AN INFINITE FAMILY OF PAIRS OF IMAGINARY QUADRATIC FIELDS WITH BOTH CLASS NUMBERS DIVISIBLE BY FIVE

MIHO AOKI AND YASUHIRO KISHI

Abstract

We construct a new infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five. Let n be a positive integer that satisfy $n \equiv \pm 3(\bmod 500)$ and $n \not \equiv 0(\bmod 3)$. We prove that 5 divides the class numbers of both $\mathbb{Q}\left(\sqrt{2-F_{n}}\right)$ and $\mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)$, where F_{n} is the nth Fibonacci number.

1. Introduction

Some infinite families of quadratic fields with class numbers divisible by a fixed integer N were given by Nagell [15], Ankeny and Chowla [1], Yamamoto [19], Weinberger [18], Gross and Rohrich [5], Ichimura [6] and Louboutin [13]. In the case $N=5$, some results are known due to Parry [16], Mestre [14], Sase [17] and Byeon [3]. One of the authors [10], by using the Fibonacci numbers F_{n}, gave an infinite family of imaginary quadratic fields with class numbers divisible by five: the $\mathbb{Q}\left(\sqrt{-F_{n}}\right)$ with $n \equiv 25(\bmod 50)$.

Recently, Komatsu [11], [12] and Ito [9] (resp. Iizuka, Konomi and Nakano [7]) gave infinite families of pairs of quadratic fields with both class numbers divisible by 3 (resp. 3,5 or 7). In the present article, by using the Fibonacci numbers F_{n}, we will give an infinite family of pairs of imaginary quadratic fields with both class numbers divisible by 5 .

Theorem. For $n \in \mathcal{N}:=\{n \in \mathbb{N} \mid n \equiv \pm 3(\bmod 500), n \not \equiv 0(\bmod 3)\}$, the class numbers of both $\mathbb{Q}\left(\sqrt{2-F_{n}}\right)$ and $\mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)$ are divisible by 5. Moreover, the set of pairs $\left\{\left(\mathbb{Q}\left(\sqrt{2-F_{n}}\right), \mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)\right) \mid n \in \mathcal{N}\right\}$ is infinite.

For an algebraic extension K / k, denote the norm map and the trace map of K / k by $N_{K / k}$ and $\operatorname{Tr}_{K / k}$, respectively. For simplicity, we denote N_{K} and Tr_{K} if the base field is $k=\mathbb{Q}$. For a prime number p and an integer m, we denote the greatest exponent μ of p such that $p^{\mu} \mid m$ by $v_{p}(m)$.

2. Certain parametric quartic polynomial

Let $k=\mathbb{Q}(\sqrt{5})$. For an algebraic integer $\alpha \in k$, we consider the polynomial

$$
\begin{equation*}
f(X)=f_{\alpha}(X):=X^{4}-T X^{3}+(N+2) X^{2}-T X+1 \in \mathbb{Z}[X] \tag{2.1}
\end{equation*}
$$

where $T:=\operatorname{Tr}_{k}(\alpha)$ and $N:=N_{k}(\alpha)$. The discriminant of $f(X)$ is $\operatorname{disc}(f)=d_{1}^{2} d_{2}$ with $d_{1}:=T^{2}-4 N$ and $d_{2}:=(N+4)^{2}-4 T^{2}$. Let L be the minimal splitting field of $f(X)$ over \mathbb{Q}. All four complex roots of $f(X)$ are units of L and can be denoted by $\varepsilon, \varepsilon^{-1}, \eta, \eta^{-1},|\varepsilon| \geq\left|\varepsilon^{-1}\right|,|\eta| \geq\left|\eta^{-1}\right|, \alpha=\varepsilon+\varepsilon^{-1}, \bar{\alpha}=\eta+\eta^{-1}$, where $\bar{\alpha}$ denotes the Galois conjugate of α ([2, Lemmas 2.2 and 2.3]). We assume $\alpha \notin \mathbb{Z}, \alpha^{2}-4 \notin \mathbb{Z}^{2}$,

1991 Mathematics Subject Classification. Primary 11R11, Secondary 11R16; 11R29.
Key words and phrases. Quadratic fields; Quartic fields; Class numbers.
$d_{2} \in 5 \mathbb{Q}^{2}$ and $\alpha^{2}-4>0$. The assumptions $\alpha \notin \mathbb{Z}$ and $\alpha^{2}-4 \notin \mathbb{Z}^{2}$ imply that the polynomial $f(X)$ is \mathbb{Q}-irreducible, and we have $\operatorname{Gal}(L / \mathbb{Q}) \simeq C_{4}$ from $d_{2} \in 5 \mathbb{Q}^{2}([2$, Proposition 2.1]). Furthermore, we have $\varepsilon, \eta \in \mathbb{R}$ by the assumption $\alpha^{2}-4>0$, $d_{2}>0$ and the factorization
(2.2) $f(X)=\left(X^{2}-\alpha X+1\right)\left(X^{2}-\bar{\alpha} X+1\right)=(X-\varepsilon)\left(X-\varepsilon^{-1}\right)(X-\eta)\left(X-\eta^{-1}\right)$
([2, Lemma 2.7]). Set $\widetilde{L}=L\left(\zeta_{5}\right)$ where ζ_{5} is a primitive fifth root of unity. Since $\operatorname{Gal}(\widetilde{L} / \mathbb{Q}) \supset \operatorname{Gal}(\widetilde{L} / k) \simeq C_{2} \times C_{2}$ and $\operatorname{Gal}(\widetilde{L} / \mathbb{Q}) / \operatorname{Gal}\left(\widetilde{L} / \mathbb{Q}\left(\zeta_{5}\right)\right) \simeq \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{5}\right) / \mathbb{Q}\right) \simeq$ C_{4}, we have $\operatorname{Gal}(\widetilde{L} / \mathbb{Q}) \simeq C_{2} \times C_{4}$. Therefore, $\operatorname{Gal}(\widetilde{L} / \mathbb{Q})$ has three subgroups of order 4. One of them is isomorphic to $C_{2} \times C_{2}$ that corresponds to the subfield k, the others are isomorphic to C_{4}. Let us denote them by $\langle\tau\rangle\left(\simeq C_{4}\right)$ and $\left\langle\tau^{\prime}\right\rangle\left(\simeq C_{4}\right)$ for some automorphisms $\tau, \tau^{\prime} \in \operatorname{Gal}(\widetilde{L} / \mathbb{Q})$ of order 4 . Note that $\zeta_{5}^{\tau} \neq \zeta_{5}, \zeta_{5}^{4}$, because τ acts trivial on $k=\mathbb{Q}(\sqrt{5})=\mathbb{Q}\left(\zeta_{5}+\zeta_{5}^{-1}\right)$ if $\zeta_{5}^{\tau}=\zeta_{5}$ or ζ_{5}^{4}. Likewise, we have $\zeta_{5}^{\tau^{\prime}} \neq \zeta_{5}, \zeta_{5}^{4}$. We may assume that $\zeta_{5}^{\tau}=\zeta_{5}^{2}$ and $\zeta_{5}^{\tau^{\prime}}=\zeta_{5}^{2}$.
Lemma 1. The actions of τ and τ^{\prime} on the roots $\varepsilon, \varepsilon^{-1}, \eta$ and η^{-1} of $f(X)$ are as follows:

$$
\begin{aligned}
\tau & : \varepsilon \mapsto \eta \mapsto \varepsilon^{-1} \mapsto \eta^{-1} \mapsto \varepsilon \\
\tau^{\prime} & : \varepsilon \mapsto \eta^{-1} \mapsto \varepsilon^{-1} \mapsto \eta \mapsto \varepsilon
\end{aligned}
$$

Proof. If $\varepsilon^{\tau}=\varepsilon^{-1}$, then we have $\alpha^{\tau}=\left(\varepsilon+\varepsilon^{-1}\right)^{\tau}=\alpha$. This is a contradiction since the restriction of τ to L is a generator of $\operatorname{Gal}(L / \mathbb{Q})\left(\simeq C_{4}\right)$. Therefore, we have $\varepsilon^{\tau} \neq \varepsilon^{-1}$, and hence $\varepsilon^{\tau}=\eta$ or η^{-1}. Similarly we have $\varepsilon^{\tau^{\prime}}=\eta$ or η^{-1}. Without loss of generality, we can assume that $\varepsilon^{\tau}=\eta$ and $\varepsilon^{\tau^{\prime}}=\eta^{-1}$. Next, we will prove $\eta^{\tau}=\varepsilon^{-1}$. We get $\eta^{\tau} \neq \eta^{-1}$ by the same argument as the proof of $\varepsilon^{\tau} \neq \varepsilon^{-1}$. If $\eta^{\tau}=\varepsilon$, then we have $(\varepsilon+\eta)^{\tau}=\varepsilon+\eta,(\varepsilon \eta)^{\tau}=\varepsilon \eta,\left(\varepsilon^{-1}+\eta^{-1}\right)^{\tau}=\varepsilon^{-1}+\eta^{-1},\left(\varepsilon^{-1} \eta^{-1}\right)^{\tau}=\varepsilon^{-1} \eta^{-1}$, and hence $\varepsilon+\eta, \varepsilon \eta, \varepsilon^{-1}+\eta^{-1}, \varepsilon^{-1} \eta^{-1} \in \mathbb{Q}$. Noting (2.2), therefore, $f(X)$ is factored in $\mathbb{Q}[X]$ as

$$
f(X)=\left(X^{2}-(\varepsilon+\eta) X+\varepsilon \eta\right)\left(X^{2}-\left(\varepsilon^{-1}+\eta^{-1}\right) X+\varepsilon^{-1} \eta^{-1}\right)
$$

However, this contradicts the assumption that $f(X)$ is irreducible over \mathbb{Q}. We conclude $\eta^{\tau} \neq \varepsilon$ and hence $\eta^{\tau}=\varepsilon^{-1}$. Similarly we can get $\left(\eta^{-1}\right)^{\tau^{\prime}}=\varepsilon^{-1}$. The proof is complete.

Let K and K^{\prime} denote the subfields of \widetilde{L} correspond to $\langle\tau\rangle$ and $\left\langle\tau^{\prime}\right\rangle$, respectively.

Lemma 2. We have

$$
\left(\varepsilon-\varepsilon^{-1}\right)\left(\eta-\eta^{-1}\right)= \begin{cases}\sqrt{d_{2}} & \text { if } N>0 \\ -\sqrt{d_{2}} & \text { if } N<0\end{cases}
$$

$\varepsilon \eta+\varepsilon^{-1} \eta^{-1}=\left\{\begin{array}{ll}\frac{N+\sqrt{d_{2}}}{2} & \text { if } N>0, \\ \frac{N-\sqrt{d_{2}}}{2} & \text { if } N<0\end{array}\right.$ and $\varepsilon \eta^{-1}+\varepsilon^{-1} \eta= \begin{cases}\frac{N-\sqrt{d_{2}}}{2} & \text { if } N>0, \\ \frac{N+\sqrt{d_{2}}}{2} & \text { if } N<0 .\end{cases}$
Proof. Put $\lambda:=\left(\varepsilon-\varepsilon^{-1}\right)\left(\eta-\eta^{-1}\right)$. By using $N=\alpha \bar{\alpha}=\left(\varepsilon+\varepsilon^{-1}\right)\left(\eta+\eta^{-1}\right)$, we have $\varepsilon \eta+\varepsilon^{-1} \eta^{-1}=(N+\lambda) / 2$ and $\varepsilon \eta^{-1}+\varepsilon^{-1} \eta=(N-\lambda) / 2$. By direct calculation, we get $\lambda^{2}=d_{2}$. Recall that $\varepsilon, \eta \in \mathbb{R}$. Since $\alpha=\varepsilon+\varepsilon^{-1}$ (resp. $\bar{\alpha}=\eta+\eta^{-1}$) is positive if and only if ε (resp. η) is positive, and $|\varepsilon| \geq\left|\varepsilon^{-1}\right|$ and $|\eta| \geq\left|\eta^{-1}\right|$, we have

$$
N=\alpha \bar{\alpha}>0 \Longleftrightarrow \varepsilon \eta>0 \Longleftrightarrow \lambda=\left(\varepsilon-\varepsilon^{-1}\right)\left(\eta-\eta^{-1}\right)>0
$$

The proof is complete.
Lemma 3. Let i, j be integers which are not divisible by 5 . If $\varepsilon^{i} \eta^{j} \in L^{5}$, then we have $\varepsilon, \eta \in L^{5}$.

Proof. We put $\operatorname{Gal}(\widetilde{L} / k) \simeq\langle\sigma\rangle \times\left\langle\sigma^{\prime}\right\rangle\left(\simeq C_{2} \times C_{2}\right)$, where $\varepsilon^{\sigma}=\varepsilon^{-1}, \eta^{\sigma}=\eta, \varepsilon^{\sigma^{\prime}}=\varepsilon$ and $\eta^{\sigma^{\prime}}=\eta^{-1}$. If $\varepsilon^{i} \eta^{j} \in L^{5}$, then so are $\left(\varepsilon^{i} \eta^{j}\right)^{\sigma}=\varepsilon^{-i} \eta^{j}$, their ratio $\varepsilon^{2 i}$ and their product $\eta^{2 j}$. Since $\operatorname{gcd}(2 i, 5)=\operatorname{gcd}(2 j, 5)=1$, we conclude that both ε and η are fifth powers in L.

3. Fibonacci and Lucas sequences

Let $\left(F_{n}\right)$ and $\left(L_{n}\right)$ be the Fibonacci and Lucas sequences, respectively, defined by $F_{1}=1, F_{2}=1, F_{n+2}=F_{n+1}+F_{n}(n \in \mathbb{Z})$ and $L_{1}=1, L_{2}=3, L_{n+2}=$ $L_{n+1}+L_{n}(n \in \mathbb{Z})$. Assertions (1) and (2) in the following lemma follow from the explicit formulae for

$$
F_{n}=\frac{\omega^{n}-\bar{\omega}^{n}}{\omega-\bar{\omega}} \text { and } L_{n}=\omega^{n}+\bar{\omega}^{n}
$$

where $\omega=(1+\sqrt{5}) / 2$ and $\bar{\omega}=(1-\sqrt{5}) / 2$. We can prove (3) by direct calculation.
Lemma 4. For any $n \in \mathbb{Z}$, we have the following.
(1) $L_{n}^{2}=5 F_{n}^{2}+(-1)^{n} 4$.
(2) $5 F_{2 n-1}+L_{2 n-1}+(-1)^{n} 4=2 L_{n}^{2}$ and $5 F_{2 n-1}+L_{2 n-1}-(-1)^{n} 4=10 F_{n}^{2}$.
(3) $\left(F_{n}\right) \bmod 5^{3}$ is $500-$ periodic and $F_{n} \equiv 2\left(\bmod 5^{3}\right)$ if $n \equiv \pm 3(\bmod 500)$.

From now on, we assume that $n(>3)$ is an odd integer and consider the polynomial (2.1) for $\alpha=\left(L_{n}+\left(F_{n}-2\right) \sqrt{5}\right) / 2$. By (2.1) and Lemma 4 (1), we get

$$
f(X)=f_{\alpha}(X)=X^{4}-L_{n} X^{3}+\left(5 F_{n}-4\right) X^{2}-L_{n} X+1,
$$

and all four roots of $f(X)$ are given by $\varepsilon, \varepsilon^{-1}, \eta, \eta^{-1}$ which satisfy $\alpha=\varepsilon+\varepsilon^{-1}$, $\bar{\alpha}=\eta+\eta^{-1}$. Moreover, we see from $d_{1}=T^{2}-4 N=5\left(F_{n}-2\right)^{2}$ and $d_{2}=(N+4)^{2}-$ $4 T^{2}=5\left(F_{n}-2\right)^{2}$ that the discriminant of $f(X)$ is $\operatorname{disc}(f)=d_{1}^{2} d_{2}=5^{3}\left(F_{n}-2\right)^{6}$. Furthermore, since $\alpha \notin \mathbb{Z}, \alpha^{2}-4 \notin \mathbb{Z}^{2}, d_{2} \in 5 \mathbb{Q}^{2}$ and $\alpha^{2}-4>0$, the polynomial $f(X)$ is \mathbb{Q}-irreducible, all the roots $\varepsilon, \varepsilon^{-1}, \eta, \eta^{-1}$ are real, and $\operatorname{Gal}(L / \mathbb{Q}) \simeq C_{4}$ (see $\S 2$). Next, we will prove that the three quadratic fields contained in \widetilde{L} are $\mathbb{Q}\left(\sqrt{2-F_{n}}\right), \mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)$ and $k=\mathbb{Q}(\sqrt{5})$.

Lemma 5. Put $\alpha=\left(L_{n}+\left(F_{n}-2\right) \sqrt{5}\right) / 2$ for an odd integer $n>3$ and $\zeta=\zeta_{5}$. For the roots ε, η of $f_{\alpha}(X)$, we have the following.
(1) $\xi_{1}:=\left(\varepsilon+\varepsilon^{-1}\right)\left(\zeta+\zeta^{-1}\right)+\left(\eta+\eta^{-1}\right)\left(\zeta^{2}+\zeta^{-2}\right)=\left\{-L_{n}+5\left(F_{n}-2\right)\right\} / 2$.
(2) $\xi_{2}:=\left(\varepsilon-\varepsilon^{-1}\right)^{2}\left(\zeta-\zeta^{-1}\right)^{2}+\left(\eta-\eta^{-1}\right)^{2}\left(\zeta^{2}-\zeta^{-2}\right)^{2}=-5\left(F_{n}-2\right)\left(5 F_{n}+L_{n}\right) / 2$.
(3) $\xi_{3}:=\left(\varepsilon-\varepsilon^{-1}\right)\left(\eta-\eta^{-1}\right)\left(\zeta-\zeta^{-1}\right)\left(\zeta^{2}-\zeta^{-2}\right)=-5\left(F_{n}-2\right)$.

Proof. Set $c=\zeta+\zeta^{-1}=(-1+\sqrt{5}) / 2$. Noting that $\alpha=\varepsilon+\varepsilon^{-1}$ and $\bar{\alpha}=\eta+\eta^{-1}$, we have $\xi_{1}=\alpha c+\bar{\alpha}\left(c^{2}-2\right)$ and $\xi_{2}=\left(\alpha^{2}-4\right)\left(c^{2}-4\right)+\left(\bar{\alpha}^{2}-4\right)(c-2)$. The assertions (1) and (2) follow by using Lemma 4 (1). From Lemma 2 and $N>0$, we have $\left(\varepsilon-\varepsilon^{-1}\right)\left(\eta-\eta^{-1}\right)=\sqrt{d_{2}}=\left(F_{n}-2\right) \sqrt{5}$. On the other hand, we have $\left(\zeta-\zeta^{-1}\right)\left(\zeta^{2}-\zeta^{-2}\right)=c^{3}-4 c=-\sqrt{5}$. Hence we get the assertion (3).

Lemma 6. Under the same situation as in Lemma 5, we have the following.
(1) $\operatorname{Tr}_{\tilde{L} / K}(\varepsilon \zeta)=\left\{-L_{n}+5\left(F_{n}-2\right)+2 \xi\right\} / 4$, where $\xi:=\left(\varepsilon-\varepsilon^{-1}\right)\left(\zeta-\zeta^{-1}\right)+(\eta-$ $\left.\eta^{-1}\right)\left(\zeta^{2}-\zeta^{-2}\right)$ is such that

$$
\xi^{2}= \begin{cases}-5^{2}\left(F_{n}-2\right) F_{\frac{n+1}{2}}^{2} & \text { if } n \equiv 1(\bmod 4), \\ -5\left(F_{n}-2\right) L_{\frac{n+1}{2}}^{2} & \text { if } n \equiv 3(\bmod 4) .\end{cases}
$$

(2) $\operatorname{Tr}_{\tilde{L} / K^{\prime}}(\varepsilon \zeta)=\left\{-L_{n}+5\left(F_{n}-2\right)+2 \xi^{\prime}\right\} / 4$, where $\xi^{\prime}:=\left(\varepsilon-\varepsilon^{-1}\right)\left(\zeta-\zeta^{-1}\right)-$ $\left(\eta-\eta^{-1}\right)\left(\zeta^{2}-\zeta^{-2}\right)$ is such that

$$
\xi^{\prime 2}= \begin{cases}-5\left(F_{n}-2\right) L_{\frac{n+1}{2}}^{2} & \text { if } n \equiv 1(\bmod 4), \\ -5^{2}\left(F_{n}-2\right) F_{\frac{n+1}{2}}^{2} & \text { if } n \equiv 3(\bmod 4) .\end{cases}
$$

Proof. We prove only the assertion (1). By Lemma 1, we have

$$
\gamma:=\operatorname{Tr}_{\tilde{L} / K}(\varepsilon \zeta)=\varepsilon \zeta+\eta \zeta^{2}+\varepsilon^{-1} \zeta^{-1}+\eta^{-1} \zeta^{-2}
$$

and

$$
\gamma^{\tau^{\prime}}=\eta^{-1} \zeta^{2}+\varepsilon \zeta^{-1}+\eta \zeta^{-2}+\varepsilon^{-1} \zeta
$$

Now $\gamma=\left\{\left(\gamma+\gamma^{\tau^{\prime}}\right)+\left(\gamma-\gamma^{\tau^{\prime}}\right)\right\} / 2$ with

$$
\gamma+\gamma^{\tau^{\prime}}=\xi_{1}=\frac{-L_{n}+5\left(F_{n}-2\right)}{2}
$$

and

$$
\begin{aligned}
\left(\gamma-\gamma^{\tau^{\prime}}\right)^{2} & =\left\{\left(\varepsilon-\varepsilon^{-1}\right)\left(\zeta-\zeta^{-1}\right)+\left(\eta-\eta^{-1}\right)\left(\zeta^{2}-\zeta^{-2}\right)\right\}^{2} \\
& =\xi_{2}+2 \xi_{3}=-\frac{5\left(F_{n}-2\right)\left(5 F_{n}+L_{n}+4\right)}{2}
\end{aligned}
$$

by Lemma 5 . Therefore, we get the desired result, by Lemma 4 (2).
By Lemma 6, we get the following proposition immediately.
Proposition 1. We have

$$
\left(K, K^{\prime}\right)= \begin{cases}\left(\mathbb{Q}\left(\sqrt{2-F_{n}}\right), \mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)\right) & \text { if } n \equiv 1(\bmod 4), \\ \left(\mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right), \mathbb{Q}\left(\sqrt{2-F_{n}}\right)\right) & \text { if } n \equiv 3(\bmod 4) .\end{cases}
$$

4. Certain parametric quintic polynomial

For an element $\gamma \in L$, we define

$$
\begin{aligned}
g_{\gamma, \tau}(X):= & X^{5}-10 N_{L}(\gamma) X^{3}-5 N_{L}(\gamma) N_{k} \operatorname{Tr}_{L / k}(\gamma) X^{2} \\
& +5 N_{L}(\gamma)\left\{N_{L}(\gamma)-N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{1+\tau}\right)\right\} X-N_{L}(\gamma) N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{2+\tau}\right) \in \mathbb{Q}[X] \\
g_{\gamma, \tau^{\prime}}(X):= & X^{5}-10 N_{L}(\gamma) X^{3}-5 N_{L}(\gamma) N_{k} \operatorname{Tr}_{L / k}(\gamma) X^{2} \\
& +5 N_{L}(\gamma)\left\{N_{L}(\gamma)-N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{1+\tau^{\prime}}\right)\right\} X-N_{L}(\gamma) N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{2+\tau^{\prime}}\right) \in \mathbb{Q}[X] .
\end{aligned}
$$

Define subsets \mathcal{M}_{τ} and $\mathcal{M}_{\tau^{\prime}}$ of $\widetilde{L}=L\left(\zeta_{5}\right)$ by

$$
\begin{aligned}
\mathcal{M}_{\tau} & :=\left\{\gamma \in \widetilde{L}^{\times} \mid \gamma^{3+4 \tau+2 \tau^{2}+\tau^{3}} \notin \widetilde{L}^{5}\right\}, \\
\mathcal{M}_{\tau^{\prime}} & :=\left\{\gamma \in \widetilde{L}^{\times} \mid \gamma^{3+4 \tau^{\prime}+2 \tau^{\prime 2}+\tau^{\prime 3}} \notin \widetilde{L}^{5}\right\} .
\end{aligned}
$$

Proposition 2 ([8, Example 3.3], [4, Chapter 5, Examples (2), p.253]). Let the notation be as above. Assume $\gamma \in \mathcal{M}_{\tau} \cap L$ (resp. $\gamma \in \mathcal{M}_{\tau^{\prime}} \cap L$). Then the minimal splitting field of $g_{\gamma, \tau}\left(\right.$ resp. $\left.g_{\gamma, \tau^{\prime}}\right)$ over \mathbb{Q} is a D_{5}-extension containing K (resp. $\left.K^{\prime}\right)$.

Recall $d_{2} \in 5 \mathbb{Q}^{2}$. Let t be the positive integer so that $d_{2}=5 t^{2}$, and denote $\alpha=(T+b \sqrt{5}) / 2(b \in \mathbb{Z})$. Now we calculate the coefficients of $g_{\gamma, \tau}(X)$ and $g_{\gamma, \tau^{\prime}}(X)$ in the case $\gamma=\varepsilon, \eta$.

Lemma 7. For $\gamma=\varepsilon, \eta$, we have the following.
(1) $N_{L}(\gamma)=1$.
(2) $N_{k} \operatorname{Tr}_{L / k}(\gamma)=N$.
(3) $N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{1+\tau}\right)=N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{1+\tau^{\prime}}\right)=T^{2}-2 N-4$.
(4) $N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{2+\tau}\right)= \begin{cases}\left\{N\left(T^{2}-2 N\right)-5 b t T\right\} / 2-3 N & \text { if } N>0, \\ \left\{N\left(T^{2}-2 N\right)+5 b t T\right\} / 2-3 N & \text { if } N<0,\end{cases}$ $N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{2+\tau^{\prime}}\right)= \begin{cases}\left\{N\left(T^{2}-2 N\right)+5 b t T\right\} / 2-3 N & \text { if } N>0, \\ \left\{N\left(T^{2}-2 N\right)-5 b t T\right\} / 2-3 N & \text { if } N<0 .\end{cases}$

Proof. Let $\bar{\tau}=\left.\tau\right|_{L}$ be the restriction of τ to L. Then $\bar{\tau}$ is a generator of the cyclic quartic Galois group $\operatorname{Gal}(L / \mathbb{Q})$, and $\bar{\tau}^{2}$ is the generator of $\operatorname{Gal}(L / k)$. We can show the assertions (1), (2) and (3) by these facts and $\alpha=\varepsilon+\varepsilon^{-1}$ and $\bar{\alpha}=\eta+\eta^{-1}$ are roots of $X^{2}-T X+N$. Therefore, we will give a proof of the assertion (4) only for $N_{k} \operatorname{Tr}_{L / k}\left(\varepsilon^{2+\tau}\right)$ in the case $N>0$ (we can prove the other assertions similarly). In this case, we see from Lemmas 1 and 2 that

$$
\begin{aligned}
N_{k} \operatorname{Tr}_{L / k}\left(\varepsilon^{2+\tau}\right) & =N_{k} \operatorname{Tr}_{L / k}\left(\varepsilon^{2} \eta\right)=N_{k}\left(\varepsilon^{2} \eta+\varepsilon^{-2} \eta^{-1}\right) \\
& =\left(\varepsilon^{2} \eta+\varepsilon^{-2} \eta^{-1}\right)\left(\eta^{2} \varepsilon^{-1}+\eta^{-2} \varepsilon\right) \\
& =\bar{\alpha}^{2}\left(\varepsilon \eta+\varepsilon^{-1} \eta^{-1}\right)+\alpha^{2}\left(\varepsilon \eta^{-1}+\varepsilon^{-1} \eta\right)-3 N \\
& =\frac{N+\sqrt{d_{2}}}{2} \bar{\alpha}^{2}+\frac{N-\sqrt{d_{2}}}{2} \alpha^{2}-3 N \\
& =\frac{N}{2}\left(\alpha^{2}+\bar{\alpha}^{2}\right)-\frac{t \sqrt{5}}{2}\left(\alpha^{2}-\bar{\alpha}^{2}\right)-3 N .
\end{aligned}
$$

Since $\alpha-\bar{\alpha}=b \sqrt{5}$, we have $\alpha^{2}+\bar{\alpha}^{2}=T^{2}-2 N, \alpha^{2}-\bar{\alpha}^{2}=b T \sqrt{5}$. Thus we get the assertion.

Lemma 8. Put $\alpha=\left(L_{n}+\left(F_{n}-2\right) \sqrt{5}\right) / 2$ for an odd integer $n>3$. For the roots $\gamma=\varepsilon, \eta$ of $f_{\alpha}(X)$, we have the following.
(1) $N_{L}(\gamma)=1$.
(2) $N_{k} \operatorname{Tr}_{L / k}(\gamma)=5 F_{n}-6$.
(3) $N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{1+\tau}\right)=N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{1+\tau^{\prime}}\right)=5 F_{n}^{2}-10 F_{n}+4$.
(4) $N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{2+\tau}\right)=5\left(F_{n}-2\right)\left\{\left(F_{n}-2\right)\left(5 F_{n}-L_{n}+4\right)+10\right\} / 2+4$,

$$
N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{2+\tau^{\prime}}\right)=5\left(F_{n}-2\right)\left\{\left(F_{n}-2\right)\left(5 F_{n}+L_{n}+4\right)+10\right\} / 2+4
$$

Proof. The assertions (1), (2) and (3) follow from Lemma 7 and Lemma 4 (1). We will prove the assertion (4). Since $N=5 F_{n}-6>0$, we have from Lemma 7 (4) and Lemma 4 (1) that

$$
\begin{aligned}
N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{2+\tau}\right) & =\frac{1}{2}\left\{\left(5 F_{n}-6\right)\left(L_{n}^{2}-10 F_{n}+12\right)-5 L_{n}\left(F_{n}-2\right)^{2}\right\}-15 F_{n}+18 \\
& =\frac{1}{2}\left\{\left(5 F_{n}-6\right)\left(5 F_{n}^{2}-10 F_{n}+8\right)-5 L_{n}\left(F_{n}-2\right)^{2}-30 F_{n}+28\right\}+4 \\
& =\frac{5\left(F_{n}-2\right)}{2}\left\{\left(F_{n}-2\right)\left(5 F_{n}-L_{n}+4\right)+10\right\}+4
\end{aligned}
$$

We can prove the equality for $N_{k} \operatorname{Tr}_{L / k}\left(\gamma^{2+\tau^{\prime}}\right)$ similarly.
Lemma 9. Put $\alpha=\left(L_{n}+\left(F_{n}-2\right) \sqrt{5}\right) / 2$ for an odd integer $n>3$. If $n \not \equiv 0(\bmod 3)$, then for the roots $\gamma=\varepsilon, \eta$ of $f_{\alpha}(X)$ and for any integers i, j which are not divisible by 5 , we have $\varepsilon^{i} \eta^{j} \notin L^{5}$.

Proof. For any $x \in L^{5}$, since $L \subset \mathbb{R}$, there exists only one $y \in L$ satisfying $x=y^{5}$, we denote it by $\sqrt[5]{x}$. Suppose to the contrary that $\varepsilon^{i} \eta^{j} \in L^{5}$. Then we have $\varepsilon, \eta \in L^{5}$ by Lemma 3. Recall that $\bar{\tau}^{2}$ is the generator of $\operatorname{Gal}(L / k)$, where $\bar{\tau}=\left.\tau\right|_{L}$. For $y=\sqrt[5]{\varepsilon} \in L$, we have

$$
\left(y^{\bar{\tau}^{2}}\right)^{5}=\left(y^{5}\right)^{\bar{\tau}^{2}}=\varepsilon^{\bar{\tau}^{2}}=\varepsilon^{-1} .
$$

This equality yields $(\sqrt[5]{\varepsilon})^{\bar{\tau}^{2}}=\sqrt[5]{\varepsilon^{-1}}$. Therefore, we have

$$
\beta:=\operatorname{Tr}_{L / k}(\sqrt[5]{\varepsilon})=\sqrt[5]{\varepsilon}+(\sqrt[5]{\varepsilon})^{\bar{\tau}^{2}}=\sqrt[5]{\varepsilon}+\sqrt[5]{\varepsilon^{-1}} \in k
$$

By direct calculation, we get $\beta^{5}-5 \beta^{3}+5 \beta=\varepsilon+\varepsilon^{-1}=\alpha=\left(L_{n}+\left(F_{n}-2\right) \sqrt{5}\right) / 2$, and $h(\beta)=0$, where

$$
\begin{aligned}
h(X) & :=\left(X^{5}-5 X^{3}+5 X-\frac{L_{n}}{2}\right)^{2}-\frac{5\left(F_{n}-2\right)^{2}}{4} \\
& =X^{10}-10 X^{8}+35 X^{6}-L_{n} X^{5}-50 X^{4}+5 L_{n} X^{3}+25 X^{2}-5 L_{n} X+5 F_{n}-6 .
\end{aligned}
$$

On the one hand, $h(X)$ is reducible over \mathbb{Q} because it has a root $\beta \in k=\mathbb{Q}(\sqrt{5})$. On the other hand, since

$$
\begin{equation*}
F_{n} \equiv L_{n} \equiv 1(\bmod 2) \quad \text { if } n \equiv 1,2(\bmod 3), \tag{4.1}
\end{equation*}
$$

we have that

$$
h(X) \equiv X^{10}+X^{6}+X^{5}+X^{3}+X^{2}+X+1(\bmod 2)
$$

is irreducible over \mathbb{F}_{2}. Hence $h(X)$ is \mathbb{Q}-irreducible. Since we obtain a contradiction, the proof is complete.

5. Proof of our theorem

In this section, we will prove our main theorem in $\S 1$. The keys of the proof are Proposition 2 and the following proposition.

Proposition 3 ([17, Proposition 2]). Let $p(\neq 2)$ and q be prime numbers. Suppose that the polynomial

$$
\varphi(X)=X^{p}+\sum_{j=0}^{p-2} a_{j} X^{j}, \quad a_{j} \in \mathbb{Z}
$$

is irreducible over \mathbb{Q} and satisfies the condition

$$
\begin{equation*}
v_{q}\left(a_{j}\right)<p-j \quad \text { for some } j, 0 \leq j \leq p-2 . \tag{5.1}
\end{equation*}
$$

Let θ be a root of $\varphi(X)$.
(1) If q is different from p, then q is totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$ if and only if

$$
0<\frac{v_{q}\left(a_{0}\right)}{p} \leq \frac{v_{q}\left(a_{j}\right)}{p-j} \quad \text { for every } j, 1 \leq j \leq p-2 .
$$

(2) If neither

$$
\begin{equation*}
0<\frac{v_{p}\left(a_{0}\right)}{p} \leq \frac{v_{p}\left(a_{j}\right)}{p-j} \quad \text { for every } j, 1 \leq j \leq p-2 \tag{5.2}
\end{equation*}
$$

nor

$$
v_{p}\left(\varphi^{(j)}\left(-a_{0}\right)\right)<p-j \quad \text { for some } j, 0 \leq j \leq p-1
$$

holds, then p is not totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$, where $\varphi^{(j)}(X)$ is the j-th differential of $\varphi(X)$.
Proof of Theorem. Let n be in \mathcal{N}. First, we will show $\varepsilon \in \mathcal{M}_{\tau} \cap L$ and $\varepsilon \in \mathcal{M}_{\tau^{\prime}} \cap L$, where \mathcal{M}_{τ} and $\mathcal{M}_{\tau^{\prime}}$ are defined in $\S 4$. By Lemma 1, we have

$$
\begin{equation*}
\varepsilon^{3+4 \tau+2 \tau^{2}+\tau^{3}}=\varepsilon^{3} \eta^{4} \varepsilon^{-2} \eta^{-1}=\varepsilon \eta^{3} . \tag{5.4}
\end{equation*}
$$

If $\varepsilon \eta^{3} \in \widetilde{L}^{5}$, then we have $\varepsilon^{2} \eta^{6}=N_{\tilde{L} / L}\left(\varepsilon \eta^{3}\right) \in L^{5}$, which contradicts Lemma 9 . Hence we have $\varepsilon \eta^{3} \notin \widetilde{L}^{5}$. From (5.4), therefore, we get $\varepsilon \in \mathcal{M} \cap L$. Similarly, we can see that

$$
\varepsilon^{3+4 \tau^{\prime}+2 \tau^{\prime 2}+\tau^{\prime 3}}=\varepsilon^{3} \eta^{-4} \varepsilon^{-2} \eta=\varepsilon \eta^{-3} \notin \widetilde{L}^{5},
$$

and so $\varepsilon \in \mathcal{M}_{\tau^{\prime}} \cap L$. Let $g_{\varepsilon, \tau}(X)$ and $g_{\varepsilon, \tau^{\prime}}(X)$ be the polynomials defined in $\S 4$. From Lemma 8, we have

$$
\begin{aligned}
g_{\varepsilon, \tau}(X)= & X^{5}-10 X^{3}-5\left(5 F_{n}-6\right) X^{2}-5\left(5 F_{n}^{2}-10 F_{n}+3\right) X \\
& -\frac{5\left(F_{n}-2\right)}{2}\left\{\left(F_{n}-2\right)\left(5 F_{n}-L_{n}+4\right)+10\right\}-4, \\
g_{\varepsilon, \tau^{\prime}}(X)= & X^{5}-10 X^{3}-5\left(5 F_{n}-6\right) X^{2}-5\left(5 F_{n}^{2}-10 F_{n}+3\right) X \\
& -\frac{5\left(F_{n}-2\right)}{2}\left\{\left(F_{n}-2\right)\left(5 F_{n}+L_{n}+4\right)+10\right\}-4 .
\end{aligned}
$$

By Proposition 2, the minimal splitting fields $\operatorname{Spl}_{\mathbb{Q}}\left(g_{\varepsilon, \tau}\right)$ of $g_{\varepsilon, \tau}(X)$ and $\operatorname{Spl}_{\mathbb{Q}}\left(g_{\varepsilon, \tau^{\prime}}\right)$ of $g_{\varepsilon, \tau^{\prime}}(X)$ are D_{5}-extensions containing K and K^{\prime}, respectively, and the quadratic fields K and K^{\prime} are given by Proposition 1. Therefore, it is enough to prove that both C_{5}-extensions $\operatorname{Spl}_{\mathbb{Q}}\left(g_{\varepsilon, \tau}\right) / K$ and $\operatorname{Spl}_{\mathbb{Q}}\left(g_{\varepsilon, \tau^{\prime}}\right) / K^{\prime}$ are unramified. We will prove only for $\operatorname{Spl}_{\mathbb{Q}}\left(g_{\varepsilon, \tau}\right) / K$ (we can prove similarly for $\left.\operatorname{Spl}_{\mathbb{Q}}\left(g_{\varepsilon, \tau^{\prime}}\right) / K^{\prime}\right)$.

Let θ be a root of $g_{\varepsilon, \tau}(X)$ and consider the quintic extension $\mathbb{Q}(\theta) / \mathbb{Q}$. For a prime number q, a prime ideal of K above q is ramified in $\operatorname{Spl}_{\mathbb{Q}}\left(g_{\varepsilon, \tau}\right) / K$ if and only if q is totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$ because $\left[\operatorname{Spl}_{\mathbb{Q}}\left(g_{\varepsilon, \tau}\right): K\right]=5$ and $[K: \mathbb{Q}]=2$. Hence we prove that no prime number q is totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$ by using Proposition 3. We denote the coefficient of X^{j} of $g_{\varepsilon, \tau}(X)$ by a_{j}. First, $g_{\varepsilon, \tau}(X)$ satisfies the condition (5.1) because $v_{q}\left(a_{3}\right)<5-3=2$ for any prime number q. From Proposition 3 (1), we see that no prime $q \neq 5$ is totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$ since $v_{q}\left(a_{3}\right)=0$ if $q \neq 2$ and $v_{2}\left(a_{2}\right)=0$ by (4.1). We will show, therefore, that 5 is not totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$. Since $a_{0} \equiv-4(\bmod 5)$ is not divisible by 5 , (5.2) does not hold. Furthermore, by the assumption $n \equiv \pm 3(\bmod 500)$ and Lemma 4 (3), we have $F_{n}-2 \equiv 0\left(\bmod 5^{3}\right),-a_{0} \equiv 4\left(\bmod 5^{5}\right), 5 F_{n}-6=5\left(F_{n}-2\right)+4 \equiv 4\left(\bmod 5^{4}\right)$, $5 F_{n}^{2}-10 F_{n}+3=5 F_{n}\left(F_{n}-2\right)+3 \equiv 3\left(\bmod 5^{4}\right)$, and hence

$$
\begin{aligned}
& g_{\varepsilon, \tau}\left(-a_{0}\right) \equiv 4^{5}-10 \cdot 4^{3}-5 \cdot 4 \cdot 4^{2}-5 \cdot 3 \cdot 4-4=0\left(\bmod 5^{5}\right), \\
& g_{\varepsilon, \tau}^{(1)}\left(-a_{0}\right) \equiv 5 \cdot 4^{4}-30 \cdot 4^{2}-10 \cdot 4 \cdot 4-5 \cdot 3=625 \equiv 0\left(\bmod 5^{4}\right), \\
& g_{\varepsilon, \tau}^{(2)}\left(-a_{0}\right) \equiv 20 \cdot 4^{3}-60 \cdot 4-10 \cdot 4=1000 \equiv 0\left(\bmod 5^{3}\right), \\
& g_{\varepsilon, \tau}^{(3)}\left(-a_{0}\right) \equiv 60 \cdot 4^{2}-60=900 \equiv 0\left(\bmod 5^{2}\right), \\
& g_{\varepsilon, \tau}^{(4)}\left(-a_{0}\right) \equiv 120 \cdot 4 \equiv 0(\bmod 5) .
\end{aligned}
$$

Then (5.3) does not hold. Hence 5 is not totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$.
Finally, we prove that the set $\left\{\left(\mathbb{Q}\left(\sqrt{2-F_{n}}\right), \mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)\right) \mid n \in \mathcal{N}\right\}$ is infinite. For an integer m, let $s(m)$ denote the square free integer satisfying $m=s(m) A^{2}$ for some $A \in \mathbb{N}$, and assume that $\left\{\left(\mathbb{Q}\left(\sqrt{2-F_{n}}\right), \mathbb{Q}\left(\sqrt{5\left(2-F_{n}\right)}\right)\right) \mid n \in \mathcal{N}\right\}$ is finite. Then the set $\left\{s\left(F_{n}-2\right) \mid n \in \mathcal{N}\right\}$ is finite. Since \mathcal{N} is infinite, there exists $k \geq 1$ such that $\mathcal{N}_{k}:=\left\{n \in \mathcal{N} \mid s\left(F_{n}-2\right)=k\right\}$ is infinite. For any integer $n \in \mathcal{N}_{k}$, let $F_{n}-2=k A_{n}^{2}$. Then by Lemma 4 (1), we have

$$
L_{n}^{2}=5 F_{n}^{2}-4=5\left(k A_{n}^{2}+2\right)^{2}-4=5 k^{2} A_{n}^{4}+20 k A_{n}^{2}+16 .
$$

This implies that infinitely many pairs $\left(A_{n}, L_{n}\right)$ are integer solutions of the equation

$$
Y^{2}=5 k^{2} X^{4}+20 k X^{2}+16
$$

However, the equation has only finitely many integer solutions by Siegel's theorem. This is a contradiction. Hence the proof is complete.

References

[1] N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321-324.
[2] M. Aoki and Y. Kishi, On systems of fundamental units of certain quadratic fields, Int. J. Number Theory 11 (2015), 2019-2035.
[3] D. Byeon, Real quadratic fields with class number divisible by 5 or 7, Manuscripta Math. 120 (2006), 211-215.
[4] H. Cohen, "Advanced topics in computational number theory," GTM 193, Springer-Verlag, New York, 2000.
[5] B. H. Gross and D. E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201-224.
[6] H. Ichimura, Note on the class numbers of certain real quadratic fields, Abh. Math. Sem. Univ. Hamburg 73 (2003), 281-288.
[7] Y. Iizuka, Y. Konomi and S. Nakano, On the class number divisibility of pairs of quadratic fields obtained from points on elliptic curves, J. Math. Soc. Japan 68 (2016), 899-915.
[8] M. Imaoka and Y. Kishi, On dihedral extensions and Frobenius extensions, in Galois Theory and Modular Forms, Dev. Math. 11, Kluwer Acad. Publ., Boston, MA, (2004), 195-220.
[9] A. Ito, Existence of an infinite family of pairs of quadratic fields $\mathbb{Q}\left(\sqrt{m_{1} D}\right)$ and $\mathbb{Q}\left(\sqrt{m_{2} D}\right)$ whose class numbers are both divisible by 3 or both indivisible by 3, Funct. Approx. Comment. Math. 49 (2013), 111-135.
[10] Y. Kishi, A new family of imaginary quadratic fields whose class number is divisible by five, J. Number Theory 128 (2008), 2450-2458.
[11] T. Komatsu, A family of infinite pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{-D})$ whose class numbers are both divisible by 3 , Acta Arith. 96 (2001), 213-221.
[12] T. Komatsu, An infinite family of pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{m D})$ whose class numbers are both divisible by 3, Acta Arith. 104 (2002), 129-136.
[13] S. R. Louboutin, On the divisibility of the class number of imaginary quadratic number fields, Proc. Amer. Math. Soc. 137 (2009), 4025-4028.
[14] J.-F. Mestre, Courbes elliptiques et groupes de classes d'idéaux de certains corps quadratiques, J. Reine Angew. Math. 343 (1983), 23-35.
[15] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlköper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140-150.
[16] C. J. Parry, On the class number of relative quadratic fields, Math. Comp. 32 (1978), 12611270.
[17] M. Sase, On a family of quadratic fields whose class numbers are divisible by five, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998) 120-123.
[18] P. J. Weinberger, Real quadratic fields with class numbers divisible by n, J. Number Theory 5 (1973), 237-241.
[19] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76.

Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue, Shimane, 690-8504, Japan

E-mail address: aoki@riko.shimane-u.ac.jp
Department of Mathematics, Faculty of Education, Aichi University of Education, Kariya, Aichi, 448-8542, Japan

E-mail address: ykishi@auecc.aichi-edu.ac.jp

