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Abstract

This paper considers a Lotka-Volterra predator-prey model with predator receiving an envi-
ronmental time-variation. For such a system, a unique interior equilibrium is shown to be
globally asymptotically stable if the time-variation is bounded and weakly integrally positive.
Our result tells that the equilibrium can be stabilized even by nonnegative functions that make
the limiting system structurally unstable. Numerical simulations are also shown to illustrate
the result and to suggest that cases with time-variation acting on predator have larger-scale
convergence to the equilibrium than population dynamics with time-variation acting on prey.
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1. Introduction

Theoretical study on predator-prey systems in mathematical ecology has a long history
starting with the pioneering work of Lotka and Volterra. Their model is described by ordinary
differential equations for a prey with population densityN(t) and a predator with population
densityP (t) as follows:

N ′ = (a− bP )N,

P ′ = (− c+ dN)P,
(LV )

where the prime denotesd/dt and parametersa, b, c, andd are assumed to be positive. This
model has a single positive equilibrium point(c/d, a/b), which is a center, i.e., a “neutrally
stable” equilibrium surrounded by a family of periodic orbits whose amplitudes depend on the
initial population sizes.

A time-variational component of the environment is one of the processes that the Lotka-
Volterra equations ignore. Realistically, constant per capita birth and mortality rates are highly
unlikely for most natural populations; rather they are usualy subject to environmerntal fluc-
tuations. Supposing that predators have a carrying capacity and are more effective to receive
time-variation of the environment than their prey, we may discuss a general version of model
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(LV ) in which −c is modified to−c = ξ(t) − η(t)P , whereξ(t) andη(t) are continuous
functions withη(t) ≥ 0. In a simplest way, we will consider the following modified system of
(LV )

N ′ = (a− bP )N,

P ′ = (− c+ ah(t)− bh(t)P + dN)P,
(E)

whereh(t) is continuous and nonnegative fort ≥ 0. Because of some technical setting,
the modified model (E) still has the same interior equilibrium(c/d, a/b) uniquely. Let, for
example,h(t) = 1/(1 + t). Then, what behavior of solutions is expected for system (E)?
Noting that the limiting equations of (E) becomes(LV ), will we observe a long-time behavior
of the solution which converges to periodic orbits surrounding the point(c/d, a/b) or not?

In this paper, we give answer for this question in a more general way. For this purpose, we
define a family of functions. We say a nonnegative functionϕ is weakly integrally positiveif∫

I

ϕ(t)dt = ∞

for every setI =
∞∪
n=1

[τn, σn] such thatτn + δ < σn < τn+1 ≤ σn + ∆ for someδ > 0

and∆ > 0. A simple example of weakly integrally positive function issin2 t, 1/(1 + t), or
sin2 t/(1 + t) (see [3, 4, 5, 11, 12, 13]). It is easy to see that the family of weakly integrally
positive functions includes certain nonnegative functions which converge to0 ast → ∞; e.g.,
it includes the decreasing function with this property.

Needless to say, we consider model (E) in the first quadrant{(N,P ) : N > 0 andP > 0},
and then the initial data is in the first quadrant. The interior equilibrium of (E) is said to
be globally attractiveif it attracts any solution of (E) with the initial data. Moreover, if the
interior equilibrium of (E) is stable, then it is said to beglobally asymptotically stable. We
have the following:

Theorem 1. Suppose thath(t) is bounded and nonnegative fort ≥ 0. If h(t) is weakly in-
tegrally positive, then the interior equilibrium(c/d, a/b) of (E) is globally asymptotically
stable.

Theorem 1 tells that the equilibrium point of (E) can be stabilized even by nonnegative
functions that make the limiting system of (E) equal to(LV ).

The organization of this paper is as follows. In Section 2, we introduce a Lyapunov func-
tion to prove stability on the interior equilibrium and examine properties of certain functions
which will be used in proving our main theorem. We prove global attraction on the interior
equilibrium in Section 3. In [14], based on the same model(LV ), the authors have con-
sidered a predator-prey model where only prey (not predators) receive time-variation of the
environment to obtain the same type of result as Theorem 1. Using numerical simulations,
in Section 4, we illustrate Theorem 1 and suggest that the time-variation acting on predator
has larger-scale convergence to the equilibrium as compared with the case of a time-variation
acting on prey. We summarize our findings in Section 5.
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2. Lyapunov’s function

Let x = − log(bP/a) andy = − log(dN/c). Then, our model (E) can be transformed into
the system

x′ = c(1− e−y)− ah(t)(1− e−x),

y′ = − a(1− e−x).
(1)

The interior equilibrium(c/d, a/b) of (E) corresponds to the zero solution(x(t), y(t))≡ (0, 0)
of (1). To prove Theorem 1, we have only to show two conclusions:

(i) the zero solution of (1) is stable;
(ii) all solutions of (1) tend to the origin(0, 0) as time increases.

Define
f(z) = e−z + z − 1 and g(z) = |1− e−z|

for z ∈ R. Note that

g(z) =

∣∣∣∣ ddzf(z)
∣∣∣∣.

It is easy to check thatf(0) = 0 andf(−z) > f(z) for z > 0. Hence, it turns out that

0 ≤ f(z) ≤ f(−α) for |z| ≤ α (2)

with α > 0. The functionf(z) is increasing forz ≥ 0 and decreasing forz ≤ 0. Let

w = f̂(z)
def
= f(z)sgnz and denote the inverse function bŷf−1(z). Then, we see that

0 < −f̂−1(−w) < f̂−1(w) for w > 0. (3)

It is also clear thatg(z) is increasing forz ≥ 0 and decreasing forz ≤ 0 with g(0) = 0,
limz→∞ g(z) = 1, limz→−∞ g(z) = ∞ andg(−z) > g(z) for z > 0. Hence, it follows that

g(z) ≥ g(α) > 0 for |z| ≥ α (4)

and
0 ≤ g(z) ≤ g(−α) for |z| ≤ α (5)

with α positive.
As a suitable Lyapunov function for system (1), we adopt

V (x, y) = af(x) + cf(y).

Obviously,V (x, y) is positive definite andV (0, 0) = 0. DifferentiatingV (x, y) along any
solution of (1) gives

V̇(1)(t, x, y) = −a2h(t)g2(x(t))

on [0,∞) × R2. Hence, by means of a well-known Lyapunov-type theorem, we have the fol-
lowing result (as to the Lyapunov-type theorem, see Theorem 1.7 in [10, p. 14] or to Theorem
8.2 in [15, p. 32]).

Proposition 2. If h(t) is nonnegative fort ≥ t0, then the zero solution of(1) is uniformly
stable.

We obtained the first conclusion that we desired. In the next section, we will show the
second conclusion, that is, the global attraction of solutions of (1).
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3. Global attraction

Let (x(t), y(t)) be any solution of (1) with the initial timet0 ≥ 0 and let

v(t) = V (x(t), y(t)) = af(x(t)) + cf(y(t)) (6)

for t ≥ t0. Then, we obtain

v′(t) = −a2h(t)g2(x(t)) ≤ 0,

and therefore,v(t) is nonincreasing fort ≥ t0 and it has a limiting valuev0 ≥ 0. Hence, there
exists aT ≥ t0 such that

v0 ≤ v(t) ≤ 2v0 for t ≥ T. (7)

From (6) and the property thatf(z) → 0 asz → 0, we conclude that all solutions of (1) tend
to (0, 0) ast → ∞ if and only if v0 = 0. Assuming additional conditions onh(t), we can show
that the case in whichv0 > 0 does not occur.

Proposition 3. In addition to the assumptions in Proposition2, if h(t) is bounded and weakly
integrally positive, then all solutions of(1) tend to the origin(0, 0) as time increases.

Before proving Proposition 3, we examine the property of the first component of the solu-
tion (x(t), y(t)) of (1).

Lemma 4. If h(t) is bounded andv0 is positive, thenx(t) does not converge to zero ast → ∞.

Proof. Suppose thatx(t) converges to zero ast → ∞. Then, for a sufficiently smallε > 0,
there exists aT1 ≥ T such that

|x(t)| < ε for t ≥ T1. (8)

Hence, it follows from (2) that0 ≤ f(x(t)) ≤ f(−ε) for t ≥ T1. By this inequality with (6)
and (7), we obtain

cf(y(t)) = v(t)− af(x(t)) ≥ v0 − af(−ε)

for t ≥ T1. Sincev0 is positive andε is small enough, we may consider thatv0 − af(−ε) is
positive. Letu0 = (v0 − af(−ε))/c > 0. Then, there are two cases that we should consider:
(a) y(t) ≥ f̂−1(u0) > 0 for t ≥ T1; (b) y(t) ≤ f̂−1(−u0) < 0 for t ≥ T1. Sinceh(t) is
bounded, there exists ah > 0 such that|h(t)| ≤ h for t ≥ 0. We first consider the case (a).
From (5), we see that

x′(t) = c
(
1− e−y(t)

)
− ah(t)

(
1− e−x(t)

)
≥ c

(
1− e−y(t)

)
− ahg(x(t))

≥ c
(
1− exp

(
−f̂−1(u0)

))
− ahg(−ε)

def
= λ1

for t ≥ T1. Sinceu0 is positive andε is small enough,λ1 is a positive number. This contradicts
the assumption thatx(t) converges to zero ast → ∞. We next consider the case (b). Similarly,
we obtain

x′(t) ≤ c
(
1− e−y(t)

)
+ ahg(x(t))

≤ −c
(
exp

(
−f̂−1(−u0)

)
− 1

)
+ ahg(−ε)

def
= −λ2
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for t ≥ T1, whereλ2 > 0. This is also a contradiction. The lemma is thus proved. □

We are now ready to prove Proposition 3.

Proof of Proposition3. As mentioned in the top paragraph of Section 3,v(t) has a limiting
valuev0. We will show thatv0 = 0. By way of contradiction, we suppose thatv0 > 0. It
follows from (6) and (7) thatf(x(t)) ≤ 2v0/a. Taking account of (3), we see that

|x(t)| ≤ f̂−1(2v0/a) for t ≥ T. (9)

Hence, there exist the lower limit and the upper limit of|x(t)|.
If the lower limit of |x(t)| is positive, then we can find aγ > 0 and aT2 ≥ T such that

|x(t)| > γ for t ≥ T2. Hence, it follows from (4) thatg2(x(t)) ≥ g2(γ) for t ≥ T2. Using this
inequality, we have

v′(t) = −a2h(t)g2(x(t)) ≤ −a2g2(γ)h(t)

for t ≥ T2. Taking into account thatv′(t) ≤ 0 for t0 ≤ t ≤ T2, we obtain

− v(t0) ≤ v(t)− v(t0) =

∫ t

t0

v′(s)ds ≤ −a2g2(γ)

∫ t

T2

h(s)ds.

On the other hand, sinceh(t) is weakly integrally positive,∫ t

T2

h(s)ds → ∞ as t → ∞.

This is a contradiction. Thus, we see thatlim inft→∞ |x(t)| = 0.
Combining the conclusion of Lemma 4 and the above fact, we see that the upper limit of

|x(t)| is positive. Letµ = lim supt→∞ |x(t)|. Recall that|h(t)| ≤ h for t ≥ 0. We chooseε to
be small enough as follows:0 < ε < min{µ/2,−f̂−1(−v0/a)};

ah

c
g(−ε) < 1− exp

(
−f̂−1

(
v0 − af(−ε)

c

))
; (10)

and
ah

c
g(−ε) < exp

(
−f̂−1

(
af(−ε)− v0

c

))
− 1. (11)

Sinceg(−ε) approaches zero and the right-hand sides of (10) and (11) approach positive num-
bers asε → 0, such anε exists. Letw0 = (v0 − af(−ε))/c. Then,w0 is positive, because
0 < ε < −f̂−1(−v0/a).

Since lim inft→∞ |x(t)| = 0 < µ = lim supt→∞ |x(t)|, we can find two sequences of
intervals[τn, σn] and[tn, sn] with [tn, sn] ⊂ [τn, σn], T < τn andτn → ∞ asn → ∞ such that
|x(τn)| = |x(σn)| = ε, |x(tn)| = µ/2, |x(sn)| = 3µ/4 and

|x(t)| > ε for τn < t < σn, (12)

|x(t)| < ε for σn < t < τn+1, (13)

1

2
µ < |x(t)| < 3

4
µ for tn < t < sn. (14)
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Using (13) instead of (8) and following the same process as in the proof of Lemma 4, we
conclude that there exists aν > 0 such that

|x′(t)| ≥ ν for σn ≤ t ≤ τn+1.

Hence, together with (9), we can estimate that

2f̂−1(2v0/a) ≥ |x(τn+1)|+ |x(σn)| ≥
∣∣∣∣∫ τn+1

σn

x′(t)dt

∣∣∣∣
=

∫ τn+1

σn

|x′(t)|dt ≥ ν (τn+1 − σn),

namely,τn+1 ≤ σn +∆ for n ∈ N, where∆ = 2f̂−1(2v0/a)/ν.
It follows from (4) and (12) that

g(x(t)) ≥ g(ε) > 0 for τn ≤ t ≤ σn.

Sinceh(t) is nonnegative fort ≥ 0, we see that

v0 − v(t0) =

∫ ∞

t0

v′(t)dt

= −a2
∫ ∞

t0

h(t)g2(x(t))dt ≤ −a2g2(ε)
∞∑
n=1

∫ σn

τn

h(t)dt.

Hence, we obtain
∞∑
n=1

∫ σn

τn

h(t)dt ≤ v(t0)− v0
a2g2(ε)

< ∞. (15)

If there exists aδ > 0 such thatσn − τn > δ for n ∈ N, then

∞∑
n=1

∫ σn

τn

h(t)dt = ∞

becauseh(t) is weakly integrally positive andτn+1 ≤ σn + ∆ for n ∈ N. This contradicts
(15). Thus, we see thatlim infn→∞(σn − τn) = 0. Since[tn, sn] ⊂ [τn, σn], it turns out that

lim inf
n→∞

(sn − tn) = 0. (16)

Using (3), (6) and (7) again, we obtain

|y(t)| ≤ f̂−1(2v0/c) for t ≥ T.

From this estimation and (5), we see that

g(y(t)) ≤ g
(
−f̂−1(2v0/c)

)
for t ≥ T. (17)

By (5) and (15), we also estimate that

g(x(t)) ≤ g(−3λ/4) for tn ≤ t ≤ sn.
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Hence, together with (17), we get

|x′(t)| ≤ cg(y(t)) + ahg(x(t))

≤ cg
(
−f̂−1(2v0/c)

)
+ ahg(−3λ/4)

def
= ρ

for tn ≤ t ≤ sn. This yields that

0 <
1

4
µ = |x(sn)| − |x(tn)| ≤ |x(sn)− x(tn)|

=

∣∣∣∣∫ sn

tn

x′(s)ds

∣∣∣∣ ≤ ∫ sn

tn

|x′(s)|ds ≤ ρ(sn − tn)

for n ∈ N, which contradicts (16). This contradiction was caused because it had been assumed
thatv0 was positive. We therefore conclude thatv0 = 0.

The proof of Proposition 3 is then complete. □

As mentioned in Section 2, our model (E) is equivalent to system (1) by the transformation
x = − log(bP/a) andy = − log(dN/c). Hence, Theorem 1 is obtained from Propositions 2
and 3.

4. Numerical results

To give numerical results on the main theorem for system (E), we first use a set of param-
eter valuesa = 1, b = 0.1, c = 1, andd = 0.08. Choose

h(t) =
β

1 + t
, β ≥ 0.

Thish(t) converges to0 ast → ∞ but is weakly integrally positive ifβ > 0. Then, the interior
equilibrium is(12.5, 10) and, from Theorem 1, it is globally asymptotically stable ifβ > 0.
Figure 1 shows phase-plane plots of prey versus predator forβ = 1, where spiral convergence
is observed. Note that the initial data is(N(0), P (0)) = (20, 1). If β = 0, we have periodic
orbits whose amplitudes depend on the initial population sizes (see dotted lines in Figs. 1 and 2
for the same initial data).

In [14], the authors discussed another modified system of (LV ) as follows:

N ′ = (a+ ch(t)− dh(t)N − bP )N,

P ′ = (− c+ dN)P
(18)

to show that a unique interior equilibrium is globally asymptotically stable if the time-variation
h(t) is bounded and weakly integrally positive, which is the same type of result as Theorem 1
here. To run simulations for comparison of the result in [14] with Theorem 1, choose the same
parametersa = 1, b = 0.1, c = 1, andd = 0.08 and the same functionh(t) = 1/(1 + t) as
Figure 1. Using the same initial data(N(0), P (0)) = (20, 1), we obtain spiral convergence to
the equilibrium in phase-plane plots of prey versus predator (see Fig. 2). As shown in Figs. 1
and 2, the former looks larger-scale than the latter in the solution convergence.
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Figure 1. An illustration on the stabilizing effect ofh(t) for system (E) with a = 1, b = 0.1, c = 1, andd = 0.08.
A solid line is plotted forh(t) = 1/(1 + t), while a dotted line is plotted forh(t) = 0.
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Figure 2. An illustration on the stabilizing effect ofh(t) for system (18) witha = 1, b = 0.1, c = 1, and
d = 0.08. A solid line is plotted forh(t) = 1/(1 + t), while a dotted line is plotted forh(t) = 0.

Next, in order to illustrate how the weak integral positiveness ofh(t) is sufficient in Theo-
rem 1, we will show an example. Use another set of parameter valuesa = b = c = d = 1 for
system (E). In this case, the interior equilibrium is(1, 1). Choosing a function which is not
weakly integrally positive, for example, given ash(t) = 1/(1+ t)2, we observe a solution that
evolves slowly to a periodic solution and the interior equilibrium is not globally asymptotically
stable (see Fig. 3 for the initial data(N(0), P (0)) = (1, 2)).

5. Concluding remarks

The neutral stability of (LV ) implies that the population state once changed by an external
factor cannot return to the original one. Also, the slightest change to the (LV )’s structure
typically results in qualitatively different behavior (see [2]). For these mathematical facts,
(LV ) is calledstructurally unstable. However, it is desirable that models describing periodical
population behavior observed in nature involve robust properties such that population states
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Figure 3. An illustration that an interior equilibrium is not globally asymptotically stable ifh(t) is not weakly
integrally positive,a = b = c = d = 1, andh(t) = 1/(1 + t)2. This positive solution converges to a periodic
orbit surrounding the interior equilibrium(1, 1).

strayed away from the orbit will return to the original orbit as time passes. In fact, predator-
prey systems in nature apparently persist stably (in spite of being affected by external factors).
This gap suggests that our insight is not enough to understand mechanisms acting in nature
which stabilize population dynamics. To resolve the gap, theoreticians and experimentalists
have made a long list of such processes (see, [1, 6, 7, 8, 9]).

Realistic models should take account of a time-variational component of the environment,
which is one of the processes that the Lotka-Volterra equations ignore. Our result of this paper
presents an example that population dynamics can be stabilized for one of simplest situations
in which only predators have a carrying capacity and predators are more effective to receive
time-variation of the environment than their prey. What we mention here is that the global
stabilization of the equilibrium is realized even for nonnegative time-variational functions that
make the limiting system structurally unstable. We also numerically suggested difference in
the solution convergence between systems (E) and (18). We ran additional simulations for
the numerical work, with various combinations of parameters (data not shown). From these
results, it might be a qualitative structure present in a predator-prey pair that time-variation
acting on predator leads larger-scale convergence to equilibrium than time-variation acting on
prey.

As a simplest way for the growth of predator receiving an environmental time-variation,
we put the sameh(t) into per capita birth and mortality rates in system (E). Our result here
is greatly indebted to such a technical setting which makes the modified model still have a
unique interior equilibrium point(c/d, a/b). It is a more biologically practical scenario to
develop these considerations into a model that provides different time-variational functions on
per capita birth and mortality rates of the predator, which will be left for future work.
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