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Abstract

A necessary and sufficient condition is established for the equilibrium of the oscillator of
half-linear type with a damping term,

(ϕp(x
′))

′
+ h(t)ϕp(x

′) + ϕp(x) = 0

to be globally asymptotically stable. The obtained criterion is given by the form of a
certain growth condition of the damping coefficienth(t) and it can be applied to not only
the cases of large damping and small damping but also the case of fluctuating damping.
The presented result is new even in the linear cases (p = 2). It is also discussed whether
a solution of the half-linear differential equation

(r(t)ϕp(x
′))

′
+ c(t)ϕp(x) = 0

that converges to a non-zero value exists or not. Some suitable examples are included to
illustrate the results in the present paper.
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1. Introduction

The purpose of this paper is to show that a growth condition onh(t) is a necessary
and sufficient condition for the equilibrium of the second-order differential equation

(ϕp(x
′))

′
+ h(t)ϕp(x

′) + ϕp(x) = 0 (HL)

to be globally asymptotically stable. Here, the prime denotesd/dt, the functionϕp(z) is
defined by

ϕp(z) = |z|p−2z, z ∈ R
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with p > 1, and the damping coefficienth(t) is continuous and nonnegative fort ≥ 0.
Let

H(t) =

∫ t

0

h(s)ds.

If x(t) is a solution of (HL), then the functioncx(t) is another solution of (HL), where
c is an arbitrary constant except 1. In general, however, the total of two solutions of
(HL) is not a solution of (HL). Hence, the solution space of (HL) is homogeneous,
but not additive. Because there is only characteristic half of the solution space of linear
differential equations, Eq. (HL) is often calledhalf-linear.

Let x(t) = (x(t), x′(t)) andx0 ∈ R2, and let∥ · ∥ be any suitable norm. We denote
the solution of (HL) through(t0,x0) by x(t; t0,x0). It is clear that Eq. (HL) has the
equilibriumx(t) ≡ 0.

The equilibrium is said to bestableif, for any ε > 0 and anyt0 ≥ 0, there exists a
δ(ε, t0) > 0 such that∥x0∥ < δ implies∥x(t; t0,x0)∥ < ε for all t ≥ t0. The equilibrium
is said to beattractive if, for any t0 ≥ 0, there exists aδ0(t0) > 0 such that∥x0∥ < δ0
implies∥x(t; t0,x0)∥ → 0 ast → ∞. The equilibrium is said to beglobally attractive
if, for any t0 ≥ 0, any η > 0 and anyx0 ∈ R2, there is aT (t0, η,x0) > 0 such that
∥x(t; t0,x0)∥ < η for all t ≥ t0+T (t0, η,x0). The equilibrium isasymptotically stableif
it is stable and attractive. The equilibrium isglobally asymptotically stableif it is stable
and globally attractive. About those definitions, refer to the books [3, 6, 7, 8, 17, 18, 29,
34, 45] for example.

Sinceϕ2(z) = z, we can consider the damped linear oscillator

x′′ + h(t)x′ + x = 0 (L)

to be a special case of (HL). In the linear differential equations such as Eq. (L), it is well
known that the equilibrium is attractive (resp., asymptotically stable), then it is globally
attractive (resp., globally asymptotically stable). The study of the (global) asymptotic
stability for Eq. (L) (or its general type) is one of the major themes in the qualitative
theory of differential equations. Numerous papers have been devoted to find sufficient
conditions and necessary conditions for the asymptotic stability (for example, see [2, 4,
15, 21, 22, 23, 24, 25, 27, 31, 32, 35]).

We can cite Levin and Nohel [27, Theorem 1] as a pioneering work (their result can
be applied to more general equations than Eq. (L)). They proved that if there exist two
positive constantsh andh such thath ≤ h(t) ≤ h for t ≥ 0, then the equilibrium of (L)
is asymptotically stable. The researches afterwards have advanced toward the direction
where at least one of the lower boundh or the upper boundh is taken off. The case in
whichh ≤ h(t) < ∞ for t ≥ 0 and the case in which0 ≤ h(t) ≤ h for t ≥ 0 are often
calledlarge dampingandsmall damping, respectively.

In the case of large damping, we should first make the special mention of Smith [35,
Theorems 1 and 2]. He proved that∫ ∞

0

∫ t

0
eH(s)ds

eH(t)
dt = ∞. (1.1)
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is a necessary and sufficient condition for the equilibrium of (L) to be asymptotically
stable. Later, Ballieu and Peiffer [4] obtained several sufficient conditions and necessary
conditions for the equilibrium of a certain kind of nonlinear differential equation to be
globally asymptotically stable and presented the same criterion as Smith’s by using their
results (see [4, Corollary 6]). Although the expression of condition (1.1) is very concise,
it is not so easy to confirm whether condition (1.1) is satisfied. For this reason, many at-
tempts were carried out to look for other growth conditions that guarantee the asymptotic
stability for Eq. (L) or more general nonlinear equations. Artstein and Infante [2] showed
that ifH(t)/t2 is bounded fort sufficient large, then the equilibrium of (L) is asymptot-
ically stable. When an indefinite integral ofh(t) can be obtained, we can confirm their
growth condition. In Artstein and Infante’s result, the exponent 2 is the best possible in
the meaning that it cannot be changed to any2 + ε, ε > 0. However, their growth condi-
tion is weaker than condition (1.1) because it is sufficient for the asymptotic stability, but
not necessary. For example, consider Eq. (L) with large dampingh(t) = (2+t) log(2+t).
Then, it is easy to check thatH(t)/t2 is unbounded. Hence, Artstein and Infante’s result is
unavailable. However, it is known that the equilibrium of (L) with h(t) = (2+t) log(2+t)
is asymptotically stable (see [4, Corollary 7]). Hatvani, Krisztin and Totik [23] proved that
the growth condition (1.1) onh(t) is equivalent to

∞∑
n=1

(
H−1(nc)−H−1((n− 1)c)

)2
= ∞ (1.2)

for anyc > 0, whereH−1(s) denote the inverse function ofs = H(t). The merit of the
discrete criterion (1.2) is that it is sometimes easier to check it. For example, we see that if
h(t) = t, then condition (1.2) is satisfied; ifh(t) = t2, then condition (1.2) is not satisfied.
However, in general case, it is still difficult to verify condition (1.2). Fortunately, unlike
old times, there is a possibility that condition (1.1) can be confirmed by using numerical
analysis conducted via personal computer even if it is impossible by the human hand
calculation.

Ballieu and Peiffer [4, Theorems 5 and 6] also discussed the case of small damping.
From their results, we see that the equilibrium of (L) is asymptotically stable if and only
if H(t) tends to∞ ast → ∞, provided thath(t) is positive and nonincreasing fort ≥ 0.
Later, in the case of small damping, Hatvani [21, Corollary 4.4] showed that the weak
integral positivity ofh(t) implies the asymptotic stability for Eq. (L) (see also [36, 37]).
For the definition of the weak integral positivity, see Section 3. Moreover, Hatvani [22,
Theorem 1.1] proved that iflim supt→∞H(t)/t2/3 > 0, then the equilibrium of (L) is
asymptotically stable and pointed out that the exponent 2/3 is the best possible in the
meaning that it cannot be changed to any2/3− ε, ε > 0. Although his condition is very
sharp, it is not necessary and sufficient for the asymptotic stability. There are a lot of
other works in the case of small damping, but no necessary and sufficient condition such
as (1.1) has been reported at all.

The case in whichh(t) has neither the lower boundh nor the upper boundh may
be most difficult in the study of the asymptotic stability for Eq. (L). Let us call such a
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casefluctuating damping. Pucci and Serrin [31, Theorem A] consideredN -dimensional
nonlinear systems which contain Eq. (L) as a special case and presented sufficient condi-
tions and necessary conditions for the global asymptotic stability applied even to the case
of fluctuating damping (see also [32]). As another result that can even be applied to the
case of fluctuating damping, we can cite Hatvani and Totik [24, Theorem 3.1]. We will
compare our result with the result of them in the last part of this paper.

Let us now return to Eq. (HL) that is the research object of this paper. Because
Eq. (HL) is a generalization of the damped linear oscillator (L), we will call Eq. (HL)
the damped half-linear oscillator. In Eq. (HL) as well as Eq. (L), we may classify the
damping coefficienth(t) into three types by the presence or absence of the lower boundh
and the upper boundh.

Sugie and Onitsuka [40, Theorem 2.1] have considered a system of differential equa-
tions of the form

x′ = − e(t)x+ f(t)ϕp∗(y),

y′ = − g(t)ϕp(x)− h(t)y,
(1.3)

wherep∗ = p/(p− 1), and proved that under the assumptions

(i) E(t)
def
=

∫ t

0

e(s)ds, f(t), g(t) andh(t) are bounded andg(t)/f(t) is continuously

differentiable fort ≥ 0,

(ii) f(t) andg(t) have the same sign fort ≥ 0 with lim inf
t→∞

f(t)g(t) > 0,

the zero solution of (1.3) is globally asmptotically stable if the function

p∗h(t)− p e(t) +
f(t)

g(t)

(
g(t)

f(t)

)′

is nonnegative fort ≥ 0 and weakly integrally positive (as related researches, refer to
[38, 39]). As shown in the first paragraph in Section 2,ϕp∗ is the inverse function ofϕp.
Letting y = ϕp(x

′) as a new variable, we see that Eq. (HL) is equivalent to system (1.3)
with e(t) = 0 andf(t) = g(t) = 1. Hence, it turns out that if there exists anh such that
0 ≤ h(t) ≤ h for t ≥ 0 and if h(t) is weakly integrally positive, then the equilibrium is
globally asymptotically stable. This case is small damping. The above-mentioned result
cannot be applied to the cases of large damping and fluctuating damping.

When we consider the cases of large damping and fluctuating damping, we have to
take notice of the possibility that the so-called overdamping phenomenon happens. The
phenomenon of overdamping is that a solution converging to a non-zero value exists.
This phenomenon is caused by too fast growth of the damping coefficienth(t). Recently,
Sugie and Hata [38, Section 6] have pointed out that this phenomenon appeared to not
only Eq. (L) but also Eq. (HL).

In this paper, we intend to establish a criterion for the equilibrium of (HL) to be
globally asymptotically stable which can even be applied to the cases of large damping
and fluctuating damping. Our criterion is expressed in the form of a growth condition
on h(t) which is a generalization of (1.1). Needless to say, this criterion excludes the
phenomenon of overdamping.
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2. Convergence and divergence of solutions

Consider the half-linear second order differential equation

(r(t)ϕp(x
′))

′
+ c(t)ϕp(x) = 0, (2.1)

wherer(t) andc(t) are real continuous functions,r(t) ̸= 0 for t ≥ 0 andc(t) ̸≡ 0. Let p∗

be the conjugate number ofp; namely,

1

p
+

1

p∗
= 1,

thenp∗ is also greater than1. Let

w = ϕp(z) =

 zp−1 if z ≥ 0

−(−z)p−1 if z < 0.

Then,z ≥ 0 if and only ifw ≥ 0, and

z =

 w1/(p−1) if w ≥ 0

−(−w)1/(p−1) if w < 0.

Since(p − 1)(p∗ − 1) = 1, it follows thatw1/(p−1) = wp∗−1 = |w|p∗−2w if w ≥ 0 and
−(−w)1/(p−1) = −(−w)p∗−1 = (−w)p∗−2w = |w|p∗−2w if w < 0. Hence,z = ϕp∗(w);
namely,ϕp∗ is the inverse function ofϕp.

It is known that for anyt0 ≥ 0 and(c1, c2) ∈ R2, there exists a unique solution of
(2.1) satisfyingx(t0) = c1 andx′(t0) = c2 which is continuable in the future. For details,
see Dǒslý [9, p. 170] or Dǒslý andŘeh́ak [10, pp. 8–10]. Hence, the global existence and
uniqueness of solutions of (2.1) are guaranteed for the initial value problem.

Over the last four decades, a considerable number of studies have been made on the
half-linear differential equation (2.1). Especially, many good articles concerning oscilla-
tion theory have been presented. Those results can be found in the books [1, 9, 10] and the
references cited therein. Even after these books are published, Eq. (2.1) keeps being ac-
tively researched (for example, see [5, 11, 12, 13, 14, 30, 33]). In this section, we discuss
the asymptotic behavior of solutions of (2.1) from a different angle.

It is clear that

ϕp∗(XY ) = ϕp∗(X)ϕp∗(Y ) for X ∈ R and Y ∈ R. (2.2)

Sinceϕp∗ is an increasing function, we see that

ϕp∗

(
X + Y

2

)
≤ max

{
ϕp∗(X), ϕp∗(Y )

}
≤ ϕp∗(X) + ϕp∗(Y ),

or
ϕp∗(X + Y ) ≤ ϕp∗(2)

{
ϕp∗(X) + ϕp∗(Y )

}
. (2.3)

for X ≥ 0 andY ≥ 0. Using the properties (2.2) and (2.3) ofϕp∗ , we have the follow-
ing result on the existence of solutions of (2.1) converging to a non-zero value as time
increases.
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Theorem 2.1. Suppose that∫ ∞

0

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt <∞. (2.4)

Then every solutionx(t) of (2.1) tends to a finite limitx(∞) as t → ∞ andx(∞) does
not vanish for at least one solution of(2.1).

Proof. Let x(t) be any solution of (2.1) with the initial timet0 ≥ 0. Integrating both
sides of (2.1), we obtain

r(t)ϕp(x
′(t))− r(T )ϕp(x

′(T )) +

∫ t

T

c(s)ϕp(x(s))ds = 0,

whereT is a sufficiently large number. Sincer(t) ̸= 0 for t ≥ 0, we get

x′(t) = ϕp∗

(
−
∫ t

T
c(s)ϕp(x(s))ds

r(t)
+

A

r(t)

)
, (2.5)

whereA = r(T )ϕp(x
′(T )). Integrate both sides of (2.5) fromT to t to obtain

x(t) =

∫ t

T

ϕp∗

(
−
∫ s

T
c(τ)ϕp(x(τ))dτ

r(s)
+

A

r(s)

)
ds+B, (2.6)

whereB = x(T ). Conversely, for everyT > 0 and any pair of integration constantsA and
B, the functionx(t) given by (2.6) is a solution of (2.1) satisfyingA = r(T )ϕp(x

′(T ))
andB = x(T ).

Define
Mt = max

T≤s≤t
|x(s)|.

Of course,Mt is nondecreasing fort ≥ T . By (2.6), we have

|x(t)| =
∣∣∣∣∫ t

T

ϕp∗

(
−
∫ s

T
c(τ)ϕp(x(τ))dτ

r(s)
+

A

r(s)

)
ds+B

∣∣∣∣
≤
∫ t

T

∣∣∣∣ϕp∗

(
−
∫ s

T
c(τ)ϕp(x(τ))dτ

r(s)
+

A

r(s)

)∣∣∣∣ds+ |B|

≤
∫ t

T

ϕp∗

(∫ s

T
|c(τ)||ϕp(x(τ))|dτ

|r(s)|
+

|A|
|r(s)|

)
ds+ |B|

=

∫ t

T

ϕp∗

(∫ s

T
|c(τ)|ϕp(|x(τ)|)dτ

|r(s)|
+

|A|
|r(s)|

)
ds+ |B|.

Taking into account that

ϕp(|x(τ)|) ≤ ϕp(Mτ ) ≤ ϕp(Ms)
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for s ≥ τ ≥ T , we obtain

|x(t)| ≤
∫ t

T

ϕp∗

(
ϕp(Ms)

∫ s

T
|c(τ)|dτ

|r(s)|
+

|A|
|r(s)|

)
ds+ |B|.

Hence, using (2.2), (2.3) and the fact thatMs ≤Mt for t ≥ s, we get

|x(t)| ≤
∫ t

T

ϕp∗(2)

{
ϕp∗

(
ϕp(Ms)

∫ s

T
|c(τ)|dτ

|r(s)|

)
+ ϕp∗

(
|A|
|r(s)|

)}
ds+ |B|

≤ ϕp∗(2)

∫ t

T

Msϕp∗

(∫ s

T
|c(τ)|dτ
|r(s)|

)
ds+ ϕp∗(2)

∫ t

T

ϕp∗

(
|A|
|r(s)|

)
ds+ |B|

≤Mtϕp∗(2)

∫ t

T

ϕp∗

(∫ s

T
|c(τ)|dτ
|r(s)|

)
ds+ ϕp∗(2|A|)

∫ t

T

ϕp∗

(
1

|r(s)|

)
ds+ |B|.

Sincec(t) ̸≡ 0 andT is sufficiently large, we may assume without loss of generality that
there exists aλ > 0 such that∫ t

0

|c(s)|ds ≥ λ for t ≥ T.

From (2.2), (2.4) and this estimation, we see that

∞ >

∫ ∞

0

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt

=

∫ T

0

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt+

∫ ∞

T

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt

≥
∫ ∞

T

ϕp∗

(
λ

|r(t)|

)
dt = ϕp∗(λ)

∫ ∞

T

ϕp∗

(
1

|r(t)|

)
dt,

and therefore, ∫ ∞

T

ϕp∗

(
1

|r(t)|

)
dt <∞. (2.7)

Hence, we conclude that

|x(t)| ≤Mtϕp∗(2)

∫ t

T

ϕp∗

(∫ s

T
|c(τ)|dτ
|r(s)|

)
ds+ C, (2.8)

where

C = ϕp∗(2|A|)
∫ ∞

T

ϕp∗

(
1

|r(t)|

)
dt+ |B| ≥ 0. (2.9)

Let

K = K(T ) = ϕp∗(2)

∫ ∞

T

ϕp∗

(∫ t

T
|c(s)|ds
|r(t)|

)
dt.
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Then, by (2.8), we have
Mt ≤ KMt + C for t ≥ T. (2.10)

From (2.4), we see that the integralK is convergent and its value tends to0 asT → ∞.
Let T be so large thatK becomes less than1. Then, it follows from (2.10) that

|x(t)| ≤Mt ≤
C

1−K
for t ≥ T. (2.11)

This means thatx(t) is bounded.
Using (2.3) and (2.5), we obtain

|x′(t)| = ϕp∗

(∣∣∣∣∣−
∫ t

T
c(s)ϕp(x(s))ds

r(t)
+

A

r(t)

∣∣∣∣∣
)

≤ ϕp∗

(∫ t

T
|c(s)|ϕp(|x(s)|)ds

|r(t)|
+

|A|
|r(t)|

)

≤ ϕp∗(2)

{
ϕp∗

(∫ t

T
|c(s)|ϕp(|x(s)|)ds

|r(t)|

)
+ ϕp∗

(
|A|
|r(t)|

)}

for t ≥ T . Combining (2.2), (2.4), (2.7) and (2.11), we get∫ ∞

T

|x′(t)|dt ≤ ϕp∗(2)

∫ ∞

T

ϕp∗

(∫ t

T
|c(s)|ϕp(|x(s)|)ds

|r(t)|

)
dt

+ ϕp∗(2|A|)
∫ ∞

T

ϕp∗

(
1

|r(t)|

)
dt

≤ C

1−K
ϕp∗(2)

∫ ∞

T

ϕp∗

(∫ t

T
|c(s)|ds
|r(t)|

)
dt

+ ϕp∗(2|A|)
∫ ∞

T

ϕp∗

(
1

|r(t)|

)
dt <∞.

In other words,x(t) is of bounded variation fort ≥ T . Hence, there exists a finite limit
x(∞).

To complete the proof of Theorem 2.1, we have only to show that Eq. (2.1) has a so-
lution x(t) for whichx(∞) ̸= 0. Since the existence of a finite limitx(∞) is guaranteed,
it follows from (2.6) that

x(∞) =

∫ ∞

T

ϕp∗

(
−
∫ t

T
c(s)ϕp(x(s))ds

r(t)
+

A

r(t)

)
dt+B. (2.12)

Also, sinceK(T ) tends to0 asT → ∞, we can chooseT so large thatK < 1/2. Hence,
from (2.11), we see that

|x(t)| < 2C for t ≥ T. (2.13)
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In particular, we consider the case in whichA = 0 andB = 1. Then, from (2.9),
(2.12) and (2.13), it turns out thatC = 1,

x(∞) = −
∫ ∞

T

ϕp∗

(∫ t

T
c(s)ϕp(x(s))ds

r(t)

)
dt+ 1

and
|x(t)| < 2 for t ≥ T,

respectively. Hence, we can estimate that

1 ≤ |x(∞)|+

∣∣∣∣∣
∫ ∞

T

ϕp∗

(∫ t

T
c(s)ϕp(x(s))ds

r(t)

)
dt

∣∣∣∣∣
≤ |x(∞)|+

∫ ∞

T

ϕp∗

(∫ t

T
|c(s)|ϕp(|x(s)|)ds

|r(t)|

)
dt

≤ |x(∞)|+
∫ ∞

T

ϕp∗

(
ϕp(2)

∫ t

T
|c(s)|ds

|r(t)|

)
dt

= |x(∞)|+ 2

∫ ∞

T

ϕp∗

(∫ t

T
|c(s)|ds
|r(t)|

)
dt

= |x(∞)|+ 2K

ϕp∗(2)

for t ≥ T . Sinceϕp∗(2) = 2p
∗−1 > 1 andK < 1/2, we obtain

|x(∞)| > 1− 2K > 0.

Consequently, Eq. (2.1) has the solution

x(t) = −
∫ t

T

ϕp∗

(∫ s

T
c(τ)ϕp(x(τ))dτ

r(s)

)
ds+ 1 for t ≥ T,

whose finite limitx(∞) is not zero.
This completes the proof of Theorem 2.1. □

In Theorem 2.1,r(t) is allowed to be negative fort ≥ 0 andc(t) is allowed to change
its sign. In the special case in whichp = 2, Eq. (2.1) becomes the linear differential
equation

(r(t)x′)
′
+ c(t)x = 0. (2.14)

Wintner [44] have presented the following result (see also Weyl [43]).

Theorem A. Suppose that ∫ ∞

0

∫ t

0
|c(s)|ds
|r(t)|

dt <∞.

Then every solutionx(t) of (2.14)tends to a finite limitx(∞) ast → ∞ andx(∞) does
not vanish for at least one solution of(2.14).
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Theorem 2.1 is a natural generalization of Theorem A from the linear differential
equation (2.14) to the half-linear differential equation (2.1).

As Theorem 2.1 shown, condition (2.4) is sufficient for Eq. (2.1) to have a solution
x(t) converging to a non-zero value ast→ ∞. The following result shows that condition
(2.4) is also necessary for this problem in the case in whichr(t) andc(t) have the same
sign fort ≥ 0.

Theorem 2.2. Suppose thatr(t)c(t) > 0 for t ≥ 0. If∫ ∞

0

|c(t)|dt = ∞ (2.15)

and ∫ ∞

0

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt = ∞, (2.16)

then Eq.(2.1) fails to have a solutionx(t) with x(∞) ̸= 0 (a finite limit x(∞) might be
infinity or not exists).

Proof. By way of contradiction, we suppose that there exists a solution of (2.1) whose
finite limit x(∞) is positive. The proof of the case in whichx(∞) < 0 is carried out in
the same way as the proof of the case in whichx(∞) > 0.

We can find aT > 0 such that

x(t) >
1

2
x(∞) > 0 for t ≥ T. (2.17)

Integrating both sides of (2.1) twice, we obtain

x(t) =

∫ t

T

ϕp∗

(
−
∫ s

T
c(τ)ϕp(x(τ))dτ

r(s)
+

A

r(s)

)
ds+B, (2.18)

whereA = r(T )ϕp(x
′(T )) andB = x(T ). Taking into account thatr(t) andc(t) have

the same sign fort ≥ 0, we get

−
∫ t

T
c(s)ϕp(x(s))ds

r(t)
+

A

r(t)
= −

∫ t

T
|c(s)|ϕp(x(s))ds

|r(t)|
+

A

r(t)

≤ −
∫ t

T
|c(s)|ϕp(x(s))ds

|r(t)|
+

|A|
|r(t)|

for t ≥ T . Since
ϕp(x(t)) > ϕp(x(∞)/2) for t ≥ T

by (2.17), it follows that

−
∫ t

T
c(s)ϕp(x(s))ds

r(t)
+

A

r(t)
< −

ϕp(x(∞)/2)
∫ t

T
|c(s)|ds

|r(t)|
+

|A|
|r(t)|

(2.19)
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for t ≥ T . From (2.15), we can chooseT1 so large thatT1 > T and(
1− 1

ϕp(2)

)∫ T1

T

|c(t)|dt > max

{
|A|

ϕp(x(∞)/2)
,

1

ϕp(2)

∫ T

0

|c(t)|dt
}

Sinceϕp(2) > 1,(
1− 1

ϕp(2)

)∫ t

T

|c(s)|ds > max

{
|A|

ϕp(x(∞)/2)
,

1

ϕp(2)

∫ T

0

|c(t)|dt
}

for t ≥ T1. From this inequality with (2.2), we see that

−ϕp(x(∞)/2)

∫ t

T

|c(s)|ds+ |A| < −ϕp(x(∞)/4)

∫ t

T

|c(s)|ds

< −ϕp(x(∞)/4)

ϕp(2)

∫ t

0

|c(s)|ds

= −ϕp(x(∞)/8)

∫ t

0

|c(s)|ds

for t ≥ T1. Hence, together with (2.18) and (2.19), we can estimate that

x(t) =

∫ t

T1

ϕp∗

(
−
∫ s

T
c(τ)ϕp(x(τ))dτ

r(s)
+

A

r(s)

)
ds

+

∫ T1

T

ϕp∗

(
−
∫ s

T
c(τ)ϕp(x(τ))dτ

r(s)
+

A

r(s)

)
ds+B

<

∫ t

T1

ϕp∗

(
−
ϕp(x(∞)/2)

∫ s

T
|c(τ)|dτ

|r(s)|
+

|A|
|r(s)|

)
ds+ C +B

<

∫ t

T1

ϕp∗

(
−
ϕp(x(∞)/8)

∫ s

0
|c(τ)|dτ

|r(s)|

)
ds+ C +B

for t ≥ T1, where

C =

∫ T1

T

ϕp∗

(
−
∫ s

T
c(τ)ϕp(x(τ))dτ

r(s)
+

A

r(s)

)
ds.

We therefore conclude that

x(t) < − 1

8
x(∞)

∫ t

T1

ϕp∗

(∫ s

0
|c(τ)|dτ
|r(s)|

)
ds+ C +B

= − 1

8
x(∞)

∫ t

0

ϕp∗

(∫ s

0
|c(τ)|dτ
|r(s)|

)
ds+D + C +B

for t ≥ T1, where

D =
1

8
x(∞)

∫ T1

0

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt.

11



Consequently, we obtain

0 < x(∞) ≤ − 1

8
x(∞)

∫ ∞

0

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt+D + C +B.

This is a contradiction because of (2.16).
The proof of Theorem 2.2 is now complete. □

The following result is a direct conclusion of Theorems 2.1 and 2.2.

Theorem 2.3. Under the assumption thatr(t)c(t) > 0 for t ≥ 0 and condition(2.15),
condition(2.4) is necessary and sufficient for Eq. (2.1)to have a solution converging to a
non-zero limit.

To illustrate Theorems 2.1 and 2.2, we give simple examples.

Example 2.1. Consider Eq. (2.1) with

r(t) =
(
1 + tp

∗)2(p−1)
and c(t) =

(
p∗(1 + tp

∗
)

2 + tp∗

)p−1

. (2.20)

Then it has a solutionx(t) for whichx(∞) ̸= 0.

It is clear from (2.20) that∫ t

0

|c(s)|ds ≤
∫ t

0

(p∗)p−1ds = (p∗)p−1t for t ≥ 0,

and therefore,∫ ∞

0

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt ≤

∫ ∞

0

ϕp∗

((
p∗tp

∗−1

(1 + tp∗)2

)p−1
)
dt

=

∫ ∞

0

p∗tp
∗−1

(1 + tp∗)2
dt = 1.

Hence, condition (2.4) is satisfied. Thus, by means of Theorem 2.1, we conclude that
every solutionx(t) of (2.1) with (2.20) tends to a finite limitx(∞) ast → ∞ andx(∞)
does not vanish for at least one solution.

The function

x(t) =
2 + tp∗

p∗(1 + tp∗)

is a solution of (2.1) with (2.20) converging to1/p∗ ast→ ∞. In fact, since

x′(t) = − tp
∗−1

(1 + tp∗)2
,

12



it is obvious that

ϕp(x(t)) =

(
2 + tp∗

p∗(1 + tp∗)

)p−1

and ϕp(x
′(t)) = −

(
tp

∗−1

(1 + tp∗)2

)p−1

.

Hence, it is easy to verify that

(r(t)ϕp(x
′(t)))

′
+ c(t)ϕp(x(t)) = −

((
1 + tp

∗)2(p−1)
(

tp
∗−1

(1 + tp∗)2

)p−1
)′

+

(
p∗(1 + tp

∗
)

2 + tp∗

)p−1(
2 + tp∗

p∗(1 + tp∗)

)p−1

= − t′ + 1 = 0.

Example 2.2. Consider Eq. (2.1) with

r(t) = (1 + t)p−1 and c(t) =
p− 1

1 + t
. (2.21)

Then every solution fails to have a non-zero limit.

It follows from (2.21) that

r(t)c(t) = (p− 1)(1 + t)p−2 > 0 for t ≥ 0,∫ t

0

|c(s)|ds = (p− 1) log(1 + t) → ∞ as t→ ∞

and ∫ ∞

0

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt =

∫ ∞

0

ϕp∗

(
(p− 1) log(1 + t)

(1 + t)p−1

)
dt

= ϕp∗(p− 1)

∫ ∞

0

(
log(1 + t)

(1 + t)p−1

)p∗−1

dt

= (p− 1)p
∗−1

∫ ∞

0

(
log(1 + t)

)p∗−1

(1 + t)
dt = ∞.

Hence, all conditions of Theorem 2.2 are satisfied. Thus, Eq. (2.1) with (2.21) fails to
have a solution converging to a non-zero limit.

To be more precise, we can express any solution of (2.1) with (2.21) satisfying the
initial condition(x(t0), x′(t0)) = (α, β) as

x(t) = p

√
|α|p + |ϕp((1 + t0)β))|p∗

× sinp

(
arctanp

α

(1 + t0)β
+ log(1 + t)

)
, (2.22)
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wheresinp t is the solution of a basic half-linear differential equation(
ϕp(x

′)
)′
+ (p− 1)ϕp(x) = 0

satisfying the initial condition(x(0), x′(0)) = (0, 1); cosp t = (sinp t)
′,

tanp t =
sinp t

cosp t

andarctanp is the inverse function oftanp in the domain(−πp/2, πp/2);

πp =

∫ 1

0

2

(1− tp)1/p
dt =

2π

p sin(π/p)
.

The functionssinp andcosp are periodic with period2πp and the functionssinp, cosp and
tanp are usually called the generalized sine, cosine and tangent functions, respectively.
For details about the generalized trigonometric functions, see Došlý [9, p. 168–169] or
Došlý and P.Řeh́ak [10, pp. 4–6]. It is clear that the solution given by (2.22) does not
have a non-zero limit.

Let us consider Example 2.2 from a different point of view. For this purpose, we put

y = ϕp((1 + t)x′)

as a new variable. Then, we can rewrite Eq. (2.1) with (2.21) as the system

x′ =
1

1 + t
ϕp∗(y),

y′ = −p− 1

1 + t
ϕp(x).

(2.23)

Let (x(t), y(t)) be any solution of (2.23). Then, the solution satisfies that|x(t)|p +
|y(t)|p∗ = c for somec ≥ 0. In fact,

d

dt

(
|x(t)|p + |y(t)|p∗

)
= pϕp(x(t))x

′(t) + p∗ϕp∗(y(t))y
′(t)

=
p

1 + t
ϕp(x(t))ϕp∗(y(t))−

p∗(p− 1)

1 + t
ϕp∗(y(t))ϕp(x(t))

= 0.

Hence, each nontrivial positive orbit of (2.23) is a closed curve surrounding the origin
(0, 0) and it moves clockwise around the origin as time increases. This means that every
solution of (2.1) with (2.21) fails to have a non-zero limit.
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3. Necessary and sufficient conditions for global attractivity

Before we advance to the main subject, it is very helpful to describe several relations
of the parametersp andp∗ and the functionϕq(z) with q = p or q = p∗. Since

1

p
+

1

p∗
= 1,

it follows that
(p− 1)(p∗ − 1) = 1 and p = p∗(p− 1).

The following formulae concerning differentiation hold:

d

dz
ϕq(z) = (q − 1)|z|q−2 and

d

dz
|z|q = qϕq(z).

Let x(t) be any solution of (HL) with the initial timet0 ≥ 0 and define

v(t) =
|x(t)|p

p
+

|x′(t)|p

p∗
.

Since|ϕp(x
′(t))|p∗ = |x′(t)|p∗(p−1) = |x′(t)|p, we can rewritev(t) as

v(t) =
|x(t)|p

p
+

|ϕp(x
′(t))|p∗

p∗
.

Recall thatϕp∗ is the inverse function ofϕp. Then, we get

v′(t) = ϕp(x(t))x
′(t) + ϕp∗

(
ϕp(x

′(t))
)(
ϕp(x

′(t))
)′

= ϕp(x(t))x
′(t)− x′(t)

(
h(t)ϕp(x

′(t)) + ϕp(x(t))
)

= −h(t)ϕp(x
′(t))x′(t) = −h(t)|x′(t)|p

for t ≥ t0. Sinceh(t) ≥ 0 for t ≥ 0, we see that

v(t) ≤ v(t0) for t ≥ t0.

Hence, we obtain the following result.

Proposition 3.1. The equilibrium of(HL) is stable.

In the linear differential equations such as Eq. (L), it is well known that if the equilib-
rium is attractive, then it is stable (for example, see Coppel [8, p. 54]). However, in non-
linear differential equations, the attractivity does not always imply the stability. The sta-
bility and the attractivity are completely different concepts in general. Although Eq. (HL)
is nonlinear, Proposition 3.1 shows that it has this inclusion relation ifh(t) is nonnegative
for t ≥ 0.

We next present necessary conditions for the equilibrium of (HL) to be attractive.
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Theorem 3.2. If the equilibrium of(HL) is attractive, then

H(t) → ∞ as t→ ∞

and ∫ ∞

0

ϕp∗

(∫ t

0
eH(s)ds

eH(t)

)
dt = ∞. (3.1)

Proof. As mentioned above, sinceh(t) ≥ 0 for t ≥ 0, it follows that

v′(t) = −h(t)|x′(t)|p ≥ − p∗h(t)

{
|x(t)|p

p
+

|x′(t)|p

p∗

}
= − p∗h(t)v(t);

namely,v′(t) + p∗h(t)v(t) ≥ 0 for t ≥ t0. This differential inequality yields that

v(t) ≥ v(t0) exp
{
p∗(H(t0)−H(t))

}
for t ≥ t0.

Since the equilibrium of (HL) is attractive, the functionv(t) tends to0 ast→ ∞. Hence,
we see thatH(t) diverges to∞ ast→ ∞.

Multiplying both sides of Eq. (HL) by eH(t), we obtain(
eH(t)ϕp(x

′)
)′
+ eH(t)ϕp(x) = eH(t)(ϕp(x

′))
′
+ h(t)eH(t)ϕp(x

′) + eH(t)ϕp(x)

= 0.

Hence, Eq. (HL) becomes Eq. (2.1) withr(t) = c(t) = eH(t). For this reason, if (3.1)
does not hold, then by virtue of Theorem 2.1, Eq. (HL) has a solutionx(t) which tends
to a non-zero limitx(∞) ast increases. This means that the equilibrium of (HL) is not
attractive. Hence, (3.1) is also satisfied. □

So far as the special case in whichp = 2 is concerned, Smith [35] has already proved
the following result.

Theorem B. If the equilibrium of(L) is attractive, then

H(t) → ∞ as t→ ∞ (3.2)

and ∫ ∞

0

∫ t

0
eH(s)ds

eH(t)
dt = ∞. (3.3)

As shown in Theorem B, conditions (3.2) and (3.3) are necessary for the equilibrium
of (L) to be attractive. On the other hand, Hatvani and Totik [24, Example 3.2] have
reported that conditions (3.2) and (3.3) alone are not sufficient for the equilibrium of (L)
to be attractive. Afterwards, many efforts has been made to bridge this gap. For example,
refer to [15, 21, 22, 23, 25, 31, 32]. An attempt was to strengthen condition (3.2) as
follows (see [16, 20, 28, 41, 42, 46]).
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Definition 3.1. A nonnegative functionψ(t) is said to beintegrally positiveif

∞∑
n=1

∫ σn

τn

ψ(t)dt = ∞

for every pair of sequences{τn} and{σn} satisfyingτn+ω < σn ≤ τn+1 for someω > 0.

It is known thatψ(t) is integrally positive if and only if

lim inf
t→∞

∫ t+γ

t

ψ(s)ds > 0

for everyγ > 0. For example, the functionsin2 t is integrally positive. The integral
positivity is rather stringent restriction than

lim
t→∞

∫ t

ψ(s)ds = ∞.

If ψ(t) is nonincreasing fort ≥ 0 and tends to zero ast→ ∞, then it is not integrally pos-
itive any longer. The following class of functions was introduced to weaken the concept
of the integral positivity.

Definition 3.2. An integrally positive functionψ(t) is said to beweakly integrally positive
if τn+1 ≤ σn + Ω for someΩ > 0.

We can find the concept of the weak integral positivity in the papers [19, 21, 26,
36, 37, 38, 40]. A typical example of weakly integrally positive functions is1/(1 + t)
or sin2 t/(1 + t). These are not integrally positive (for the proof, see Sugieet al. [39,
Proposition 2.1]).

Hereafter, assuming thath(t) is integrally positive or weakly integrally positive, we
advance our discussion. To begin with, we show that the integral positivity ofh(t) and
condition (3.1) are sufficient for the equilibrium of (HL) to be globally attractive. Need-
less to say, Theorem 3.3 below can be applied to Eq. (L). Therefore, it is a natural gener-
alization of Hatvani [21, Corollary 4.3].

Theorem 3.3. Suppose thath(t) is integrally positive and it satisfies(3.1). Then the
equilibrium of (HL) is globally attractive.

Proof. As mentioned in the proof of Theorem 3.2, Eq. (HL) is equivalent to Eq. (2.1)
with r(t) = c(t) = eH(t). It is clear thatr(t)c(t) > 0 for t ≥ 0. Sinceh(t) ≥ 0 for t ≥ 0,
we see thatH(t) ≥ H(0) = 0 for t ≥ 0. Hence,∫ ∞

0

|c(t)|dt =
∫ ∞

0

eH(t)dt ≥
∫ ∞

0

dt = ∞;
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namely, condition (2.15) is satisfied. Since∫ ∞

0

ϕp∗

(∫ t

0
|c(s)|ds
|r(t)|

)
dt =

∫ ∞

0

ϕp∗

(∫ t

0
eH(s)ds

eH(t)

)
dt = ∞,

condition (2.16) is also satisfied. Consequently, by means of Theorem 2.2, every solution
of (HL) fails to have a non-zero limit.

The proof is by contradiction. Suppose that the equilibrium of (HL) is not globally
attractive. Then, Eq. (HL) has a solutionx(t) for which

v(t) =
|x(t)|p

p
+

|x′(t)|p

p∗
̸→ 0 as t→ ∞.

Let t0 be the initial time of the solutionx(t). Sincev′(t) = −h(t)|x′(t)|p ≤ 0 for t ≥ t0,
we see thatv(t) is nonincreasing fort ≥ t0 and it has a positive limitv0. Hence, if|x′(t)|p
tends to0 as t → ∞, then |x(t)|p have to approach the positive valuepv0 as t → ∞.
This contradicts the fact that every solution of (HL) fails to have a non-zero limit. We
therefore conclude thatlim supt→∞ |x′(t)|p > 0. Letµ be so small that

lim sup
t→∞

|x′(t)|p > µpv0. (3.4)

It is possible to find such a positive numberµ. On the other hand, if there exist aν > 0
and aT1 ≥ t0 such that|x′(t)|p > ν for t ≥ T1, then we have

v′(t) = −h(t)|x′(t)|p ≤ − νh(t)

for t ≥ T1. Integrating this inequality fromT1 to t, we obtain

− v(T1) ≤ v(t)− v(T1) =

∫ t

T1

v′(s)ds ≤ − ν

∫ t

T1

h(s)ds,

which tends to−∞ ast → ∞ becauseH(t) diverges to∞ ast → ∞. This is a contra-
diction. Thus, we see that

lim inf
t→∞

|x′(t)|p = 0 (3.5)

Sincev(t) is nonincreasing fort ≥ t0, there exists aT2 ≥ t0 such that

0 < v0 ≤ v(t) ≤ 2v0 for t ≥ T2. (3.6)

Because of (3.4) and (3.5), we can choose three divergent sequences{τn}, {tn} and{σn}
with T2 < τn < tn < σn ≤ τn+1 such that|x′(τn)|p = |x′(σn)|p = µv0, |x′(tn)|p = pµv0
and

|x′(t)|p > µv0 for τn < t < σn (3.7)

and
µv0 < |x′(t)|p < pµv0 for τn < t < tn. (3.8)
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In fact, from (3.5) it follows that|x′(t∗)|p ≤ µv0 for somet∗ > T2. Let

t1 = min
{
t > t∗ : |x′(t)|p = pµv0

}
,

τ1 = max
{
t < t1 : |x′(t)|p = µv0

}
and

σ1 = min
{
t > t1 : |x′(t)|p = µv0

}
.

The existence of such numbers is guaranteed by (3.4), (3.5) and the continuity of|x′(t)|p.
Usingσ1 instead oft∗, we definet2, τ2 andσ2 similarly to t1, τ1 andσ1, and so on. Then,
T2 < τn < tn < σn ≤ τn+1 andτn → ∞ asn→ ∞. Also, (3.7) and (3.8) are satisfied.

Let us estimate the distance betweenτn andtn for n ∈ N. Since

(
|ϕp(x

′(t))|p∗
)′
=
dy

dt

d

dy
|y|p∗

∣∣∣∣
y=ϕp(x′(t))

= y′p∗ϕp∗(y)
∣∣∣
y=ϕp(x′(t))

= p∗
(
ϕp(x

′(t))
)′
ϕp∗
(
ϕp(x

′(t))
)
= p∗

(
ϕp(x

′(t))
)′
x′(t),

we obtain

(p− 1)µv0 = |x′(tn)|p − |x′(τn)|p =
∫ tn

τn

(|x′(t)|p)′dt

=

∫ tn

τn

(
|ϕp(x

′(t))|p∗
)′
dt = p∗

∫ tn

τn

(
ϕp(x

′(t))
)′
x′(t)dt.

Taking into account thath(t) ≥ 0 for t ≥ 0, we get

(p− 1)µv0 = p∗
∫ tn

τn

(
− h(t)ϕp(x

′(t))− ϕp(x(t))
)
x′(t)dt

= p∗
∫ tn

τn

(
− h(t)|x′(t)|p − ϕp(x(t))x

′(t)
)
dt

≤ p∗
∫ tn

τn

|ϕp(x(t))||x′(t)|dt.

From (3.6) and (3.8) it follows that

|x(t)|p ≤ 2pv0 for t ≥ T2

and
|x′(t)| < (pµv0)

1
p for τn < t < tn,

respectively. Hence, we can estimate that

(p− 1)µv0 < p∗
∫ tn

τn

2
p−1
p pµ

1
p v0 dt = 2

p−1
p pp∗µ

1
pv0(tn − τn);
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namely,

tn − τn >
(µ
2

)p−1
p p− 1

pp∗
=
(µ
2

) 1
p∗
(

1

p∗

)2
for eachn ∈ N. It is clear that the number(µ/2)1/p

∗
(1/p∗)2 is independent ofn.

Since[τn, tn] ⊂ [τn, σn], it follows that τn + ω < σn for eachn ∈ N, whereω =
(µ/2)1/p

∗
(1/p∗)2. Hence,

∞∑
n=1

∫ σn

τn

h(t)dt = ∞ (3.9)

becauseh(t) is integrally positive. However, from (3.7), we see that

v(σn)− v(τ1) =

∫ σn

τ1

v′(t)dt = −
∫ σn

τ1

h(t)|x′(t)|pdt

≤ −
n∑

i=1

∫ σi

τi

h(t)|x′(t)|pdt ≤ −µv0

n∑
i=1

∫ σi

τi

h(t)dt.

This contradicts (3.9). We have thus proved Theorem 3.3. □

As already mentioned, ifh(t) is nonincreasing fort ≥ 0 and tends to zero ast → ∞,
then it is not integrally positive. For this reason, we cannot apply Theorem 3.3 to the
damped oscillator

(ϕp(x
′))

′
+
p− 1

1 + t
ϕp(x

′) + ϕp(x) = 0.

although condition (3.1) is satisfied. In fact, sinceh(t) = (p − 1)/(1 + t), we can easily
confirm that

eH(t) = (1 + t)p−1 and
∫ t

0

eH(s)ds =
1

p
{(1 + t)p − 1}.

Sincep > 1, we see that2p − 1 > p. Hence, we obtain∫ ∞

0

ϕp∗

(∫ t

0
eH(s)ds

eH(t)

)
dt >

∫ ∞

1

ϕp∗

(∫ t

0
eH(s)ds

eH(t)

)
dt >

∫ ∞

1

1

1 + t
= ∞;

namely, condition (3.1).
To overcome this weak point, we assume thath(t) is weakly integrally positive instead

of integrally positive. Then, we need an additional condition concerningh(t).

Theorem 3.4. Suppose thath(t) is uniformly continuous fort ≥ 0 and weakly integrally
positive and suppose that(3.1)holds. Then the equilibrium of(HL) is globally attractive.

Proof. Sinceh(t) is uniformly continuous fort ≥ 0, we can find aδ > 0 so that|h(α)−
h(β)| < 1 wheneverα ≥ 0 andβ ≥ 0 with |α− β| < δ. Note thatδ is independent oft.
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The proof is by contradiction. Suppose that the equilibrium of (HL) is not globally
attractive. Then, Eq. (HL) has a solutionx(t) satisfying

v(t) =
|x(t)|p

p
+

|x′(t)|p

p∗
↘ v0 > 0 as t→ ∞.

Let t0 be the initial time of the solutionx(t). Sincev(t) is nonincreasing fort ≥ t0, there
exists aT ≥ t0 such that

v0 ≤ v(t) ≤ 2v0 for t ≥ T. (3.10)

By means of the same argument as in the proof of Theorem 3.3, we can show that
lim supt→∞ |x′(t)|p is positive andlim inft→∞ |x′(t)|p is zero. We may assume without
loss of generality that

lim sup
t→∞

|x′(t)|p > pµv0,

where

0 < µ <
1

(3 + 2/δ)p∗ + p/p∗
. (3.11)

Since lim inft→∞ |x′(t)|p = 0 < µpv0 < lim supt→∞ |x′(t)|p, we can select three di-
vergent sequences{τn}, {tn} and {σn} with T < τn < tn < σn ≤ τn+1 such that
|x′(τn)|p = |x′(σn)|p = µv0, |x′(tn)|p = pµv0 and

|x′(t)|p > µv0 for τn < t < σn, (3.12)

µv0 < |x′(t)|p < pµv0 for τn < t < tn. (3.13)

and
|x′(t)|p ≤ pµv0 for σn ≤ t ≤ τn+1. (3.14)

Using (3.10) and (3.13) instead of (3.6) and (3.8), respectively, and following the same
process as in the proof of Theorem 3.3, we can estimation thatτn + ω < σn for each
n ∈ N, where

ω =
(µ
2

) 1
p∗
(

1

p∗

)2
.

From the uniform continuity ofh(t), we see that

|h(t)− h(σn)| < 1 for σn − δ < t < σn + δ. (3.15)

Let us pay attention to the value ofh(t) at t = σn for eachn ∈ N. Define

S = {n ∈ N : h(σn) ≥ 2}.

Claim 1. The number of elements in the setS is finite.

Suppose thatS is infinite. Letd = min{δ, ω}. Then, from (3.12) and the fact that
τn + ω < σn for eachn ∈ N, we obtain

|x′(t)|p ≥ µv0 for σn − d ≤ t ≤ σn. (3.16)
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From (3.15) it follows thatn ∈ S implies that

h(t) ≥ 1 for σn − d ≤ t ≤ σn.

Hence, together with (3.16), we get∫ σn

σn−d

h(t)|x′(t)|pdt ≥ dµv0 if n ∈ S,

and therefore,

v(t)− v(t0) =

∫ t

t0

v′(s)ds = −
∫ t

t0

h(s)|x′(s)|pds

≤ −
∑
n∈S

∫ σn

σn

h(t)|x′(t)|pdt ≤ −∞.

This is a contradiction. Thus, Claim 1 is proved.
From Claim 1, we see that there exists anN ∈ N such that

h(σn) < 2 for n ≥ N. (3.17)

Next, let us pay attention to the distance between intervals[τn, σn] and [τn+1, σn+1] for
eachn ∈ N. Taking into account that

|x(t)|p

p
= v(t)− |x′(t)|p

p∗

and using (3.10) and (3.14), we obtain

|x(t)|p−1 ≥
(
pv0

(
1− pµ

p∗

))p−1
p

=

(
pv0

(
1− pµ

p∗

)) 1
p∗

and
|ϕp(x

′(t))| = |x′(t)|p−1 ≤ (pµv0)
1
p∗ (3.18)

for σn ≤ t ≤ τn+1. Hence, we have∣∣∣(ϕp(x
′(t))

)′∣∣∣ ≥ |ϕp(x(t))| − h(t)|ϕp(x
′(t))| = |x(t)|p−1 − h(t)|ϕp(x

′(t))|

≥
(
pv0

(
1− pµ

p∗

)) 1
p∗

− h(t)(pµv0)
1
p∗ (3.19)

for σn ≤ t ≤ τn+1.

Claim 2. The sequences{τn} and{σn} satisfyτn+1 − σn ≤ δ for n ≥ N .
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Suppose that there exists ann0 ≥ N such thatτn0+1 − σn0 > δ. Then, from (3.15)
and (3.17) it follows that

h(t) ≤ 1 + h(σn0) < 3 for σn0 ≤ t ≤ σn0+ δ.

Hence, from (3.11) and (3.19), we can estimate that

∣∣∣(ϕp(x
′(t))

)′∣∣∣ > (pv0(1− pµ

p∗

)) 1
p∗

− 3(pµv0)
1
p∗ >

2

δ
(pµv0)

1
p∗ > 0

for σn0 ≤ t ≤ σn0+ δ < τn0+1. Integrating this inequality fromσn0 to σn0+ δ, we obtain

|ϕp(x
′(σn0+ δ))|+ |ϕp(x

′(σn0))| =

∣∣∣∣∣
∫ σn0+δ

σn0

(
ϕp(x

′(t))
)′
dt

∣∣∣∣∣
=

∫ σn0+δ

σn0

∣∣∣(ϕp(x
′(t))

)′∣∣∣ dt > 2(pµv0)
1
p∗ ,

which contradicts (3.18). Thus, Claim 2 is proved.
From Claim 2, we see that there exists anΩ ≥ δ such thatτn+1 ≤ σn + Ω for each

n ∈ N. Recall thatτn + ω < σn for eachn ∈ N. Hence,

∞∑
n=1

∫ σn

τn

h(t)dt = ∞ (3.20)

becauseh(t) is weakly integrally positive. However, from (3.12), we see that

v(σn)− v(τ1) =

∫ σn

τ1

v′(t)dt = −
∫ σn

τ1

h(t)|x′(t)|pdt

≤ −
n∑

i=1

∫ σi

τi

h(t)|x′(t)|pdt ≤ −µv0

n∑
i=1

∫ σi

τi

h(t)dt.

This contradicts (3.20). Thus,v(t) fails to have any positive limitv0.
The proof of Theorem 3.4 is thus complete. □

Theorem 3.4 is new even in the linear case in whichp = 2. We can now combine
Theorems 3.2–3.4 with Proposition 3.1 to obtain the following result.

Theorem 3.5. Suppose that one of the following assumptions

(i) h(t) is integrally positive,

(ii) h(t) is uniformly continuous fort ≥ 0 and weakly integrally positive

holds. Then the equilibrium of(HL) is globally asymptotically stable if and only if con-
dition (3.1)holds.
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Hatvani and Totik [24, Theorem 3.1] have established a criterion for judging whether
the equilibrium of damped linear oscillators is asymptotically stable or not. Applying
their criterion to Eq. (L), we have the following result.

Theorem C. Suppose that there exists aγ0 with 0 < γ0 < π such that

lim inf
t→∞

∫ t+γ0

t

h(s)ds > 0.

Then the equilibrium of(L) is asymptotically stable if and only if condition(3.3)holds.

In addition, they pointed out that the requirement that0 < γ0 < π in Theorem C was
the best possible (see [24, Example 3.2]). Recall thath(t) is integrally positive if and only
if

lim inf
t→∞

∫ t+γ

t

h(s)ds > 0

for everyγ > 0. Hence, the assumption regardingh(t) of Theorem C is weaker than the
integral positivity. Even in this sense, Theorem C is very nice. Unfortunately, however,
Theorem C cannot be applied to the case in whichh(t) disappears ast → ∞. On the
other hand, Theorem 3.5 has a strong point that it is possible to apply to even in such a
case.
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