
Uniform global asymptotic stability of time-varying Lotka-Volterra
predator-prey systems

Wei Zhenga, Jitsuro Sugie∗,a

aDepartment of Mathematics, Shimane University, Matsue 690-8504, Japan

Abstract

The model to be dealt in this paper is

N′ = (a + ch(t) − dh(t)N − bP)N,

P′ = (− c + dN)P.

Here,h is a nonnegative and locally integrable function. This model is a predator-prey system of Lotka-
Volterra type with variable coefficients and it has a single interior equilibrium(c/d, a/b). Sufficient con-
ditions are given for the interior equilibrium to be uniformly globally asymptotically stable. One of them
is described by using a certain uniform divergence condition onh. Our result is proved by examining in
details the behaviour of all solutions of a planar system equivalent to this model.
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1. Introduction

The population of species in ecological models is one of the most important issues in biomathematics.
To understand the dynamics of species populations, mathematical models are often used. For example,
the classical Lotka-Volterra predator-prey system was first raised up to describe the population of sharks
and fish in the Adriatic Sea. Afterwards, this model was progressively improved so that it can be used
not only for ecology but also for analysis of physical phenomena and economical theory. In the process,
it was pointed out that this model is structurally unstable and there is a gap with natural phenomena. For
this reason, many researchers have paid various efforts to find more reasonable models that describe nature.
(for example, see [1, 2, 3, 4, 5, 8, 9, 10, 11] and the references cited therein). Among them, the idea that
the seasonal change should be emphasised has arisen. Because the environment, the habitat state and other
related factors can change over season, this idea that alternation of season is one of the basic factors that
can affect population ecology will be reasonable.

In this paper, taking into account that the prey is more susceptible to the seasonal change than the
predator, we deal with the time-varying system

N′ = α(t)N − β(t)N2 − bNP,

P′ = − cP + dNP,
(E)

where ′ = d/dt, the lettersN and P represent the density of prey and predator population, respectively.
Functionsα andβ are the intrinsic growth rate of prey and the density limiting rate due to the intraspecific
competition, respectively. Parametersb, c, andd are the predation rate of predator on prey, the death rate
of predator, and the rate at which predator increases by consuming prey, respectively. Since population can

not be negative, it is natural to consider model (E) in the first quadrantQ
def
=

{
(N, P) : N ≥ 0 and P ≥ 0

}
.
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Through this paper. we assume that

α(t) = a + ch(t) and β(t) = dh(t), (1)

wherea is a positive constant, andh is a nonnegative and locally integrable function on[0,∞). Then,
model (E) has a unique interior equilibrium(c/d, a/b). The purpose of this paper is to present sufficient
conditions on the coefficienth for the interior equilibrium to be uniformly globally asymptotically stable.
The definition of uniform global asymptotic stability is divided into three parts. The interior equilibrium
is uniformly globally asymptotically stableif it is uniformly stable and uniformly globally attractive, and if
the solutions are uniformly bounded. About these definitions, refer to the books [6, 7, 12].

We can find many research reports about the global asymptotic stability of the interior equilibrium of
ecological models, but the concept of uniform global asymptotic stability is largely different from that of
global asymptotic stability; that is, the interior equilibrium is stable and every solution tends to the interior
equilibrium as time increases. It is natural that the arrival time from the current point to a neighbourhood of
the interior equilibrium depends on the location of the current point. In time-varying models such as (E),
the arrival time depends on also the initial time. Hence, it is impossible to estimate the arrival time from
the current point to a neighbourhood of the interior equilibrium even if the location of the current point
becomes clear. Since each solution represents a change in the density of two species, the uncertainty of
the arrival time of the solution implies that the future density is unpredictable. In such a sense, even if it
is found that the interior equilibrium is globally asymptotically stable, it can be said that this fact is not so
useful for practical use.

In order for the interior equilibrium to be uniform global asymptotic stability, we have to confirm that all
solutions starting from the same position approach the interior equilibrium within the same time regardless
of their initial time. In other words, the initial time does not affect the asymptotic speed of solutions to the
interior equilibrium. Hence, when the interior equilibrium is uniformly globally asymptotically stable, if we
measure the arrival time at which one solution approaches near the interior equilibrium once, it is possible
to judge the arrival time to the interior equilibrium of every solution departing from the same location.

The study of uniform global asymptotic stability is considered to have a big advantage and merit as
described above, but detailed analysis is necessary accordingly. For this reason, there are few researches on
uniform global asymptotic stability of the interior equilibrium for ecological models.

Our main result is as follows.

Theorem 1. Assume(1). Suppose that

lim inf
t→∞

∫ t+d

t
h(s)ds > 0 for everyd > 0. (2)

and there exists aγ > c such that

lim
t→∞

∫ t+σ

σ

∫ s

σ
eγH(τ)dτ

eγH(s)
ds = ∞ uniformly with respect toσ ≥ 0. (3)

Then the interior equilibrium of(E) is uniformly globally asymptotically stable.

Remark 1. As a related research, we can cite a result presented by Zheng and Sugie [13].. In their paper, a
necessary and sufficient condition is given for global asymptotic stability of the interior equilibrium of (E)
under the assumption (1) and a certain weaker condition than (2). This necessary and sufficient condition
is represented by condition (3) withγ = 1 andσ = 0. However, unfortunately, this condition is not one for
uniform global asymptotic stability. Hence, Theorem 1 is a whole new result.

2. Transformation

Let x = − ln(bP/a) andy = − ln(dN/c). Then, model (E) becomes the system

x′ = c(1 − e−y),

y′ = − a(1 − e−x) − ch(t)(1 − e−y)
(4)

under the assumption (1). System (4) has the zero solution(x(t), y(t)) ≡ (0, 0). This transformation shifts
the interior equilibrium(c/d, a/b) of (E) to the origin(0, 0) of (4) and is a one-to-one correspondence from
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the first quadrantQ to the whole real planeR2. Hence, the interior equilibrium of (E) is uniformly globally
asymptotically stable if and only if the zero solution of (4) is uniformly globally asymptotically stable. This
means that Theorem 1 can be represented by the following result.

Proposition 2. Suppose that(2) holds and there exists aγ > c such that condition(3) holds. Then the zero
solution of(4) is uniformly globally asymptotically stable.

Let t0 ≥ 0 andx0 = (x(t0), y(t0)) ∈ R2. We denote the solution of (4) passing through a pointx0 at the
initial time t0 by x(t; t0, x0). Let ∥ · ∥ be the Euclidean norm. We will prove Proposition 2 with the following
procedure.

(a) We first show that the zero solution of (4) is uniformly stable; namely, for anyε > 0, there exists a
δ(ε) > 0 such thatt0 ≥ 0 and∥x0∥ < δ imply ∥x(t; t0, x0)∥ < ε for all t ≥ t0.

(b) We next show that the zero solution of (4) is uniformly globally attractive, namely, for anyr ≥ 0
and anyη > 0, there is aT (r, η) > 0 such thatt0 ≥ 0 and∥x0∥ < r imply ∥x(t; t0, x0)∥ < η for all
t ≥ t0 + T . To this end, we determineT (r, η) for everyr > 0 andη > 0. Using thisT , we verify that
∥x(t∗; t0, x0)∥ < δ(η) for somet∗ ∈ [t0, t0 + T ]. This part is the core of the proof of Proposition 2.

(c) We finally show that the solutions of (4) are uniformly bounded, namely, for anyr > 0, there exists a
B(r) > 0 such thatt0 ≥ 0 and∥x0∥ < r imply ∥x(t; t0, x0)∥ < B for all t ≥ t0.

The important thing in the above procedure is to findδ, T andB which are independent of the initial timet0.

3. Proof of Proposition 2

To prove Proposition 2. it is convenient to define the functionf (z) = z − 1 + e−z and its derivative
g(z) = 1 − e−z for z ∈ R. It is easy to check that

g2(z) ≥ g2(α) for |z| ≥ α, (5)

|g(z)| < |g(−α)| for |z| < α, (6)

f (z2) − f (z1) < f (−z2) − f (−z1) for z1 < z2, (7)

0 ≤ f (z) ≤ f (−α) for |z| ≤ α, (8)

whereα is any positive number. Let

w = f̂ (z)
def
= f (z)sgnz,

and f̂ −1(w) be the inverse function of̂f (z). Then we see that̂f −1(w) is strictly increasing forw ∈ R and
f̂ −1(0) = 0, and

0 < − f̂ −1(−w) < f̂ −1(w) for w > 0 (9)

holds. For the details, refer to [13]. Now, we are ready to prove Proposition 2.

Proof of Proposition 2. Part (a): Letm = min{a, c} andM = max{a, c}. For anyε > 0 sufficiently small,
we choose

δ(ε) =
√

2 f̂ −1

(
m
M

f

(
ε
√

2

))
.

From the definitions ofm andM, we see that

δ ≤
√

2 f̂ −1

(
f

(
ε
√

2

))
= ε.

Let t0 ≥ 0 andx0 ∈ R2 be given. We will show that∥x0∥ < δ implies ∥x(t; t0, x0)∥ < ε for t ≥ t0. For
convenience, we writex(t; t0, x0) = (x(t), y(t)) and define

v(t) = a f (x(t)) + c f (y(t)) for t ≥ t0.

Then it is clear thatv′(t) = − c2h(t)g2(y(t)) ≤ 0 for t ≥ t0. Hence,v(t) is decreasing fort ≥ t0.
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Let w(x, y) = f (x) + f (y) on R2. To use the method of Lagrange multiplier, we takeL(x, y, λ) =
f (x) + f (y) + λ(x2 + y2 − r2) as the Lagrange function, wherer is any positive number. Then, we can
estimate that

2 f

(
r
√

2

)
≤ w(x, y) ≤ 2 f

(
− r
√

2

)
on the circle

{
(x, y) : x2 + y2 = r2}. Hence, we have

2m f

(
∥x(t; t0, x0)∥
√

2

)
≤ mw(x(t), y(t)) ≤ v(t) ≤ Mw(x(t), y(t)) ≤ 2M f

(
−∥x(t; t0, x0)∥

√
2

)
. (10)

It follows from (10) and the property of the inverse functionf̂ −1 that

∥x(t; t0, x0)∥ ≤
√

2 f̂ −1

(
v(t)
2m

)
≤
√

2 f̂ −1

(
v(t0)
2m

)
≤
√

2 f̂ −1

(
M
m

f

(
−∥x0∥√

2

))
≤ ∥x0∥ < δ ≤ ε (11)

for t ≥ t0, namely, the zero solution of (4) is uniformly stable.

Part (b): By using condition (2) withd = 1, we can find an aℓ > 0 and at̂ > 0 such that∫ t+1

t
h(s)ds ≥ ℓ for t ≥ t̂. (12)

For anyη > 0, we choose

µ(η) = min

{
− f̂ −1

(
− m2

cM
f

(
η
√

2

))
, ag

(
f̂ −1

(
m2

aM
f

(
η
√

2

)))
, − ag

(
f̂ −1

(
− m2

aM
f

(
η
√

2

)))}
.

Note thatµ > 0. Using this numberµ, we define

τ1(r, η) = t̂ +

2M f
(
−r/
√

2
)

ℓc2g2(µ/2)

 + 1

for anyr > 0, where[·] means the greatest integer which is not great than a real number(·). From condition
(3), we can find aτ2(r, η) > 0 such that

∫ t+σ

σ

∫ s

σ
eγH(τ)dτ

eγH(s)
ds ≥ max

 f̂ −1
(
2M f

(
−r/
√

2
)/

a
)

acg
(

f̂ −1
(
m2 f

(
η/
√

2
)/

(aM)
)) , µ f̂ −1

(
−2M f

(
−r/
√

2
)/

a
)

acg(µ)g
(

f̂ −1
(
−m2 f

(
η/
√

2
)/

(aM)
))

 (13)

for t ≥ τ2 − 1. Without loss of generality, we assume thatτ2 > 1. Let

ω(r, η) =
f (µ) − f (µ/2)

ag
(
− f̂ −1

(
2M f

(
−r/
√

2
)/

a
))

g(−µ)
.

Taking into account of the properties of the functionsf , g and f̂ −1 and the fact thatµ > 0, we see that the
numberω is also positive. Let

ρ = lim inf
t→∞

c2g2(µ/2)

4M f
(
−r/
√

2
)∫ t+ω

t
h(s)ds.

The numberρ depends only onr andη. From condition (2) it turns out thatρ is positive. Hence, we can
find aτ3(r, η) > 0 such that ∫ t+ω

t
h(s)ds ≥

2ρM f
(
−r/
√

2
)

c2g2 (µ/2)
for t ≥ τ3. (14)

Using numbersτ1, τ2 andτ3 depending only onr andη, we define

T (r, η) = τ3 +

([
1
ρ

]
+ 1

)
(τ1 + τ2).
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To prove that the zero solution of (4) is uniformly globally attractive, we have only to show that if
∥x0∥ < r, then there exists at∗ ∈ [t0, t0 + T (r, η)] such that

∥x(t∗; t0, x0)∥ < δ(η). (15)

In fact, by lettingx(t∗; t0, x0) to x∗, the conclusion of part (a) and the inequality (15) lead that∥x(t; t0, x0)∥ =
∥x(t; t∗, x∗)∥ < η for t ≥ t∗.

Using the method of proof by contradiction, we will show that (15) holds. Suppose that∥x(t; t0, x0)∥ ≥
δ(η) for t ∈ [t0, t0 + T ]. Then it follows from (10) that

2m2

M
f

(
η
√

2

)
= 2m f

(
δ(η)
√

2

)
≤ 2m f

(
∥x(t; t0, x0)∥
√

2

)
≤ v(t) ≤ v(t0) ≤ 2M f

(
−∥x0∥√

2

)
< 2M f

(
− r
√

2

)
(16)

for t ∈ [t0, t0 + T ]. After this, we will divide our argument into three steps and examine the behaviour of
y(t) which is the second component of the solutionx(t; t0, x0).

Step1. If |y(t)| ≥ µ/2 for t ∈ [α, β] ⊂ [t0, t0+T ], thenβ−α < τ1. In fact, suppose that there exists an interval
[α1, β1] ⊂ [t0, t0+T ] with β1−α1 ≥ τ1 such that|y(t)| ≥ µ/2 for t ∈ [α1, β1]. Sincev′(t) = − c2h(t)g2(y(t)) ≤ 0
for t ≥ t0, by (5) and (16) we have

c2g2
(
µ

2

)∫ β1

α1

h(t)dt ≤ c2
∫ β1

α1

h(t)g2(y(t))dt = −
∫ β1

α1

v′(t)dt = v(α1) − v(β1) < 2M f

(
− r
√

2

)
. (17)

On the other hand, from (12) and the definition ofτ1, we see that

∫ β1

α1

h(t)dt ≥
∫ α1+τ1

α1+t̂
h(t)dt =

[
2M f (−r/

√
2)

ℓc2g2(µ/2)

]∑
i=0

∫ α1+t̂+i+1

α1+t̂+i
h(t)dt ≥


2M f

(
−r/
√

2
)

ℓc2g2(µ/2)

 + 1

 ℓ ≥ 2M
c2

f

(
− r
√

2

)
g−2

(
µ

2

)
.

This contradicts (17). Thus, the assertion at the beginning of this step is correct.

Step2. If |y(t)| ≤ µ for t ∈ [α, β] ⊂ [t0, t0 + T ], thenβ − α < τ2. We will show this assertion. Since
µ ≤ − f̂ −1

(
−m2 f

(
η/
√

2
)/

(cM)
)
, by (8) and (16) we have

a f (x(t)) = v(t) − c f (y(t)) ≥ 2m2

M
f

(
η
√

2

)
− c f (−µ) ≥ 2m2

M
f

(
η
√

2

)
− m2

M
f

(
η
√

2

)
=

m2

M
f

(
η
√

2

)
for t ∈ [α, β]. Hence, there are two possibilities:x(t) ≥ f̂ −1

(
m2 f

(
η/
√

2
)/

(aM)
)

for t ∈ [α, β]; x(t) ≤
f̂ −1

(
−m2 f

(
η/
√

2
)/

(aM)
)

for t ∈ [α, β]. We consider only the former, because the proof of the latter is
carried out in the same way as that of the former. Let

k1 =
1 − e−µ

µ
and k2 = min

{
γ

c
,

eµ − 1
µ

}
.

Note that0 < k1 < 1 < k2. From the form of model (4), we see that if a solution curve intersects the positive
x-axis, then it passes through thex-axis only once vertically from top to bottom. Hence, only the following
three cases could happen: (i) there exists at̃ ∈ (α, β) such thaty(t̃ ) = 0, 0 < y(t) ≤ µ for t ∈ [α, t̃) and
−µ ≤ y(t) < 0 for t ∈ (t̃, β]; (ii) 0 < y(t) ≤ µ for t ∈ [α, β]; (iii) −µ ≤ y(t) < 0 for t ∈ [α, β].

Case(i). Since
(
y(t)eck1H(t)

)′
=

(
y′(t)+ck1h(t)y(t)

)
eck1H(t)≤ (

y′(t)+ch(t)g(y(t))
)
eck1H(t)= − ag(x(t))eck1H(t)

≤ − ag
(

f̂ −1
(
m2 f

(
η/
√

2
)/

(aM)
))

eck1H(t) for t ∈ [α, t̃], we obtain

0 = y(t̃ ) ≤ − ag

(
f̂ −1

(
m2

aM
f

(
η
√

2

))) ∫ t̃

α
eck1H(s)ds

eck1H(t̃)
+ y(α)

eck1H(α)

eck1H(t̃)
.

SinceH is monotonic increasing andy(α) ≤ µ ≤ ag
(

f̂ −1
(
m2 f

(
η/
√

2
)/

(aM)
))

, we see that

0 ≤ − ag

(
f̂ −1

(
m2

aM
f

(
η
√

2

)))
(t̃ − α)

eck1H(α)

eck1H(t̃)
+ µ

eck1H(α)

eck1H(t̃)
≤ − a(t̃ − α − 1)g

(
f̂ −1

(
m2

aM
f

(
η
√

2

)))
eck1H(α)

eck1H(t̃)
.
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Hence, it turns out that̃t − α < 1. Similarly, we obtain

y(t) ≤ − ag

(
f̂ −1

(
m2

aM
f

(
η
√

2

))) ∫ t

t̃
eck2H(s)ds

eck2H(t)
for t ∈ [t̃, β].

From (16) it follows thatx
(
t̃
)
< f̂ −1

(
2M f (−r/

√
2)

/
a
)
. Suppose thatβ − t̃ ≥ τ2 − 1. Then we see that

x
(
t̃ + τ2 − 1

) ≥ f̂ −1
(
m2 f (η/

√
2)

/
(aM)

)
> 0. Hence, we obtain

− f̂ −1

(
2M
a

f

(
− r
√

2

))
< −x

(
t̃
)
< x

(
t̃ + τ2 − 1

) − x
(
t̃
)
=

∫ t̃+τ2−1

t̃
x′(t)dt =

∫ t̃+τ2−1

t̃
c(1 − e−y(t))dt

≤
∫ t̃+τ2−1

t̃
cy(t)dt ≤ − acg

(
f̂ −1

(
m2

aM
f

(
η
√

2

)))∫ t̃+τ2−1

t̃

∫ t

t̃
eck2H(s)ds

eck2H(t)
dt.

Sinceck2 ≤ γ, it follows that ∫ t̃+τ2−1

t̃

∫ t

t̃
eck2H(s)ds

eck2H(t)
dt ≥

∫ t̃+τ2−1

t̃

∫ t

t̃
eγH(s)ds

eγH(t)
dt.

Hence, using (13) atσ = t̃ andt = τ2 − 1, we can lead that

− f̂ −1

(
2M
a

f

(
− r
√

2

))
< − acg

(
f̂ −1

(
m2

aM
f

(
η
√

2

))) f̂ −1
(
2M f

(
−r/
√

2
)/

a
)

acg
(

f̂ −1
(
m2 f

(
η/
√

2
)/

(aM)
)) = − f̂ −1

(
2M
a

f

(
− r
√

2

))
,

which is a contradiction. Hence, it turns out thatβ − t̃ < τ2 − 1. We therefore conclude thatβ − α =
t̃ − α + β − t̃ < 1 + τ2 − 1 = τ2 in this case.

Case(ii). Repeating the same argument as Case (i), we see thatβ − α < 1 < τ2.

Case(iii). Repeating the same argument as Case (i), we see thatβ − α < τ2 − 1 < τ2.

Step3. We divide the interval[t0 + τ3, t0 + T ] as follows:[t0 + τ3, t0 + T ] = J1 ∪ J2 ∪ · · · ∪ J[1/ρ]+1, where
Ji = [t0 + τ3 + (i−1)(τ1 + τ2), t0 + τ3 + i (τ1 + τ2)] for 1 ≤ i ≤ [1/ρ]+1. To examine the behaviour of|y(t)| in
detail, we first subdivideJ1 into two intervals[t0 + τ3, t0 + τ1 + τ3] and[t0 + τ1 + τ3, t0 + τ1 + τ2 + τ3]. Since
the widths of the two intervals areτ1 andτ2, respectively, it turns out that from the assertions of Step 1 and
Step 2 that there exist at ∈ [t0+τ3, t0+τ1+τ3] and at ∈ [t0+τ1+τ3, t0+τ1+τ2+τ3] such that|y( t

)| < µ/2
and |y( t

)| > µ. From the continuity of|y(t)|, we can find numberst1 andt2 with t ≤ t1 < t2 ≤ t such that
|y(t1)| = µ/2, |y(t2)| = µ and

µ

2
< |y(t)| < µ for t ∈ (t1, t2). (18)

Note thaty(t1) and y(t2) have the same sign. From (16), we see that0 < x(t) < f̂ −1
(
2M f (−r/

√
2)

/
a
)

for t ∈ [t0, t0 + T ]. Hence, it follows from (6) that|g(y(t))| < |g(−µ)| for t ∈ (t1, t2) and |g(x(t))| <∣∣∣∣g (
− f̂ −1

(
2M f (−r/

√
2)

/
a
))∣∣∣∣ for t ∈ [t0, t0 + T ]. Using these inequalities and (7), we obtain

f (µ) − f (µ/2) = f (|y(t2)|) − f (|y(t1)|) ≤ f (y(t2)) − f (y(t1)) =
∫ t2

t1

f ′(y(t))dt

=

∫ t2

t1

(
−ag(x(t))g(y(t)) − ch(t)g2(y(t))

)
dt ≤ a

∫ t2

t1

|g(x(t))||g(y(t))|dt

< ag

(
− f̂ −1

(
2M
a

f

(
− r
√

2

)))
g(−µ) (t2 − t1),

namely,ω < t2 − t1. Hence, together with (5), (14) and (18), we get

v(t2) − v(t1) =
∫ t2

t1

v′(t)dt = −
∫ t2

t1

c2h(t)g2(y(t))dt ≤ − c2g2
(
µ

2

)∫ t1+ω

t1

h(t)dt ≤ − 2ρM f

(
− r
√

2

)
.

Recall thatv′(t) = − c2h(t)g2(y(t)) ≤ 0 for t ≥ t0. Then it is clear that

v(t1) − v(t0 + τ3) ≤ 0 and v(t0 + τ1 + τ2 + τ3) − v(t2) ≤ 0.
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Combining these estimation ofv, we obtain∫
J1

v′(t)dt = v(t0 + τ1 + τ2 + τ3) − v(t2) + v(t2) − v(t1) + v(t1) − v(t0 + τ3) ≤ − 2ρM f

(
− r
√

2

)
.

Repeating the same process, we can conclude that
∫

Ji
v′(t)dt ≤ − 2ρM f

(
−r/
√

2
)

for i = 2, 3, · · · , [1/ν] + 1.

Hence, the loss of the total energyv in each intervalJi is at least2ρM f
(
−r/
√

2
)
, and therefore,

v(t0 +T ) = v(t0 + τ3)+
[1/ρ]+1∑

i=1

∫
Ji

v′(t)dt < v(t0 + τ3)− 2ρ

([
1
ρ

]
+ 1

)
M f

(
−r/
√

2
)
≤ v(t0 + τ3)− 2M f

(
−r/
√

2
)
.

However, it follows from (16) that0 < v(t0 + T ) < v(t0 + τ3) − 2M f
(
−r/
√

2
)
< 0. This is a contradiction.

Thus, the inequality (15) holds.

Part (c): For anyr > 0, let

B(r) =
√

2 f̂ −1

(
M
m

f

(
− r
√

2

))
.

Note thatf is strictly decreasing on(−∞, 0) and f̂ −1 in strictly increasing onR. From (11) it follows that if
∥x0∥ < r, then

∥x(t; t0, x0)∥ ≤
√

2 f̂ −1

(
M
m

f

(
−∥x0∥√

2

))
<
√

2 f̂ −1

(
M
m

f

(
− r
√

2

))
= B

for t ≥ t0. Hence, the zero solution of (4) is uniformly bounded.

In conclusion, the solutions of (4) are uniformly globally asymptotically stable. □
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