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Abstract. Discrete q-Green potentials related to the equation ∆u− qu = 0 on
an infinite network were studied in [12] as a discrete analogue to [9]. We study
some properties of q-Green potentials with finite q-Green energy. The q-Dirichlet
energy plays an important role instead of the Dirichlet sum. Our aim is to show
that results obtained in [7] in case q = 0 hold similarly even in case q ≥ 0.
We show that every q-Dirichlet potential can be expressed as a difference of two
q-Green potentials with finite q-Green energy.

1. Introduction with preliminaries

Discrete potential theory on infinite networks related to the discrete Laplacian
∆ has been studied by many authors; for example, Anandam [1], Ayadi [2], Kasue
[3], Kumaresan and Narayanaraju [4], Lyons and Peres [8], and Yamasaki [11].

Many potential theoretic results related to the equation ∆qu := ∆u − qu = 0
on a Riemann surface were given in [9]. The q-harmonic Green function (q-Green
function, for short) implies the Green function related to ∆q. As for the q-Green
function of an infinite network, some results which have counterparts in [9] were
shown in [12]. Our aim of this paper is to show that every q-Dirichlet potential can
be expressed as a difference of two q-Green potentials with finite q-Green energy.
We proved in [7] that this property holds in case q = 0.
More precisely, let N = ⟨V,E,K, r⟩ be an infinite network which is connected

and locally finite and has no self-loop, where V is the set of nodes, E is the set of
arcs, and the resistance r is a strictly positive function on E. For x ∈ V and for
e ∈ E the node-arc incidence matrix K is defined by K(x, e) = 1 if x is the initial
node of e; K(x, e) = −1 if x is the terminal node of e; K(x, e) = 0 otherwise. Let
L(V ) be the set of all real valued functions on V , L+(V ) the set of all non-negative
real valued functions on V , and L0(V ) the set of all u ∈ L(V ) with finite support.
We similarly define L(E), L+(E), and L0(E). Let q be a non-negative function on
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V with q ̸= 0. For u ∈ L(V ) we define the discrete derivative ∇u ∈ L(E), the
Laplacian ∆u ∈ L(V ), and the q-Laplacian ∆qu ∈ L(V ) as

∇u(e) = −r(e)−1
∑
x∈V

K(x, e)u(x),

∆u(x) =
∑
e∈E

K(x, e)∇u(e),

∆qu(x) = ∆u(x)− q(x)u(x).

For convenience we give specific forms. For e ∈ E let x+ ∈ V be the initial node
of e and x− ∈ V the terminal node of e. Then

∇u(e) =
u(x−)− u(x+)

r(e)
.

For x ∈ V let {e1, . . . , ed} be the set of arcs adjacent to x and let yj be the other
node of ej for each j. Then

∆u(x) =
d∑

j=1

u(yj)− u(x)

r(ej)
,

∆qu(x) =
d∑

j=1

u(yj)− u(x)

r(ej)
− q(x)u(x).

For u, v ∈ L(V ), we put

(u, v)D =
∑
e∈E

r(e)∇u(e)∇v(e),

∥u∥D = (u, u)
1/2
D (Dirichlet sum),

(u, v)E =
∑
e∈E

r(e)∇u(e)∇v(e) +
∑
x∈V

q(x)u(x)v(x),

∥u∥E = (u, u)
1/2
E (q-Dirichlet energy).

We define some classes of functions on V as

D = {u ∈ L(V ) | ∥u∥D < ∞},
E = {u ∈ L(V ) | ∥u∥E < ∞},
Hq = {u ∈ L(V ) | ∆qu = 0}.

It is easy to see that E is a Hilbert space with respect to the inner product
(u, v)E. On the other hand, (u, v)D is a degenerate bilinear form in D; for ex-
ample, (1, u)D = 0 and ∥u+1∥D = ∥u∥D for u ∈ D. It was shown in [11, Theorem
1.1] that D is a Hilbert space with respect to the inner product (u, v)D + u(o)v(o)
for a fixed node o ∈ V . We easily verify that a sequence {un}n ⊂ D converges to
u in D if and only if limn→∞ ∥un − u∥D = 0 and {un}n converges pointwise to u.
Denote by D0 and E0 the closure of L0(V ) in D and in E respectively. We call a
function in D, in D0, in E, and in E0 a Dirichlet function, a Dirichlet potential, a
q-Dirichlet function, and a q-Dirichlet potential, respectively.
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It was shown in [7] that the space D0 is equal to the space of the differences of
Green potentials with finite energy provided that conditions (LD) and (CLD) are
fulfilled. As an application, we showed a Riesz decomposition of a function whose
Laplacian is a Dirichlet function. Our aim is to verify that similar results for q-
Green potentials are also valid by replacing conditions (LD) and (CLD) by (LD)q
and (CLD)q, which are defined in Section 3. In contrast with (LD) and (CLD), our
modified conditions contain some barriers caused by the term qu. We shall discuss
in Section 4 some relations among these conditions.

2. The q-Green function

Let us recall some fundamental results related to the q-Dirichlet functions estab-
lished in [12].

Lemma 2.1 ([12, Theorem 3.1]). E0 = D0 ∩ E.

Lemma 2.2 ([12, Lemma 3.1]). (u, h)E = 0 for every u ∈ E0 and h ∈ Hq ∩ E.

Lemma 2.3 ([12, Theorem 3.2]). Every u ∈ E is decomposed uniquely into the
form u = v + h with v ∈ E0 and h ∈ Hq ∩ E.

We give a fundamental property of the norm in E, which is used repeatedly in
the following.

Lemma 2.4. If {un}n ⊂ E converges to u ∈ E in the norm of E, then {un}n
converges pointwise to u.

Proof. Let vn = un−u and assume that ∥vn∥E → 0 as n → ∞. There exists x0 ∈ V
such that q(x0) > 0. The fact q(x0)|vn(x0)|2 ≤ ∥vn∥2E shows that vn(x0) → 0 as
n → ∞. Since ∥vn∥D ≤ ∥vn∥E → 0 as n → ∞, by [10, Corollary 2 of Lemma 1] it
follows that {vn}n converges pointwise to 0. □
We call a function T defined on R into R a normal contraction of R if T0 = 0

and |Ts1−Ts2| ≤ |s1−s2| for s1, s2 ∈ R. For example, Ts = max{s, 0} is a normal
contraction of R.

Lemma 2.5 ([12, Lemma 4.2 and before it]). Let T be a normal contraction of R.
Then ∥T ◦ u∥E ≤ ∥u∥E for u ∈ E. Moreover, T ◦ u ∈ E0 if u ∈ E0.

Lemma 2.6. Let f ∈ L0(V ) and u ∈ E. Then

(u, f)E = −
∑
x∈V

(∆qu(x))f(x).

Proof. Since (u, f)D = −
∑

x∈V (∆u(x))f(x) by [10, Lemma 3], we have

(u, f)E = −
∑
x∈V

(∆u(x))f(x) +
∑
x∈V

q(x)u(x)f(x)

= −
∑
x∈V

(∆qu(x))f(x)

as required. □
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We say that u ∈ L(V ) is q-superharmonic or q-harmonic on V if ∆qu ≤ 0 or
∆qu = 0 respectively. Recall that the (harmonic) Green function ga ∈ D0 of N
with pole at a ∈ V is defined as the unique solution of the boundary value problem:

∆ga(x) = −δa(x) for x ∈ V ,

where δa(a) = 1 and δa(x) = 0 for x ̸= a. See [11] for details.
The q-Green function g̃a ∈ E0 of N with pole at a ∈ V is defined similarly by

∆qg̃a(x) = −δa(x) for x ∈ V .

Note that q-Green functions always exist and satisfy that g̃a(x) = g̃x(a) for a, x ∈ V
and that 0 < g̃a(x) ≤ g̃a(a) for a, x ∈ V . See [12, Theorems 4.1, 4.2, and 4.3].

3. Representation of the space E0

Let µ, ν ∈ L+(V ). Recall that the Green potential Gµ ∈ L(V ) and the mutual
Green energy G(µ, ν) are defined by

Gµ(x) =
∑
y∈V

gx(y)µ(y), G(µ, ν) =
∑
x∈V

(Gµ(x))ν(x).

Similarly we define the q-Green potential Gqµ ∈ L(V ) and the mutual q-Green
energy Gq(µ, ν) by

Gqµ(x) =
∑
y∈V

g̃x(y)µ(y), Gq(µ, ν) =
∑
x∈V

(Gqµ(x))ν(x).

We call Gq(µ, µ) the q-Green energy of µ. Let us put

Mq = {µ ∈ L+(V ) | Gqµ(x) < ∞ for each x ∈ V },
Eq = {µ ∈ Mq | Gq(µ, µ) < ∞}.

Lemma 3.1 ([12, Lemma 7.1]). ∆qGqµ = −µ for µ ∈ Mq.

Lemma 3.2 ([12, Theorem 7.2]). If µ ∈ Eq, then Gqµ ∈ E0 and ∆qGqµ ≤ 0.
Conversely, if u ∈ E0 satisfies ∆qu ≤ 0, then u = Gqµ for some µ ∈ Eq.

We show some results for the q-Green potential and the mutual q-Green energy,
which are similar to those considered in [7].

Lemma 3.3. For µ, ν ∈ L0(V ) ∩ L+(V ) we have

(Gqµ,Gqν)E = Gq(µ, ν).

Proof. Let µ, ν ∈ L0(V ) ∩ L+(V ). Lemma 3.2 shows that Gqµ ∈ E0, so that
there exists a sequence {fn}n ⊂ L0(V ) which converges to Gqµ in the norm of E.
Especially {fn}n converges pointwise to Gqµ. Lemmas 2.6 and 3.1 imply that

(fn, Gqν)E = −
∑
x∈V

fn(x)(∆qGqν(x)) =
∑
x∈V

fn(x)ν(x).

Letting n → ∞, we have the assertion. □
Lemma 3.4. For µ ∈ Eq, there exists {µn}n ⊂ L0(V ) ∩ L+(V ) such that {Gqµn}n
converges to Gqµ in the norm of E and that {µn}n converges pointwise to µ.
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Proof. let µ ∈ Eq. Let {Nn}n be an exhaustion of N with Nn = ⟨Vn, En⟩. We put
µn = µ on Vn and µn = 0 on V \ Vn. Clearly, {µn}n increases monotonically and
converges pointwise to µ. Fatou’s lemma shows that

Gqµ(x) ≤ lim inf
n→∞

Gqµn(x) = lim
n→∞

Gqµn(x) ≤ Gqµ(x),

so that {Gqµn}n converges pointwise to Gqµ.
For m < n, the monotonicity of {µn}n implies that {∥Gqµn∥E} converges and,

together with Lemma 3.3, that

(Gqµm, Gqµn)E = Gq(µm, µn) ≥ Gq(µm, µm) = ∥Gqµm∥2E.

Consequently

∥Gqµn −Gqµm∥2E = ∥Gqµn∥2E − 2(Gqµn, Gqµm)E + ∥Gqµm∥2E
≤ ∥Gqµn∥2E − ∥Gqµm∥2E.

Since Gqµn ∈ E0 by Lemma 3.2, it follows that {Gqµn}n converges to some v ∈ E0

in the norm of E. This means that v = Gqµ, and that {Gqµn}n converges to Gqµ
in the norm of E. □

Proposition 3.5. Let {µn}n ⊂ Eq. If {Gqµn}n converges to some u ∈ E in the
norm of E, then u = Gqµ for some µ ∈ Eq.

Proof. Let {µn}n ⊂ Eq. Lemma 3.2 implies that Gqµn ∈ E0, so that u ∈ E0.
Lemma 3.1 shows

∆qu(x) = lim
n→∞

∆qGqµn(x) = − lim
n→∞

µn(x) ≤ 0.

Again by Lemma 3.2 we have that u = Gqµ for some µ ∈ Eq. □

Now we introduce two conditions which are similar to conditions (LD) and (CLD)
considered in [7]. We say that N satisfies condition (LD)q if there exists a constant
c > 0 such that

(LD)q ∥∆qf∥E ≤ c∥f∥E for all f ∈ L0(V ).

We say that N satisfies condition (CLD)q if there exists a constant c > 0 such that

(CLD)q ∥f∥E ≤ c∥∆qf∥E for all f ∈ L0(V ).

Lemma 3.6. Assume (LD)q. Then there exists a constant c > 0 such that ∥∆qu∥E ≤
c∥u∥E for all u ∈ E.

Proof. Let u ∈ E. By Lemma 2.3 we find v ∈ E0 and h ∈ Hq ∩ E such that
u = v + h. Lemma 2.2 shows that

∥u∥2E = ∥v∥2E + 2(v, h)E + ∥h∥2E
= ∥v∥2E + ∥h∥2E ≥ ∥v∥2E.

Let {fn}n be a sequence in L0(V ) which converges to v in the norm of E. Then
(LD)q implies that ∥∆qfn∥E ≤ c∥fn∥E for all n. Since {∆qfn}n converges pointwise
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to ∆qv, Fatou’s lemma gives

∥∆qu∥E = ∥∆qv∥E ≤ lim inf
n→∞

∥∆qfn∥E
≤ c lim inf

n→∞
∥fn∥E = c∥v∥E ≤ c∥u∥E

as required. □
Lemma 3.7. Assume (LD)q. Then ∆qu ∈ E0 for u ∈ E0.

Proof. Let u ∈ E0 and {fn}n a sequence in L0(V ) which converges to u in the norm
of E. Then ∥fn − fm∥E → 0 as n,m → ∞. Condition (LD)q implies that

∥∆qfn −∆qfm∥E ≤ c∥fn − fm∥E → 0

as n,m → ∞. Thus {∆qfn}n is a Cauchy sequence in E and converges to some
v ∈ E0 in the norm of E. Since {∆qfn}n converges pointwise to ∆qu, we see that
∆qu = v ∈ E0. □
Proposition 3.8. Assume both (LD)q and (CLD)q. Then there exists a constant
c > 0 such that

∥u∥E ≤ c∥∆qu∥E for all u ∈ E0.

Proof. Let u ∈ E0. There exists a sequence {fn}n ⊂ L0(V ) which converges to u
in the norm of E. Lemma 3.6 shows that there exists c1 > 0 such that ∥∆qu −
∆qfn∥E ≤ c1∥u − fn∥E for all n, so that ∥∆qfn∥E → ∥∆qu∥E as n → ∞. By
(CLD)q, there exists c2 > 0 such that ∥fn∥E ≤ c2∥∆qfn∥E for all n. We have

∥u∥E = lim
n→∞

∥fn∥E ≤ c2 lim
n→∞

∥∆qfn∥E = c2∥∆qu∥E,

as required. □
Lemma 3.9. Let {un}n be a sequence in E0 such that {∥un∥E}n is bounded and that
{un}n converges pointwise to a function u ∈ E. Then limn→∞(un, v)E = (u, v)E for
v ∈ E0.

Proof. Let v ∈ E0. For any ε > 0, there exists f ∈ L0(V ) such that ∥v − f∥E < ε.
We take M with ∥un∥E ≤ M for all n. Fatou’s lemma shows that ∥u∥E ≤ M . It is
easy to see that |(un − u, f)E| < ε for sufficiently large n. We have

|(un − u, v)E| ≤ |(un − u, v − f)E|+ |(un − u, f)E|
≤ ∥un − u∥E∥v − f∥E + ε < (2M + 1)ε,

and the assertion. □
Lemma 3.10. If µ ∈ E0∩L+(V ), then there exists {µn}n ⊂ L0(V )∩L+(V ) which
converges to µ in the norm of E.

Proof. Let µ ∈ E0∩L+(V ). There exists a sequence {fn}n in L0(V ) which converges
to µ in the norm of E. Let µn = max{fn, 0}. Then ∥µn∥E ≤ ∥fn∥E by Lemma 2.5.
Since µ ≥ 0, {µn}n converges pointwise to µ. Fatou’s lemma gives

∥µ∥E ≤ lim inf
n→∞

∥µn∥E ≤ lim sup
n→∞

∥µn∥E

≤ lim
n→∞

∥fn∥E = ∥µ∥E,
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or limn→∞ ∥µn∥E = ∥µ∥E. Since {∥fn∥E}n is bounded, so is {∥µn∥E}n. By Lemma
3.9, (µn, µ)E → (µ, µ)E = ∥µ∥2E as n → ∞. Thus we have

∥µ− µn∥2E = ∥µ∥2E − 2(µ, µn)E + ∥µn∥2E → 0

as n → ∞. □
Theorem 3.11. Eq = E0 ∩ L+(V ) if both (LD)q and (CLD)q are fulfilled.

Proof. Let µ ∈ Eq. By Lemma 3.4, there exists {µn}n ⊂ L0(V ) ∩ L+(V ) such that
{Gqµn}n converges to Gqµ in the norm of E and that {µn}n converges pointwise
to µ. Lemma 3.2 shows that Gqµ ∈ E0 and Gqµn ∈ E0 for each n. By Lemmas 3.1
and 3.6

∥µ− µn∥E = ∥∆qGqµn −∆qGqµ∥E ≤ c∥Gqµn −Gqµ∥E → 0

as n → ∞. Thus µ ∈ E0.
We show the converse. Let µ ∈ E0 ∩ L+(V ). By Lemma 3.10, there exists

{µn}n ⊂ L0(V ) ∩ L+(V ) which converges to µ in the norm of E. Lemma 3.2
implies Gqµn ∈ E0 for each n. Proposition 3.8 and Lemma 3.1 show that

∥Gqµn −Gqµm∥E ≤ c∥∆q(Gqµn −Gqµm)∥E = c∥µm − µn∥E → 0

as n,m → ∞. Therefore {Gqµn}n converges to some u ∈ E0 in the norm of E.
Fatou’s lemma and Lemma 3.3 give

Gq(µ, µ) ≤ lim inf
n→∞

Gq(µn, µn) = lim
n→∞

∥Gqµn∥2E = ∥u∥2E < ∞.

Namely µ ∈ Eq. □
For any u ∈ L(V ), we define Gqu by Gqu = Gqu

+−Gqu
− if both u+ = max{u, 0}

and u− = −min{u, 0} belong to Mq.

Theorem 3.12. E0 = Eq −Eq if both (LD)q and (CLD)q are fulfilled. In this case,
u+, u− ∈ Eq for u ∈ E0.

Proof. By Theorem 3.11, Eq − Eq ⊂ E0. Conversely, for u ∈ E0, Lemma 2.5 and
Theorem 3.11 imply that u+, u− ∈ E0 ∩ L+(V ) = Eq, so that E0 ⊂ Eq − Eq. □
Theorem 3.13. Gqu ∈ E0 and ∆qGqu = −u for u ∈ E0 if both (LD)q and (CLD)q
are fulfilled.

Proof. Let u ∈ E0. Theorem 3.12 shows that u+, u− ∈ Eq. Lemma 3.2 implies
Gqu = Gqu

+ −Gqu
− ∈ E0. By Lemma 3.1 we have

∆qGqu = ∆qGqu
+ −∆qGqu

− = −u+ + u− = −u

as required. □
Corollary 3.14. {Gqu | u ∈ E0} ⊂ E0 if both (LD)q and (CLD)q are fulfilled.

Theorem 3.15. Gq∆qu = −u for u ∈ E0 if both (LD)q and (CLD)q are fulfilled.

Proof. Let u ∈ E0. Then v := ∆qu ∈ E0 by Lemma 3.7. Theorem 3.13 shows that
Gqv ∈ E0 and that ∆q(u+Gqv) = v − v = 0. Therefore u+Gqv ∈ E0 ∩Hq. Thus
u+Gqv = 0 by Lemma 2.2. □
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We arrive at the following main result.

Theorem 3.16. E0 = {Gqµ − Gqν | µ, ν ∈ Eq} if both (LD)q and (CLD)q are
fulfilled.

Proof. Lemma 3.2 implies that {Gqµ − Gqν | µ, ν ∈ Eq} ⊂ E0. We show the
converse. Let u ∈ E0. We have v := −∆qu ∈ E0 by Lemma 3.7. Theorem 3.15
shows that u = Gqv = Gqv

+ −Gqv
−. Theorem 3.12 implies that v+, v− ∈ Eq, and

that u ∈ {Gqµ−Gqν | µ, ν ∈ Eq}. □
As an application of our results, we shall give a version of Riesz decomposition

of u ∈ E(2) = {u ∈ L(V ) | ∆qu ∈ E} as follows. Let us put

E
(2)
0 = {u ∈ L(V ) | ∆qu ∈ E0},

H(2)
q = {u ∈ L(V ) | ∆qu ∈ Hq}.

Theorem 3.17. If both (LD)q and (CLD)q are fulfilled, then for every u ∈ E(2),

there exist a unique v ∈ E0 and a unique w ∈ H
(2)
q ∩ E(2) such that u = Gqv + w.

Proof. Let u ∈ E(2). Applying Lemma 2.3 to ∆qu ∈ E yields

∆qu = −v + h with v ∈ E0 and h ∈ Hq ∩ E.

Theorem 3.13 shows that ∆qGqv = −v ∈ E0. Hence Gqv ∈ E
(2)
0 . Let w = u−Gqv.

Then w ∈ E(2) and

∆qw = ∆qu−∆qGqv = (−v + h) + v = h ∈ Hq,

so that w ∈ H
(2)
q .

To show the uniqueness, we assume that u = Gqv1 + w1 = Gqv2 + w2 with

v1, v2 ∈ E0 and w1, w2 ∈ H
(2)
q ∩ E(2). Theorem 3.13 shows that w1 − w2 = Gqv2 −

Gqv1 ∈ E0. Lemma 3.7 implies ∆q(w1 − w2) ∈ E0. Since w1 − w2 ∈ H
(2)
q , it

follows that ∆q(w1 − w2) ∈ Hq. Lemma 2.2 shows that ∆q(w1 − w2) = 0, so that
w1 − w2 ∈ Hq ∩ E0. Again by Lemma 2.2 we have w1 = w2, so that Gqv1 = Gqv2.
Theorem 3.13 gives v1 = −∆qGqv1 = −∆qGqv2 = v2. □

Corollary 3.18. E(2) = E
(2)
0 +H

(2)
q ∩ E(2) if both (LD)q and (CLD)q are fulfilled.

Proof. Clearly E
(2)
0 +H

(2)
q ∩ E(2) ⊂ E(2). We show the converse. Let u ∈ E(2). By

Theorem 3.17 we take v ∈ E0 and w ∈ H
(2)
q ∩E(2) such that u = Gqv+w. Theorem

3.13 shows that ∆qGqv = −v ∈ E0, so that Gqv ∈ E
(2)
0 . □

4. Conditions (LD)q and (CLD)q

We considered in [7] the following conditions:

(LD) There exists a constant c > 0 such that ∥∆f∥D ≤ c∥f∥D for all f ∈ L0(V );
(CLD) There exists a constant c > 0 such that ∥f∥D ≤ c∥∆f∥D for all f ∈ L0(V ).

Note that (LD)q and (CLD)q in Section 3 are obtained by replacing D by E and
∆ by ∆q in (LD) and (CLD).

We recall



DISCRETE q-GREEN POTENTIALS WITH FINITE ENERGY 15

Lemma 4.1 ([6, Lemma 3.2]). Assume (LD). Then there exists a constant c > 0
such that ∥∆u∥D ≤ c∥u∥D for all u ∈ D.

First of all, we note that ∥∆u∥D < ∞ does not imply ∥∆qu∥D < ∞. In fact, let
u = 1 on V and q ∈ L+(V ) \D. Then ∥∆u∥D = 0 and ∥∆qu∥D = ∥q∥D = ∞.
Let us define t(x, y) and t(x) for x, y ∈ V by

t(x, y) =
∑
e∈E

|K(x, e)K(y, e)|r(e)−1 if x ̸= y,

t(x, x) = 0,

t(x) =
∑
e∈E

|K(x, e)|r(e)−1 =
∑
y∈V

t(x, y).

Then we have

∆u(x) = −t(x)u(x) +
∑
y∈V

t(x, y)u(y).

For convenience sake, we introduce the following conditions:

(qB) q(x) is bounded on V ;
(tB) t(x) is bounded on V .

Lemma 4.2. Assume both (qB) and (tB). Then there exists a constant c > 0 such

that ∥qu∥D ≤ c
(∑

x∈V u(x)2
)1/2

and ∥qu∥D ≤ c∥u∥E for all u ∈ E.

Proof. Let γ satisfy t(x) ≤ γ and q(x) ≤ γ for all x ∈ V . Let u ∈ E. For e ∈ E,
let x1 and x2 ∈ V be the initial node and the terminal node of e. Then

(∇(qu)(e))2 = r(e)−2 (q(x2)u(x2)− q(x1)u(x1))
2

≤ r(e)−2 × 2
(
q(x2)

2u(x2)
2 + q(x1)

2u(x1)
2
)

≤ 2r(e)−2 × γ
(
q(x1)u(x1)

2 + q(x2)u(x2)
2
)

= 2γr(e)−2
∑
x∈V

|K(x, e)|q(x)u(x)2.

We have

∥qu∥2D =
∑
e∈E

r(e)(∇(qu)(e))2 ≤ 2γ
∑
e∈E

r(e)−1
∑
x∈V

|K(x, e)|q(x)u(x)2

= 2γ
∑
x∈V

t(x)q(x)u(x)2 ≤ 2γ2
∑
x∈V

q(x)u(x)2,

which implies ∥qu∥2D ≤ 2γ3
∑

x∈V u(x)2 and ∥qu∥2D ≤ 2γ2∥u∥2E. □

Proposition 4.3. (LD)q implies both (qB) and (tB).

Proof. Condition (LD)q shows that there exists c > 0 such that ∥∆δa∥E ≤ c∥δa∥E
for all a ∈ V , where δa is the characteristic function of {a}. We shall show that
t(a) + q(a) ≤ c.
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Let {ej}dj=1 ⊂ E be the arcs adjacent to a and let bj ∈ V be the other node of
ej. For e ∈ E

∇δa(e) = −r(e)−1
∑
x∈V

K(x, e)δa(x) = −r(e)−1K(a, e).

Since K(x, e)2 = |K(x, e)| in general,

∥δa∥2E =
∑
e∈E

r(e)−1K(a, e)2 +
∑
x∈V

q(x)δa(x)
2

=
∑
e∈E

r(e)−1|K(a, e)|+ q(a) = t(a) + q(a).

On the other hand

∆qδa(x) =
∑
e∈E

K(x, e)∇δa(e)− q(x)δa(x)

= −
∑
e∈E

K(x, e)r(e)−1K(a, e)− q(x)δa(x)

= −
d∑

i=1

K(x, ei)r(ei)
−1K(a, ei)− q(x)δa(x).

Especially

∆qδa(a) = −t(a)− q(a).

Since K(x, ei)K(a, ei) = 0 unless x = a or x = bi and K(bi, ei)K(a, ei) = −1, it
follows that

∇(∆qδa)(e) = −r(e)−1
∑
x∈V

K(x, e)∆qδa(x)

= r(e)−1
∑
x∈V

K(x, e)
( d∑

i=1

K(x, ei)r(ei)
−1K(a, ei) + q(x)δa(x)

)
= r(e)−1

(
K(a, e)t(a)−

d∑
i=1

K(bi, e)r(ei)
−1 +K(a, e)q(a)

)
.

If e = ej, then, by K(bj, ej) = −K(a, ej),

∇(∆qδa)(ej) = r(ej)
−1
(
K(a, ej)t(a)−K(bj, ej)r(ej)

−1 +K(a, ej)q(a)
)

= r(ej)
−1K(a, ej)

(
t(a) + r(ej)

−1 + q(a)
)
.
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Consequently

∥∆qδa∥2E ≥
d∑

j=1

r(ej)|∇(∆δa)(ej)|2 + q(a)(∆qδa(a))
2

=
d∑

j=1

r(ej)
−1
(
t(a) + r(ej)

−1 + q(a)
)2

+ q(a)(−t(a)− q(a))2

≥
d∑

j=1

r(ej)
−1
(
t(a) + q(a)

)2

+ q(a)(t(a) + q(a))2

=
(
t(a) + q(a)

)3

.

Combining these we have
(
t(a) + q(a)

)3

≤ c2
(
t(a) + q(a)

)
, or t(a) + q(a) ≤ c. □

Assuming q = 0 in the proposition above, we have

Corollary 4.4. (LD) implies (tB).

Proposition 4.5. If both (LD) and (qB) are fulfilled, then there exists a constant
c > 0 such that ∥∆qu∥D ≤ c∥u∥E for all u ∈ E.

Proof. Let u ∈ E. Note that Corollary 4.4 implies (tB). Lemmas 4.1 and 4.2 show
that there exist constants c1 > 0 and c2 > 0 such that ∥∆u∥D ≤ c1∥u∥D and
∥qu∥D ≤ c2∥u∥E. We have

∥∆qu∥D ≤ ∥∆u∥D + ∥qu∥D ≤ (c1 + c2)∥u∥E
as required. □

Denote by S+
q the set of u ∈ L+(V ) such that ∆qu ≤ 0.

Lemma 4.6. Assume both (qB) and (tB). Then there exists a constant c > 0 such
that |∆qu(x)| ≤ cu(x) on V for all u ∈ S+

q .

Proof. Let u ∈ S+
q . If we set ∆∗u(x) =

∑
y∈V t(x, y)u(y), then, since ∆qu(x) =

∆∗u(x)− (t(x) + q(x))u(x), it follows that

(t(x) + q(x))u(x) ≥ ∆∗u(x) ≥ 0,

so that

|∆qu(x)| ≤ |∆∗u(x)|+ |(t(x) + q(x))u(x)| ≤ 2(t(x) + q(x))u(x).

We may take c = 2 supx∈V (t(x) + q(x)). □

Theorem 4.7. If both (LD) and (qB) are fulfilled, then there exists a constant
c > 0 such that

∥∆qu∥E ≤ c∥u∥E for all u ∈ E0 ∩ S+
q .
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Proof. Let u ∈ E0 ∩ S+
q . Note that Corollary 4.4 implies (tB). Proposition 4.5

and Lemma 4.6 show that there exist constants c1 > 0 and c2 > 0 such that
∥∆qu∥D ≤ c1∥u∥E and |∆qu(x)| ≤ c2u(x) on V . We have

∥∆qu∥2E = ∥∆qu∥2D +
∑
x∈V

q(x)(∆qu(x))
2 ≤ c21∥u∥2E + c22

∑
x∈V

q(x)u(x)2

≤ (c21 + c22)∥u∥2E,
as required. □
Proposition 4.8. If both (qB) and (tB) are fulfilled and if q is superharmonic on
V , i.e., ∆q ≤ 0 on V , then there exists a constant c > 0 such that∑

x∈V

q(x)(∆qu(x))
2 ≤ c

∑
x∈V

q(x)u(x)2

for all u ∈ L(V ).

Proof. Let γ satisfy t(x) ≤ γ and q(x) ≤ γ for all x ∈ V . We set ∆∗u(x) =∑
y∈V t(x, y)u(y). Schwarz’s inequality implies that

(∆∗u(x))2 ≤
(∑
y∈V

t(x, y)
)(∑

y∈V

t(x, y)u(y)2
)
= t(x)

∑
y∈V

t(x, y)u(y)2

≤ γ
∑
y∈V

t(x, y)u(y)2.

Since q is superharmonic on V , i.e., ∆∗q(x) ≤ t(x)q(x) on V , it follows that∑
x∈V

q(x)(∆∗u(x))2 ≤ γ
∑
x∈V

q(x)
∑
y∈V

t(x, y)u(y)2

= γ
∑
y∈V

u(y)2
∑
x∈V

t(x, y)q(x)

= γ
∑
y∈V

u(y)2∆∗q(y)

≤ γ
∑
y∈V

u(y)2t(y)q(y) ≤ γ2
∑
y∈V

q(y)u(y)2.

We have

(∆qu(x))
2 =

(
∆∗u(x)− (t(x) + q(x))u(x)

)2

≤ 2(∆∗u(x))2 + 2(t(x) + q(x))2u(x)2

≤ 2(∆∗u(x))2 + 8γ2u(x)2,

so that ∑
x∈V

q(x)(∆qu(x))
2 ≤ 2

∑
x∈V

q(x)(∆∗u(x))2 + 8γ2
∑
x∈V

q(x)u(x)2

≤ 10γ2
∑
x∈V

q(x)u(x)2.
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This completes the proof. □
Theorem 4.9. If q is superharmonic on V , then (LD)q follows from (LD) and
(qB).

Proof. Let f ∈ L0(V ) and assume (LD) and (qB). Proposition 4.5 shows that there
exists a constant c1 > 0 such that ∥∆qf∥D ≤ c1∥f∥E. Since (tB) is fulfilled by
Corollary 4.4, there exists a constant c2 > 0 such that∑

x∈V

q(x)(∆qf(x))
2 ≤ c2

∑
x∈V

q(x)f(x)2 ≤ c2∥f∥2E

by Proposition 4.8. Thus we have ∥∆qf∥2E ≤ (c21 + c2)∥f∥2E, so that (LD)q is
fulfilled. □

As a generalized version of Poincaré-Sobolev’s inequality, we introduced in [7]
the following condition (SPS): There exists a constant c > 0 such that

(SPS)
∑
x∈V

f(x)2 ≤ c∥f∥2D for all f ∈ L0(V ).

Lemma 4.10 ([7, Lemma 2.1]). Assume (SPS). Then there exists a constant c > 0
such that ∑

x∈V

u(x)2 ≤ c∥u∥2D for all u ∈ D0.

Proposition 4.11. If both (SPS) and (qB) are fulfilled, then there exists a constant
c > 0 such that ∥u∥E ≤ c∥u∥D for all u ∈ D0.

Proof. Let γ be such that q(x) ≤ γ for all x ∈ V . By Lemma 4.10, there exists a
constant c1 > 0 such that

∥u∥2E = ∥u∥2D +
∑
x∈V

q(x)u(x)2 ≤ ∥u∥2D + γ
∑
x∈V

u(x)2 ≤ (1 + c1γ)∥u∥2D,

which shows the assertion. □
Corollary 4.12. E0 = D0 if both (SPS) and (qB) are fulfilled.

Proof. Since D0 ⊂ E by Proposition 4.11, we have E0 = D0 ∩ E = D0 by Lemma
2.1. □
Lemma 4.13. Assume all of (SPS), (qB), and (tB). Then there exists a constant
c > 0 such that ∥qu∥D ≤ c∥u∥D for all u ∈ D0.

Proof. Let u ∈ D0. Then u ∈ E0 by Corollary 4.12. Lemmas 4.2 and 4.10 show
that ∥qu∥D ≤ c1(

∑
x∈V u(x)2)1/2 and

∑
x∈V u(x)2 ≤ c2∥u∥2D. Combining these, we

have ∥qu∥2D ≤ c21c2∥u∥2D. □
Lemma 4.14. {∆qu | u ∈ D0} ⊂ D0 if all of (LD), (SPS), and (qB) are fulfilled.

Proof. Let u ∈ D0. Then ∆u ∈ D0 by [5, Lemma 6.1]. Let {fn}n be a sequence in
L0(V ) such that ∥u − fn∥D → 0 as n → ∞. There exists a constant c1 > 0 such
that ∥qu− qfn∥D ≤ c1∥u− fn∥D by Lemma 4.13. Since qfn ∈ L0(V ), we see that
qu ∈ D0. Therefore ∆qu = ∆u− qu ∈ D0. □
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Theorem 4.15. (LD)q follows from all of (LD), (SPS), and (qB).

Proof. Assume all of (LD), (SPS), and (qB). Let γ be a number such that q(x) ≤ γ
for all x ∈ V . Let f ∈ L0(V ). There exists a constant c1 > 0 such that ∥∆qf∥D ≤
c1∥f∥E by Proposition 4.5. Since ∆qf ∈ L0(V ), we have

∑
x∈V (∆qf(x))

2 ≤
c2∥∆qf∥2D by Lemma 4.10. We have

∥∆qf∥2E ≤ c21∥f∥2E +
∑
x∈V

q(x)(∆qf(x))
2 ≤ c21∥f∥2E + γc2∥∆qf∥2D

≤ c21(1 + γc2)∥f∥2E,

which shows (LD)q. □
Theorem 4.16. (SPS) implies (CLD)q.

Proof. Let f ∈ L0(V ). Since ∆qf ∈ L0(V ), there exists a constant c1 > 0 by (SPS)
such that ∑

x∈V

(∆qf(x))
2 ≤ c1∥∆qf∥2D and

∑
x∈V

f(x)2 ≤ c1∥f∥2D.

Lemma 2.6 shows that

∥f∥2E = −
∑
x∈V

(∆qf(x))f(x) ≤
(∑
x∈V

(∆qf(x))
2
)1/2(∑

x∈V

f(x)2
)1/2

≤ c1∥∆qf∥D∥f∥D ≤ c1∥∆qf∥E∥f∥E,

or ∥f∥E ≤ c1∥∆qf∥E. □
Finally we give an example to show that (LD) does not imply (LD)q.

Example 4.17. Let N = ⟨V,E,K, r⟩ be a linear network, where V = {xn}∞n=0,
E = {en}∞n=1, and r(en) = 1 for each n ≥ 1. Let K(xn−1, en) = 1 and K(xn, en) =
−1 for each n ≥ 1, and let K(x, e) = 0 for any other pairs. We showed in [6,
Corollary 2.3] that N satisfies (LD).

To prove that (LD)q is not satisfied, we choose q(xk) = k. Consider the function
fn defined by fn(xk) = 1 if k < n and fn(xk) = 0 otherwise. Then∇fn(ek) = −δn,k,
where δn,k is Kronecker’s delta. Therefore

∥fn∥2E =
∞∑
k=1

(−δn,k)
2 +

n−1∑
k=0

k · 12 = 1 +
1

2
n(n− 1).

On the other hand, ∆qfn(xk) = −k for k ≤ n− 2, so that

∥∆qfn∥2E ≥
n−2∑
k=0

q(xk)(∆qfn(xk))
2 =

n−2∑
k=0

k3 =
1

4
(n− 1)2(n− 2)2.

Consequently

lim
n→∞

∥∆qfn∥E
∥fn∥E

= ∞,

which means that N does not satisfy (LD)q.
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