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Abstract

The purpose of this paper is to provide an oscillation theorem that can be applied to half-linear differential
equations with time-varying coefficients. A parametric curve by the coefficients is focused in order to obtain
our theorem. This parametric curve is a generalization of the curve given by the characteristic equation of
the second-order linear differential equation with constant coefficients. The obtained theorem is proved by
transforming the half-linear differential equation to a standard polar coordinates system and using phase
plane analysis carefully.
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1. Introduction

This paper is concerned with an oscillation theorem for the second-order nonlinear differential equation
with a damping term, (

Φp(x′)
)′
+ a(t)Φp(x′) + b(t)Φp(x) = 0, (1)

wherea andb are locally integrable functions on[0,∞) andΦp is a real-valued function defined by

Φp(z) =

 |z|
p−2z if z , 0,

0 if z = 0.

with a real numberp > 1. Equation (1) has the trivial solution(x, x′) ≡ (0, 0). Whenp = 2, equation (1)
becomes the linear homogeneous differential equation with variable coefficients,

x′′ + a(t)x′ + b(t)x = 0. (2)

It is well-known that all solutions of (1) are unique for given initial conditions and continuable in the future
as well as those of (2) are (see, for example, [2, 5]). In addition to this property, many commonalities are
seen in the asymptotic behavior of solutions of (1) and (2), such as oscillation and stability. For example,
see [1, 3, 7, 8, 10, 13, 14, 15, 16, 19, 20, 21]. Equation (1) is one of half-linear differential equations. About
half-linear differential equations, refer to the monograph [4] and the references therein.

Since all solutions of (1) are continuable in the future, they can be classified into two groups as follows:
a nontrivial solutionx of (1) is said to beoscillatory if there exists a sequence{tn} tending to∞ such that
x(tn) = 0; otherwise, it is said to benonoscillatory.

Let u = a(t) andv = b(t). Then, the point(a(t), b(t)) is considered to move in the(u, v)-plane. Let us
call that trajectory aparametric curve. We divide the first quadrant of the(u, v)-plane into two regions by
the curvev = (u/p)p:

R1 =
{
(u, v) : u ≥ 0 and 0 ≤ v ≤ (u/p)p};

R2 =
{
(u, v) : u ≥ 0 and v > (u/p)p}.
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Using phase plane analysis for a system equivalent to the half-linear differential equation (1), the present
author [18] gave two oscillation theorems and one nonoscillation theorem which can be determined by the
position of the parametric curve drawn by a given pair of coefficientsa andb.

Theorem A. Let S be a bounded, closed and convex set inR1. If

(a(t), b(t)) ∈ S for all sufficiently larget,

then all nontrivial solutions of(1) are nonoscillatory.

Theorem B. Let S be a bounded and closed set inR2. If

(a(t), b(t)) ∈ S for all sufficiently larget,

then all nontrivial solutions of(1) are oscillatory.

Theorem C. Let S be a bounded set in the closureR2 of R2. If a is periodic and non-constant, and

(a(t), b(t)) ∈ S for all sufficiently larget,

then all nontrivial solutions of(1) are oscillatory.

Theorems A, B and C are quite different from conventional oscillation theorems and non-oscillation
theorems. It is easy to draw a parametric curve by a simple numerical simulation. The advantage of these
theorems is to be able to judge whether all nontrivial solutions of (1) oscillate or not by only drawing
one figure of the parametric curve. However, Theorems A, B and C cannot be applied the case that the
parametric curve does not stay in the first quadrant or it crosses the curvev = (u/p)p. The following result
overcomes this weakness.

Theorem 1. Suppose that the coefficienta is bounded from above. If∫ ∞

0

{
b(t) −

(
|a(t)|

p

)p}
d t = ∞, (3)

then all nontrivial solutions of(1) are oscillatory.

Theorem 1 is new even in the special case thatp = 2. If the parametric curve remains in a bounded and
closed setS ⊂ R2, then there exists aµ > 0 such that

b(t) −
(
|a(t)|

p

)p

> µ for t ≥ 0.

Hence, condition (3) inevitably holds. This means that Theorem 1 improves Theorem B.

2. Proof of the main theorem

Let y = Φp(x′) as a new variable. Then we can rewrite equation (1) as the planar system

x′ = Φp∗ (y),

y′ = − a(t)y − b(t)Φp(x),
(4)

wherep∗ is the number satisfying
1
p
+

1
p∗
= 1.

Since(p − 1)(p∗ − 1) = 1, the numberp∗ is also greater than1. Let (ξ, η) be a vector inR2 and t0 be a
nonnegative number. Because of the uniqueness of solutions to the initial conditions, we can find only one
solutionx of (1) satisfying that(x(t0), x′(t0)) = (ξ, η). Let (x, y) be the solution of (4) corresponding to the
solution x of (1). Then the initial condition of the solution(x, y) is that (x(t0), y(t0)) = (ξ, Φp(η)) ∈ R2.
The projection of the solution(x, y) of (4) onto the phase planeR2 becomes a curve starting at the point
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(ξ, Φp(η)). We call this curve asolution curve. We may consider that the point(x(t), y(t)) moves on the
solution curve ast increases.

Using generalized polar coordinates by

x = r cos θ and y = Φp(r sin θ),

whereθ , nπ/2 (n ∈ N), we can transform system (4) into

r′ = r
sin θ cos θ

p − 1

[
p − 1 − a(t) tan θ − b(t)

| tan θ|p−2

]
,

θ′ = − sin2θ

p − 1

[
p − 1 +

a(t)
tan θ

+
b(t)
| tan θ|p

]
.

(5)

This change of variables is often called the generalizedPrüfer transformation(see, for example, [2, 4, 6,
9]). By the Pr̈ufer transformation, a pair of the functionsr and θ satisfying thatr(t0) cos θ(t0) = ξ and
r(t0) sin θ(t0) = η becomes a solution of (5) except for the timet when the solution curve corresponding to
the solution(x, y) of (4) crosses thex-axis or they-axis. If the solution curve does not cross thex-axis and
they-axis, the pair of the functionsr andθ satisfies system (5) on the interval[t0,∞).

Suppose that the solution curve crosses the negativey-axis. Then there exists aτ ≥ t0 such thatx(τ) <
0 = y(τ). In other words, the point(x(t), y(t)) is on the negativex-axis att = τ. Let us consider about how
the point(x(t), y(t)) moves after that. Judging from the vector field of (4), there are three possibilities. Since
x′(τ) = Φp(y(τ)) = 0, the point(x(t), y(t)) moves up or down vertically (parallel to they-axis), or it stays
in the same place on the negativex-axis. Note that ifb(t) ≥ 0 for t ≥ 0, then the point(x(t), y(t)) does not
move down vertically. From the vector field of (4), we also see that the coefficientb has to be zero on the
time interval when the point(x(t), y(t)) stays on the negativex-axis. Of course, the solution curve does not
necessarily cross the negativex-axis at the time when the coefficientb is zero.

Proof of Theorem 1. We proceed by contradiction. Suppose that there exists a nonoscillatory solutionx of
(1). Then we can find aT ≥ 0 such thatx(t) > 0 or x(t) < 0 for t ≥ T . We consider only the latter, because
the former is carried out in the same way. Lety be the functions on[T,∞) satisfyingy(t) = Φp(x′(t)) for
t ≥ T . Recall that the pair of the functionsx andy is the solution of (4) starting fromT . Consider the
solution curve corresponding to the solution(x, y) of (4). Since the solution curve is the locus of the point
(x(t), y(t)), the point(x(T ), y(T )) is on the solution curve. From the above assumption of the solutionx it
turns out that the solution curve ultimately remains in the left half-plane. We divide the discussion into two
cases: (i) the solution curve crosses the negativex-axis and (ii) it does not cross the negativex-axis.

Case (i): Note that the intersection between the solution curve and the negativex-axis is not necessarily
only one. The solution curve can even intersect the negativex-axis infinitely many times. Letm be the num-
ber of the intersections. Thenm ∈ N ∪ {∞}. For convenience, we write the set{1, 2, . . . ,m} or {1, 2, 3, . . . }
asS . Let xn be thex-coordinate of then-th intersection withn ∈ S . The point(x(t), y(t)) either leaves
instantaneously from the intersection(xn, 0), or it stays for a while at the intersection(xn, 0). We can find
two sequences{tn} and{sn} with T ≤ tn ≤ sn < tn+1 (n ∈ S ) satisfying

x(t)

= xn if t ∈ [tn, sn]

, xn otherwise
and y(t)

= 0 if t ∈ [tn, sn]

, 0 otherwise.

Here, we regardtm+1 as∞. We divide the setS into two subsets as follows.

S 1 = {n ∈ S : tn < sn} and S 2 = {n ∈ S : tn = sn}.

As mentioned in the paragraph just before entering the proof, ifn ∈ S 1, thenb(t) = 0 for t ∈ [tn, sn]. If
n ∈ S 2, then the value ofb(tn) is not necessarily zero. Its value may be positive or negative.

Let r andθ be the functions on[T,∞) satisfying

x(t) = r(t) cos θ(t) and y(t) = Φp(r(t) sin θ(t)).

Sincex(t) < 0 for t ≥ T , we may assume that

1
2
π < θ(t) <

3
2
π for t ≥ T. (6)
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Note thatθ(t) = π for t ∈ [tn, sn]. The pair of the functionsr andθ is a solution of (5) as long ast < [tn, sn].
Hence, from the second equation of (5) it follows that

θ′(t) = − sin2θ(t)
p − 1

[
p − 1 +

a(t)
tan θ(t)

+
b(t)

| tan θ(t)|p

]
= − sin2θ(t)

p − 1

[
p − 1 +

a(t)
tan θ(t)

+

(
|a(t)|

p| tan θ(t)|

)p

−
(
|a(t)|

p| tan θ(t)|

)p

+
b(t)

| tan θ(t)|p

]
(7)

for t < [tn, sn]. Defineh(x) = (|x|/p)p + x + p − 1 for x ∈ R. Since

d
d x

h(x) =
Φp(x)

pp−1
+ 1 and h(−p) = 0,

we see thath(x) ≥ 0 for x ∈ R. We therefore conclude that

θ′(t) ≤ − sin2θ(t)
(p − 1)| tan θ(t)|p

{
b(t) −

(
|a(t)|

p

)p}
for t < [tn, sn]. This inequality can be rewritten as

d
d t
Φp(tan θ(t)) ≤ − b(t) +

(
|a(t)|

p

)p

.

Using the inequality above, we can estimate that

Φp(tan θ(t)) −Φp(tan θ(T )) = Φp(tan θ(t1)) −Φp(tan θ(T )) +Φp(tan θ(t2)) −Φp(tan θ(s1))

+Φp(tan θ(t3)) −Φp(tan θ(s2)) + · · · +Φp(tan θ(t)) −Φp(tan θ(sn))

= −
∫ t1

T

{
b(t) −

(
|a(t)|

p

)p}
d t −

n−1∑
i=1

∫ ti+1

si

{
b(t) −

(
|a(t)|

p

)p}
d t

−
∫ t

sn

{
b(s) −

(
|a(s)|

p

)p}
d s (8)

for t ∈ (sn, tn+1). Taking into account thatn ∈ S 1 impliesb(t) = 0 for t ∈ [tn, sn], we obtain∫ ∞

T

{
b(t) −

(
|a(t)|

p

)p}
d t =

∫ t1

T

{
b(t) −

(
|a(t)|

p

)p}
d t +

m−1∑
i=1

∫ ti+1

si

{
b(t) −

(
|a(t)|

p

)p}
d t

+

∫ ∞

sn

{
b(t) −

(
|a(t)|

p

)p}
d t +

m∑
i=1

∫ si

ti

{
b(t) −

(
|a(t)|

p

)p}
d t

=

∫ t1

T

{
b(t) −

(
|a(t)|

p

)p}
d t +

m−1∑
i=1

∫ ti+1

si

{
b(t) −

(
|a(t)|

p

)p}
d t

+

∫ ∞

sn

{
b(t) −

(
|a(t)|

p

)p}
d t +

∑
i∈S 1

∫ si

ti

{
b(t) −

(
|a(t)|

p

)p}
d t

+
∑
i∈S 2

∫ si

ti

{
b(t) −

(
|a(t)|

p

)p}
d t

=

∫ t1

T

{
b(t) −

(
|a(t)|

p

)p}
d t +

m−1∑
i=1

∫ ti+1

si

{
b(t) −

(
|a(t)|

p

)p}
d t

+

∫ ∞

sn

{
b(t) −

(
|a(t)|

p

)p}
d t −

∑
i∈S 1

∫ si

ti

{(
|a(t)|

p

)p}
d t

+
∑
i∈S 2

∫ ti

ti

{
b(t) −

(
|a(t)|

p

)p}
d t

≤
∫ t1

T

{
b(t) −

(
|a(t)|

p

)p}
d t +

m−1∑
i=1

∫ ti+1

si

{
b(t) −

(
|a(t)|

p

)p}
d t

+

∫ ∞

sn

{
b(t) −

(
|a(t)|

p

)p}
d t.
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Hence, by condition (3), we have∫ t1

T

{
b(t) −

(
|a(t)|

p

)p}
d t +

m−1∑
i=1

∫ ti+1

si

{
b(t) −

(
|a(t)|

p

)p}
d t +

∫ ∞

sn

{
b(t) −

(
|a(t)|

p

)p}
d t = ∞.

From this and (8) it turns out that
tan θ(t)→ −∞ as t → ∞;

that is,θ(t) ↘ π/2 ast → ∞, and therefore,sin2 θ(t) → 1 ast → ∞. Sincea is bounded from above, we
can find aτ1 ≥ T satisfying

sin2θ(t)
p − 1

h

(
a(t)

tan θ(t)

)
>

1
2

for t ≥ τ1.

Using (7) again, we get

θ′(t) = − sin2θ(t)
p − 1

[
h

(
a(t)

tan θ(t)

)
−

(
|a(t)|

p| tan θ(t)|

)p

+
b(t)

| tan θ(t)|p

]
≤ − 1

2
− sin2θ(t)

(p − 1)| tan θ(t)|p

[
b(t) −

(
|a(t)|

p

)p]
(9)

for t ≥ τ1. From (3) it follows that there exists aτ2 ≥ τ1 such that∫ t

τ1

{
b(s) −

(
|a(s)|

p

)p}
d s > 0 for t ≥ τ2. (10)

Let τ3 = τ2 + 2π and

ν = min
τ1≤t≤τ3

sin2θ(t)
(p − 1)| tan θ(t)|p > 0.

Then, by (9) and (10), we have

θ(τ3) − θ(τ1) ≤ − 1
2

(τ3 − τ1) − ν
∫ τ3

τ1

{
b(t) −

(
|a(t)|

p

)p}
d t < − π.

This contradicts (6). Thus, the proof of case (i) is complete.
Case (ii): As in the proof of case (i), we consider the pair of the functionsr andθ. Since the solution

curve does not cross the negativex-axis, the pair is a solution of (5) on[T,∞), and therefore,

θ′(t) = − sin2θ(t)
p − 1

[
h

(
a(t)

tan θ(t)

)
−

(
|a(t)|

p| tan θ(t)|

)p

+
b(t)

| tan θ(t)|p

]
for t ≥ T . Hence, using the same way as in the case (ii), we can obtain

Φp(tan θ(t)) −Φp(tan θ(T )) = −
∫ t

T

{
b(s) −

(
|a(s)|

p

)p}
d s for t ≥ T.

By using this and (3), we can choose aτ1 ≤ T such that

θ′(t) ≤ − 1
2
− sin2θ(t)

(p − 1)| tan θ(t)|p

[
b(t) −

(
|a(t)|

p

)p]
for t ≥ τ1.

The rest of the proof is the same as that of case (i). Thus, all nontrivial solutions of (1) are oscillatory.□

3. Example and simulation

Consider the nonlinear differential equation(
(x′)3

)′
+ (c + r cos t)(x′)3 + (d + r sin t)x3 = 0. (11)

Note thatp = 4, a(t) = c + r cos t andb(t) = d + r sin t for t ≥ 0 in equation (11). It is clear that the
parametric curve drawn by the coefficientsa andb is a circle with radiusr whose center is(c, d). Since

a(t) ≤ c + r for t ≥ 0,
5



the coefficienta is bounded from above. We obtain

b(t) −
(
|a(t)|

p

)p

= d + r sin t − 1
28

(c + r cos t)4 = d − 1
256

(
c4 + 3c2r2 +

3
8

r4

)
+ r sin t − 1

256

(
cr

(
4c2 + 3r2

)
cos t + r2

(
3c2 +

1
2

r2

)
cos 2t + cr3cos 3t +

1
8

r4cos 4t

)
.

Hence, condition (3) holds provided that

d >
1

256

(
c4 + 3c2r2 +

3
8

r4

)
. (12)

Example 1. Let p = 4, c = 2, d = 6 andr = 7. Then all nontrivial solutions of (11) are oscillatory.

It is clear that the numbersp = 4, c = 2, d = 6 andr = 7 satisfy the inequality (12).
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Figure 1: The parametric curve drawn by a pair ofa(t) =
2 + 7 cos t andb(t) = 6 + 7 sin t
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Figure 2: The solution curve of (4) withp = 4, c = 2, d = 6,
r = 7, a(t) = 2 + 7 cos t andb(t) = 6 + 7 sin t satisfying the
initial condition(x(0), y(0)) = (0, 1)
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Figure 3: The solution of (11) withp = 4, c = 2, d = 6 and
r = 7 satisfying the initial condition(x(0), x′(0)) = (0, 1)

4. Final comment

As a classical oscillation theorem for the equation

y′′ + c(t)y = 0, (13)

wherec is a continuous function, the following Leighton－Wintner criterion is very well-known (see, for
example, [12, 17]).
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Theorem D. All nontrivial solutions of(13)are oscillatory if∫ ∞

0
c(t) d t = ∞.

In the case thata is continuously differentiable on[0,∞), equation (1) can be transformed into equation
(13), where

c(t) = b(t) − 1
4

a2(t) − 1
2

a′(t).

Hence, it turns out that all nontrivial solutions of (2) are oscillatory if∫ ∞

0

{
b(t) − 1

4
a2(t) − 1

2
a′(t)

}
d t = ∞. (14)

If a is bounded, then condition (14) coincides with condition (3) whenp = 2. This means that Theorem 1
is a partial generalization of the well-known result above.

Let p be any continuous and periodic function with periodT > 0. A periodic functionp is said to be
periodic with mean value zeroif p is not identically zero and∫ T

0
p(t) d t = 0.

Recently, Dǒslý et al. [3] gave the following oscillation theorem for equation (1).

Theorem E. Suppose thata and b are periodic with mean value zero andB is an indefinite integral ofb
such thatΦp∗(B) is also periodic with mean value zero. If∫ T

0

{
(p − 1)Φp∗(B(t)) − a(t)

}
B(t)E(t) d t > 0,

where

E(t) = exp

{∫ t

0

(
a(s) − pΦp∗(s)

)
d s

}
,

then all nontrivial solutions of(1) are oscillatory.

Theorem E is a generalization to equation (1) of oscillation theorems for equation (2) by Kwong and
Wong [11] and Sugie and Matsumura [20]. However, the coefficientsa andb have to be at least periodic
with mean value zero. Hence, Theorem E cannot be applied to Example 1 becausea andb are periodic but
not periodic with mean value zero. On the other hand, Theorem 1 can be applied even whena andb are not
periodic.
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