Corollary 4.4. (LD) implies ($t \mathrm{~B}$).
Proposition 4.5. If both (LD) and (qB) are fulfilled, then there exists a constant $c>0$ such that $\left\|\Delta_{q} u\right\|_{\mathbf{D}} \leq c\|u\|_{\mathbf{E}}$ for all $u \in \mathbf{E}$.

Proof. Let $u \in \mathbf{E}$. Note that Corollary 4.4 implies ($t \mathrm{~B}$). Lemmas 4.1 and 4.2 show that there exist constants $c_{1}>0$ and $c_{2}>0$ such that $\|\Delta u\|_{\mathbf{D}} \leq c_{1}\|u\|_{\mathbf{D}}$ and $\|q u\|_{\mathbf{D}} \leq c_{2}\|u\|_{\mathbf{E}}$. We have

$$
\left\|\Delta_{q} u\right\|_{\mathbf{D}} \leq\|\Delta u\|_{\mathbf{D}}+\|q u\|_{\mathbf{D}} \leq\left(c_{1}+c_{2}\right)\|u\|_{\mathbf{E}}
$$

as required.
Denote by \mathbf{S}_{q}^{+}the set of $u \in L^{+}(V)$ such that $\Delta_{q} u \leq 0$.
Lemma 4.6. Assume both ($q \mathrm{~B}$) and ($t \mathrm{~B}$). Then there exists a constant $c>0$ such that $\left|\Delta_{q} u(x)\right| \leq c u(x)$ on V for all $u \in \mathbf{S}_{q}^{+}$.

Proof. Let $u \in \mathbf{S}_{q}^{+}$. If we set $\Delta^{*} u(x)=\sum_{y \in V} t(x, y) u(y)$, then, since $\Delta_{q} u(x)=$ $\Delta^{*} u(x)-(t(x)+q(x)) u(x)$, it follows that

$$
(t(x)+q(x)) u(x) \geq \Delta^{*} u(x) \geq 0
$$

so that

$$
\left|\Delta_{q} u(x)\right| \leq\left|\Delta^{*} u(x)\right|+|(t(x)+q(x)) u(x)| \leq 2(t(x)+q(x)) u(x) .
$$

We may take $c=2 \sup _{x \in V}(t(x)+q(x))$.
Theorem 4.7. If both ($\mathrm{LD)} \mathrm{and} \mathrm{(qB)} \mathrm{are} \mathrm{fulfilled}$, $c>0$ such that

$$
\left\|\Delta_{q} u\right\|_{\mathbf{E}} \leq c\|u\|_{\mathbf{E}} \quad \text { for all } u \in \mathbf{E}_{0} \cap \mathbf{S}_{q}^{+} .
$$

Proof. Let $u \in \mathbf{E}_{0} \cap \mathbf{S}_{q}^{+}$. Note that Corollary 4.4 implies ($t \mathrm{~B}$). Proposition 4.5 and Lemma 4.6 show that there exist constants $c_{1}>0$ and $c_{2}>0$ such that $\left\|\Delta_{q} u\right\|_{\mathbf{D}} \leq c_{1}\|u\|_{\mathbf{E}}$ and $\left|\Delta_{q} u(x)\right| \leq c_{2} u(x)$ on V. We have

$$
\begin{aligned}
\left\|\Delta_{q} u\right\|_{\mathbf{E}}^{2} & =\left\|\Delta_{q} u\right\|_{\mathbf{D}}^{2}+\sum_{x \in V} q(x)\left(\Delta_{q} u(x)\right)^{2} \leq c_{1}^{2}\|u\|_{\mathbf{E}}^{2}+c_{2}^{2} \sum_{x \in V} q(x) u(x)^{2} \\
& \leq\left(c_{1}^{2}+c_{2}^{2}\right)\|u\|_{\mathbf{E}}^{2}
\end{aligned}
$$

as required.
Proposition 4.8. If both $(q \mathrm{~B})$ and $(t \mathrm{~B})$ are fulfilled and if q is superharmonic on V, i.e., $\Delta q \leq 0$ on V, then there exists a constant $c>0$ such that

$$
\sum_{x \in V} q(x)\left(\Delta_{q} u(x)\right)^{2} \leq c \sum_{x \in V} q(x) u(x)^{2}
$$

for all $u \in L(V)$.
Proof. Let γ satisfy $t(x) \leq \gamma$ and $q(x) \leq \gamma$ for all $x \in V$. We set $\Delta^{*} u(x)=$ $\sum_{y \in V} t(x, y) u(y)$. Schwarz's inequality implies that

$$
\begin{aligned}
\left(\Delta^{*} u(x)\right)^{2} & \leq\left(\sum_{y \in V} t(x, y)\right)\left(\sum_{y \in V} t(x, y) u(y)^{2}\right)=t(x) \sum_{y \in V} t(x, y) u(y)^{2} \\
& \leq \gamma \sum_{y \in V} t(x, y) u(y)^{2}
\end{aligned}
$$

Since q is superharmonic on V, i.e., $\Delta^{*} q(x) \leq t(x) q(x)$ on V, it follows that

$$
\begin{aligned}
\sum_{x \in V} q(x)\left(\Delta^{*} u(x)\right)^{2} & \leq \gamma \sum_{x \in V} q(x) \sum_{y \in V} t(x, y) u(y)^{2} \\
& =\gamma \sum_{y \in V} u(y)^{2} \sum_{x \in V} t(x, y) q(x) \\
& =\gamma \sum_{y \in V} u(y)^{2} \Delta^{*} q(y) \\
& \leq \gamma \sum_{y \in V} u(y)^{2} t(y) q(y) \leq \gamma^{2} \sum_{y \in V} q(y) u(y)^{2} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\left(\Delta_{q} u(x)\right)^{2} & =\left(\Delta^{*} u(x)-(t(x)+q(x)) u(x)\right)^{2} \\
& \leq 2\left(\Delta^{*} u(x)\right)^{2}+2(t(x)+q(x))^{2} u(x)^{2} \\
& \leq 2\left(\Delta^{*} u(x)\right)^{2}+8 \gamma^{2} u(x)^{2},
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{x \in V} q(x)\left(\Delta_{q} u(x)\right)^{2} & \leq 2 \sum_{x \in V} q(x)\left(\Delta^{*} u(x)\right)^{2}+8 \gamma^{2} \sum_{x \in V} q(x) u(x)^{2} \\
& \leq 10 \gamma^{2} \sum_{x \in V} q(x) u(x)^{2} .
\end{aligned}
$$

This completes the proof.
Theorem 4.9. If q is superharmonic on V, then $(\mathrm{LD})_{q}$ follows from (LD) and ($q \mathrm{~B}$).
Proof. Let $f \in L_{0}(V)$ and assume (LD) and ($q \mathrm{~B}$). Proposition 4.5 shows that there exists a constant $c_{1}>0$ such that $\left\|\Delta_{q} f\right\|_{\mathbf{D}} \leq c_{1}\|f\|_{\mathbf{E}}$. Since ($t \mathrm{~B}$) is fulfilled by Corollary 4.4, there exists a constant $c_{2}>0$ such that

$$
\sum_{x \in V} q(x)\left(\Delta_{q} f(x)\right)^{2} \leq c_{2} \sum_{x \in V} q(x) f(x)^{2} \leq c_{2}\|f\|_{\mathbf{E}}^{2}
$$

by Proposition 4.8. Thus we have $\left\|\Delta_{q} f\right\|_{\mathbf{E}}^{2} \leq\left(c_{1}^{2}+c_{2}\right)\|f\|_{\mathbf{E}}^{2}$, so that $(\mathrm{LD})_{q}$ is fulfilled.

As a generalized version of Poincaré-Sobolev's inequality, we introduced in [7] the following condition (SPS): There exists a constant $c>0$ such that

$$
\begin{equation*}
\sum_{x \in V} f(x)^{2} \leq c\|f\|_{\mathbf{D}}^{2} \quad \text { for all } f \in L_{0}(V) \tag{SPS}
\end{equation*}
$$

Lemma 4.10 ([7, Lemma 2.1]). Assume (SPS). Then there exists a constant $c>0$ such that

$$
\sum_{x \in V} u(x)^{2} \leq c\|u\|_{\mathbf{D}}^{2} \quad \text { for all } u \in \mathbf{D}_{0} .
$$

Proposition 4.11. If both (SPS) and ($q \mathrm{~B}$) are fulfilled, then there exists a constant $c>0$ such that $\|u\|_{\mathbf{E}} \leq c\|u\|_{\mathbf{D}}$ for all $u \in \mathbf{D}_{0}$.
Proof. Let γ be such that $q(x) \leq \gamma$ for all $x \in V$. By Lemma 4.10, there exists a constant $c_{1}>0$ such that

$$
\|u\|_{\mathbf{E}}^{2}=\|u\|_{\mathbf{D}}^{2}+\sum_{x \in V} q(x) u(x)^{2} \leq\|u\|_{\mathbf{D}}^{2}+\gamma \sum_{x \in V} u(x)^{2} \leq\left(1+c_{1} \gamma\right)\|u\|_{\mathbf{D}}^{2}
$$

which shows the assertion.
Corollary 4.12. $\mathbf{E}_{0}=\mathbf{D}_{0}$ if both (SPS) and ($q \mathrm{~B}$) are fulfilled.
Proof. Since $\mathbf{D}_{0} \subset \mathbf{E}$ by Proposition 4.11, we have $\mathbf{E}_{0}=\mathbf{D}_{0} \cap \mathbf{E}=\mathbf{D}_{0}$ by Lemma 2.1.

Lemma 4.13. Assume all of (SPS$),(q \mathrm{~B})$, and $(t \mathrm{~B})$. Then there exists a constant $c>0$ such that $\|q u\|_{\mathbf{D}} \leq c\|u\|_{\mathbf{D}}$ for all $u \in \mathbf{D}_{0}$.
Proof. Let $u \in \mathbf{D}_{0}$. Then $u \in \mathbf{E}_{0}$ by Corollary 4.12. Lemmas 4.2 and 4.10 show that $\|q u\|_{\mathbf{D}} \leq c_{1}\left(\sum_{x \in V} u(x)^{2}\right)^{1 / 2}$ and $\sum_{x \in V} u(x)^{2} \leq c_{2}\|u\|_{\mathbf{D}}^{2}$. Combining these, we have $\|q u\|_{\mathbf{D}}^{2} \leq c_{1}^{2} c_{2}\|u\|_{\mathbf{D}}^{2}$.
Lemma 4.14. $\left\{\Delta_{q} u \mid u \in \mathbf{D}_{0}\right\} \subset \mathbf{D}_{0}$ if all of (LD), (SPS), and ($q \mathrm{~B}$) are fulfilled.
Proof. Let $u \in \mathbf{D}_{0}$. Then $\Delta u \in \mathbf{D}_{0}$ by [5, Lemma 6.1]. Let $\left\{f_{n}\right\}_{n}$ be a sequence in $L_{0}(V)$ such that $\left\|u-f_{n}\right\|_{\mathbf{D}} \rightarrow 0$ as $n \rightarrow \infty$. There exists a constant $c_{1}>0$ such that $\left\|q u-q f_{n}\right\|_{\mathbf{D}} \leq c_{1}\left\|u-f_{n}\right\|_{\mathbf{D}}$ by Lemma 4.13. Since $q f_{n} \in L_{0}(V)$, we see that $q u \in \mathbf{D}_{0}$. Therefore $\Delta_{q} u=\Delta u-q u \in \mathbf{D}_{0}$.

Theorem 4.15. (LD) follows from all of (LD), (SPS), and ($q \mathrm{~B}$).
Proof. Assume all of (LD), (SPS), and (q B). Let γ be a number such that $q(x) \leq \gamma$ for all $x \in V$. Let $f \in L_{0}(V)$. There exists a constant $c_{1}>0$ such that $\left\|\Delta_{q} f\right\|_{\mathbf{D}} \leq$ $c_{1}\|f\|_{\mathbf{E}}$ by Proposition 4.5. Since $\Delta_{q} f \in L_{0}(V)$, we have $\sum_{x \in V}\left(\Delta_{q} f(x)\right)^{2} \leq$ $c_{2}\left\|\Delta_{q} f\right\|_{\mathbf{D}}^{2}$ by Lemma 4.10. We have

$$
\begin{aligned}
\left\|\Delta_{q} f\right\|_{\mathbf{E}}^{2} & \leq c_{1}^{2}\|f\|_{\mathbf{E}}^{2}+\sum_{x \in V} q(x)\left(\Delta_{q} f(x)\right)^{2} \leq c_{1}^{2}\|f\|_{\mathbf{E}}^{2}+\gamma c_{2}\left\|\Delta_{q} f\right\|_{\mathbf{D}}^{2} \\
& \leq c_{1}^{2}\left(1+\gamma c_{2}\right)\|f\|_{\mathbf{E}}^{2}
\end{aligned}
$$

which shows $(\mathrm{LD})_{q}$.
Theorem 4.16. (SPS) implies (CLD) ${ }_{q}$.
Proof. Let $f \in L_{0}(V)$. Since $\Delta_{q} f \in L_{0}(V)$, there exists a constant $c_{1}>0$ by (SPS) such that

$$
\sum_{x \in V}\left(\Delta_{q} f(x)\right)^{2} \leq c_{1}\left\|\Delta_{q} f\right\|_{\mathbf{D}}^{2} \quad \text { and } \quad \sum_{x \in V} f(x)^{2} \leq c_{1}\|f\|_{\mathbf{D}}^{2}
$$

Lemma 2.6 shows that

$$
\begin{aligned}
\|f\|_{\mathbf{E}}^{2} & =-\sum_{x \in V}\left(\Delta_{q} f(x)\right) f(x) \leq\left(\sum_{x \in V}\left(\Delta_{q} f(x)\right)^{2}\right)^{1 / 2}\left(\sum_{x \in V} f(x)^{2}\right)^{1 / 2} \\
& \leq c_{1}\left\|\Delta_{q} f\right\|_{\mathbf{D}}\|f\|_{\mathbf{D}} \leq c_{1}\left\|\Delta_{q} f\right\|_{\mathbf{E}}\|f\|_{\mathbf{E}}
\end{aligned}
$$

or $\|f\|_{\mathbf{E}} \leq c_{1}\left\|\Delta_{q} f\right\|_{\mathbf{E}}$.
Finally we give an example to show that (LD) does not imply (LD) ${ }_{q}$.
Example 4.17. Let $\mathcal{N}=\langle V, E, K, r\rangle$ be a linear network, where $V=\left\{x_{n}\right\}_{n=0}^{\infty}$, $E=\left\{e_{n}\right\}_{n=1}^{\infty}$, and $r\left(e_{n}\right)=1$ for each $n \geq 1$. Let $K\left(x_{n-1}, e_{n}\right)=1$ and $K\left(x_{n}, e_{n}\right)=$ -1 for each $n \geq 1$, and let $K(x, e)=0$ for any other pairs. We showed in [6, Corollary 2.3] that \mathcal{N} satisfies (LD).

To prove that (LD) $)_{q}$ is not satisfied, we choose $q\left(x_{k}\right)=k$. Consider the function f_{n} defined by $f_{n}\left(x_{k}\right)=1$ if $k<n$ and $f_{n}\left(x_{k}\right)=0$ otherwise. Then $\nabla f_{n}\left(e_{k}\right)=-\delta_{n, k}$, where $\delta_{n, k}$ is Kronecker's delta. Therefore

$$
\left\|f_{n}\right\|_{\mathbf{E}}^{2}=\sum_{k=1}^{\infty}\left(-\delta_{n, k}\right)^{2}+\sum_{k=0}^{n-1} k \cdot 1^{2}=1+\frac{1}{2} n(n-1) .
$$

On the other hand, $\Delta_{q} f_{n}\left(x_{k}\right)=-k$ for $k \leq n-2$, so that

$$
\left\|\Delta_{q} f_{n}\right\|_{\mathbf{E}}^{2} \geq \sum_{k=0}^{n-2} q\left(x_{k}\right)\left(\Delta_{q} f_{n}\left(x_{k}\right)\right)^{2}=\sum_{k=0}^{n-2} k^{3}=\frac{1}{4}(n-1)^{2}(n-2)^{2} .
$$

Consequently

$$
\lim _{n \rightarrow \infty} \frac{\left\|\Delta_{q} f_{n}\right\|_{\mathbf{E}}}{\left\|f_{n}\right\|_{\mathbf{E}}}=\infty
$$

which means that \mathcal{N} does not satisfy (LD) ${ }_{q}$.

References

[1] Victor Anandam, Harmonic functions and potentials on finite or infinite networks, Lecture Notes of the Unione Matematica Italiana, vol. 12, Springer, Heidelberg, 2011.
[2] Hèla Ayadi, Opérateur de Gauss-Bonnet semi-Fredholm et propriétés spectrales sur les graphes infinis, thèse de doctorat, Université de Nantes, hal archives-ouvertes. fr. 2015.
[3] Atsushi Kasue, Random walks and Kuramochi boundaries of infinite networks, Osaka J. Math. 50 (2013), no. 1, 31-51.
[4] Premalatha Kumaresan and Nathiya Narayanaraju, A non-Laplace harmonic structure in infinite networks, Eur. J. Math., 1 (2015), no. 2, 387-403
[5] Hisayasu Kurata and Maretsugu Yamasaki, Bi-flows on a network, Hokkaido Mathematical Journal, 44 (2015), no. 2, 203-220.
[6] _ The metric growth of the discrete Laplacian, Hokkaido Mathematical Journal, 45 (2016), no. 3, 399-417.
[7] , Discrete Green potentials with finite energy, to appear in Hokkaido Mathematical Journal.
[8] Russell Lyons and Yuval Peres, Probability on trees and networks, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42, Cambridge University Press, New York, 2016.
[9] Fumi-Yuki Maeda, Boundary value problems for the equation $\Delta u-q u=0$ with respect to an ideal boundary, J. Sci. Hiroshima Univ. Ser. A-I Math., 32 (1968), 85-146.
[10] Maretsugu Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5(1975), 223-250.
[11] , Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13(1979), 31-44.
[12] , The equation $\Delta u=q u$ on an infinite network, ibid. 21 (1987), 31-46.
H. Kurata: Yonago National College of Technology; Yonago, Tottori, 6838502, JAPAN

E-mail address: kurata@yonago-k.ac.jp
M. Yamasaki: Matsue, Shimane, 690-0824, JAPAN

E-mail address: yama0565m@mable.ne.jp

[^0]: 2010 Mathematics Subject Classification. 31C20; 31C25.
 Key words and phrases. discrete potential theory, q-Dirichlet potential, q-Green potential, Riesz representation, discrete q-Laplacian.

